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MAX-TYPE RANK TESTS
IN THE TWO-SAMPLE PROBLEM

1. Introduction. In this paper we consider a method of construction
of rank tests for the two-sample problem. Our aim is to extend the range of
sensitivity of classical linear rank tests.

Behnen [5] has proved that in many testing problems asymptotic opti-
mality of classical linear rank tests takes place if and only if the test statis-
tic and alternative are generated by the same function, say b (cf. also [10]
and [1]). Moreover, it is well known that under a larger class of alternatives
the classical tests have rather small power. To overcome this disadvantage,
Behnen and Neuhaus (B&N) [6], Neuhaus [12] and B&N [7] have recently
adapted the classical rank statistics to larger classes of contiguous alterna-
tives by estimating the function b.

In this paper we present a simpler alternative approach to the problem.
Our method is naturally and easily applicable to some subclasses of al-
ternatives, e.g. to a “stochastically larger” alternative or “more dispersed”
alternative (see Sec. 6). Although our idea is quite general, we restrict at-
tention to the two-sample problem. To extend the range of sensitivity of
linear rank tests we propose to take max-type statistics, i.e. the maximum
of some linear rank statistics. Before we present the content of the paper in
more detail, note that some examples of taking the maximum or minimum
of some test statistics in different testing problems can be found e.g. in [16]
(the combination problem), [8] (testing goodness of fit), [11] (independence
testing), [14] (change point problem). Observe also that though the results
of [1], [3], [4], [11], [14] show some advantages of such a combination of test
statistics, there is no general theory for this class of statistics.
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The content of the paper is as follows. In Section 2 we introduce the basic
notation and the definition of a max-type statistic. The max-type statistics
for one-sided (stochastically larger) and two-sided alternatives are discussed
in Sections 3 and 4, respectively. The local asymptotic relative efficiency
of a max-type test is calculated in Section 3.1. The asymptotic powers are
investigated in Sections 3.2 and 4.1. The results are comparable with those
obtained by Neuhaus [12]. To check the agreement of asymptotic results with
their finite sample counterparts some simulations are reported in Sections 3.3
and 4.2. More numerical results are contained in [2]. All the results show that
max-type statistics are sensitive for a larger class of alternatives than linear
rank statistics. In Section 5 we discuss how to improve the famous Wilcoxon
statistic via some max-type statistics. A construction of a max-type statistic
for two samples differing in scale is shortly presented in Section 6.

2. Preliminaries

2.1. A reparametrization of the problem. Let Xi,...,Xm, Y1,...,Y, be
independent rv’s and suppose that the distribution function F (G) of X; (Y;)
is continuous. Define X,,+; =Yj, j =1,...,n, and let R; be the rank of X;
in the pooled sample (X1,...,Xy), N=m+n.

Now consider the testing problem

Hy:F= G

versus the omnibus alternative
Ko:F#G

and Hy against the stochastically larger alternative
K. 1 F s G .

As in [12], we will replace the parameter (F, G) by an equivalent param-
eter (b, H), where

H=pyF+(1-pN)G, pn=m/N,

d(F —G)oH™1
_ 1/2
b= (mn/N)™/*. N .

and ) is the Lebesgue measure on (0,1). By deﬁn_ifion H € F., where F, is
the set of continuous df’s on R. Moreover, b € My where

My = {f € L3(0,1) : —(Nm/n)*/? < f < (Nn/m)*/?},

£3(0,1) = {f € Ly(0,1) : flfd,\= 0}.
0
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In terms of b the above testing problems take the equivalent form
Ho:b=0 versus Kp:b#0,
(1) ‘
Hy:b=0 versus Kj: fbdASOforalltG (0,1),
0

respectively (for more details see [7], Section 1.3).
For further purposes it is convenient to present the alternatives (1) in a
more general form. Consider the hypothesis

(2) Ho:b=0 versus K:be L\ {0},

where L is a cone in L3(0,1).
Note that we get the stochastically larger alternative K; for

3) L=C={beLg(o,1): fbd,\gofofaute(o,l)},
0

and the omnibus alternative Ko for L = L3(0, 1).

To simplify further considerations, we distinguish two specific properties
of the cone L. The alternative described by L will be called one-sided if

beL=(-b) gL
and two-sided if
beL=(-b)elL.

Note that in the two-sided case according to our definition the cone L is
a subspace of L3(0,1).

2.2. Linear and maz-type rank statistics. Now for any sequences {Hy} C
Fe, {b~n} C My with by — b in L3(0,1) define the local alternatives
{(F¥,Gn)} by

9 X

dHy
where

dGn

=1+enpbvoHy, E=1+CN,N5N°HN;

-1 ;
o 12 [m forl<i<m,
e, = (mn/N) {_n—l form+1<i<N.

The function b will be called the asymptotic direction of (4).
Behnen [5] has proved that the linear rank statistic

N
(5) Sn(k) = Z enihn(R:),

i=1
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where
i/N
hn@) =N [ h(u)dx, 1<i<N, heLd0,1),

(i—1)/N
is asymptotically optimal for testing Hy against the alternatives of the
form (4) with b such that fot bd\ < 0for all ¢ € (0, 1) iff there is a ¢ > 0 such
that h = cb a.e., that is, for its “own” direction h. Moreover, the asymptotic
power of (5) depends on b via (h,b)/||k|| only, where (-,-) denotes the scalar
product in LJ(0,1). The power is greater than the significance level only for
h such that (h,b) > 0. A similar assertion holds true for the local Bahadur
optimality (cf. [10] and [1]).

Denote by Wi (t), t € [0, 1], the two-sample rank process

N
(6) Wn(i/N)=> en;I(R; <i), §=0,1,...,N,
i=1

and define Wy (-) to be linear in all intervals [(i — 1)/N,i/N]. Under the
alternatives (4), with py — p € (0,1), we have

(7 Wy-——Wo+ [bdx as N — oo,
0

where W) is the Brownian bridge process on [0, 1] (cf. [12], formula (2.36)).
Note that if h € L3(0,1) is of bounded variation then

1 1
(8) Sn(h)= [ hdWy=- [ Wndh.
0 0

Moreover, it is a well known fact that for Ly(0, 1) functions {hy,...,hx}
of bounded variation the rv’s {[ h; dWy}i=1,. r are centered and jointly
normal with covariances

E [ hdWo- [ hjdWo= [ hihjdA— [ hidX [ hjdA.
Now let V;, i =1,..., k, be continuous functionals on C|[0, 1]. The statis-
tic
Tng = A Vi(Wn)

will be called a max-type statistic.

So, if we take the functionals V;(f) = —ffdhi, where hy,...,hy are
some L3(0,1) functions of bounded variation, we get a max-type statistic

based on linear rank statistics. In Sections 3 and 4 we consider this kind of
test statistics.
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3. Max-type statistics for one-sided alternatives. As was noted by
B&N [7], if we represent many relevant types of alternatives in the form (4),
the function by can be approximated by a given finite set of special func-
tions. For example, the first four functions of the orthonormal system (15)
below give a suitable approximation of generalized shift models considered
by B&N [7] (cf. our formulae (17)). Moreover, if we try to make a test sensi-
tive in a whole infinite-dimensional cone, we obtain rather low power in all
directions (cf. B&N [7], Section 3.2.B). Therefore for practical purposes we
consider a finite system of score generating functions.

Let g1,. .., gx be a finite orthonormal system in L of functions of bounded
variation in L.

In the case of a one-sided alternative we propose the following one-sided
max-type statistic:

(9) TNk = e ciSn(gi),

where the weights ¢; are positive. Its asymptotic distribution is very simple.
Under the alternatives (4)

1 D (Y- .
(10) T2 max ci(Y + (90),
where Y7,...,Y} are i.i.d. standard normal rv’s and (:,-) is the inner product
in L2 (0, 1).

Note that Neuhaus’ [12] test statistics for the stochastically larger alter-
native, which is a one-sided alternative, are more complicated and that he
did not manage to calculate their asymptotic distributions.

Another kind of test statistics for the stochastically larger alternative
was introduced in [7] using projection estimators of the function by (see
(4)). However, the authors manage to evaluate the asymptotic distributions
under Hj only.

Because of the simple form of the asymptotic distribution of the statistic
T}v,k, it is easy to examine some of its properties. For example, Tj{r_k is

asymptotically unbiased under (4) in all directions b€ {3°F_ 7ig; : 7 > 0}.

3.1. Local asymptotic relative efficiency. Now, consider the case of equal
weights c;. TN » with the weights ¢; = 1, ¢ = 1,...,k, will be denoted by
TN x- We can compare T}, with the linear ra.nk test based on Sn(g1)
using the local asymptotic relative efficiency (LARE) defined in [9] (Sec-
tion VII.2.3). We expand the asymptotic power of Sx(g1) (AP(Sn(g1)) and
L & (AP(T} ;) under the alternatives (4) in the direction d-b, where d > 0,
as follows:

AP(Sn(91))(d) = a + dp(ua) (b, 91) + o(d)
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k
AP(Ty)(d) = a+d(1 — a)*~D/E Y (b, g:)g(uy) + o(d)

as d — 0, where « is a common significance level, ¢ and ¢ are the df and the
density of the standard normal distribution, respectively, and #(u,) = 1-a,
&(ur) = (1—a)/*. LARE is the square of the ratio of the asymptotic slopes,
i.e.

(11)  LARE(TY, Sn(a1)) = {(1 _ a1/ () Z (b,9:) }

‘ob(ua) (b, 91)

LARE enables a comparison of tests under contiguous alterna.twes in the
direction of a small length. Now, we calculate the limit of LARE as o — 0:

PROPOSITION 1.

. _ 14~ (o))
lim LARE(Ty 1, Sn(91)) = EZ;(b,gl) '

Proof. Note that

pun) 1 ug
¢(ﬂa) kur asa— 0.

It is a known fact that 1 — &(z) ~ ¢(z)/z as * — oco. Therefore

l[u_a]zru i ¢(u;) ~ .l —»l asa—0.m
k| u® O(ua) uX o k

Some numerical results on LARE are contained in Table 1. These results
confirm that the linear rank test is better in its own direction (% = 0)
than the max-type test. However, it is worse in some intermediate directions
(v = /4 and the second part of Table 1) and very bad in almost orthogonal
directions (¥ = 0.9 - v/2). Note that in the first part of Table 1, i.e. for
b= gicosy + gasine, k = 2, we have

hm LARE(TN 2,Sn(91)) = (1 + tanv)?/4.

3.2. Asymptotic power of some one-sided maz-type statistics. Consider
k = 2 and investigate the asymptotic behaviour of T}w‘, (the case of equal
weights c¢;) under the alternatives (4) in a direction b from P; = {vyg1+ g2 :
7,8 > 0,7% + B* = const}. It is easy to calculate that the asymptotic
power of T}V,Z does not take local extremes for the main directions g;, g2
(as in the two-sided case, see Section 4.1) but for some b = yg; + fg2 with
v, 8 > 0. Numerical results depend on the level of the test and on the length
¢ = ||b]| of the direction b. Sometimes there are maxima near cg, cg; and a
minimum for b = 27%/2¢(g; + g3), and sometimes there is only a maximum
for b = 2"1/2¢(g; + g2) (see Table 2).
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Some values of LARE(T}V,k,SN(gl)) for various levels & and the limit as @ — 0, b =

g1cost + gasing, k = 2, ¢ = 0, v/4, 0.97/2 (first part) and for b = Y& gi/k"/2,
k = 2,4,10,20 (second part).

P a=0.1 a = 0.001 a .= 0.00001 a—0
0 0.33 0.28 0.27 0.25
/4 1.30 1.12 1.06 1.00
0.97/2 17.31 14.90 14.29 13.40
k
2 1.30 112 1.06 1.00
4 1.61 1.23 . 112 1.00
10 2.07 1.39 1.21 1.00
20 2.43 1.49 1.28 1.00
TABLE 2

Asymptotic powers (in %) of the one-sided test statistic T}v o under the alternatives
by = d(gy cos 9 + g2 sin ) for various d, @ and ¢ = (r/10) - (r/4), r = 0,.. ., 10.

d=05 d=1

, o 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
0 17.35 9.64 2.39 0.31 30.14 19.09 6.24 1.15
1 17.69 9.84 2.44 0.32 30.69 19.43 6.32 1.16
2 17.99 10.02 2.49 0.32 31.14 19.69 6.36 1.15
3 18.26 10.17 252 033 31.50 19.87 6.36 1.13
4 118.48 10.30 2.55 0.33 3L.77 19.99 6.33 1.11
5 18.67 1041 2.57 0.33 31.98 20.06 6.28 1.08
6 18.82 10.49 2.59 0.33 32.13  20.09 6.23 1.05
7 18.94 10.56 2.60 0.33 32.23 20.10 6.17 1.02
8 19.02 10.60 2.61 0.33 32.29 20.10 6.12 1.00
9 19.07 10.63 2.61 0.33 32.33 20.10 6.09 0.98

10 19.09 10.64 2.62 0.33 32.34 20.10 6.08 0.98

d=2 ' d=3

oo 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
0 66.18 53.03 28.63 9.89 91.87 '85.58 66.63 38.60
1 66.63 53.32  28.62 9.82 91.99 8564 66.45 38.29
2 66.85 53.31 28.30 9.56 9196 8542 65.72 37.32
3 66.87 53.06 27.72 9.14 91.81 8497 6450 35.75
4 66.75 5264 26.94 8.60 91.56 84.36 6290 33.70
5 66.54 52.11 26.05 7.99 91.27 83.65 61.04 31.32
6 66.28 51.55 25.14 7.38 90.96 82.92 59.09 28.81
7 66.03 51.02 24.31 6.81 90.68 82.23 57.27 2645
8 65.82 50.60 23.65 6.36 90.45 81.67 55.77 24.50
9 65.68 50.32 23.21 6.07 90.29 81.31 54.79 23.22

10 65.63 50.23 23.06 5.97 90.24 81.19 54.44 22.77
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3.3. Simulated powers of some one-sided maz-type statistics. Now con-
sider a specific one-sided alternative, namely the stochastically larger alter-
native K;. Note that the orthonormal system v;, i = 1,2,... (see (15)),
considered by Neuhaus [12] is not appropriate because the functions +v; for
¢ > 1 do not belong to the corresponding cone C (see (3)). Therefore we
propose the orthonormal system

(12) w;(u) = —2Y%sin(2win), i=1,2,...

Simulated powers of some statistics based on (12) are given in Table 3.
The first column of Table 3 concerns Sy (w; ), which is a one-sided linear rank
statistic asymptotically optimal in the direction w;. The next three statis-
tics are one-sided max-type statistics (see (9)) with equal weights. Table 3
also gives asymptotic powers which are valid for an arbitrary orthonormal
system. '

Table 3 shows that the tests considered which are sensitive in more di-
rections than Sy (w1), have smaller asymptotic power in the first direction,
though the difference is not very large. However, in the next directions they
have considerably greater power in contrast to the power 10% (the signifi-
cance level) of the linear rank test. Note that the asymptotic power 77.7%
of TN 10 18 also valid for directions 5 + 10, for which the other tests have
asymptotic power 10%. Table 3 also shows a good agreement of finite sample
simulation results with its asymptotic counterpart.

4. Max-type statistics for two-sided alternatives. Consider the
hypothesis Hy versus the omnibus alternative Ky, and the max-type statistic

(13) ax Sy(h),
where hy, ...,k are some L3(0, 1) functions of bounded variation. First we

formulate a result on the asymptotic admissibility of this test. Note that
asymptotic admissibility of a test means that its asymptotic power under
the local alternatives (4) cannot be improved for some direction b without
diminishing the power for some other direction.

PROPOSITION 2. The test based on (13) is asymptotically admissible for
all directions b € L3(0,1).

Proof. Note that the set

{res:pm (- [ ram)<e}

is closed and convex in B, where B = {f € C[0,1] : f(0) = f(1) =0}. Asin
[12], the rest of the proof follows the lines of Example 82.23 of [15].

4.1. Asymptotic power of some two-sided maz-type statistics. Similarly to
Section 3, let g1, ..., gk be a finite orthonormal system of L3(0,1) functions
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TABLE 3

Powers (in %) of some one-sided tests at level & = 0.1 under the alternatives (4) with
by = 3w; for i = 1,2,3 (see (12)), m = n, N = m + n = 10, 40, 80 (obtained by 3000
Monte Carlo runs) and N = co (the asymptotic power).

N alt. i Sy (w1) Tha Tha Th.10
96.1 92.7 87.5 82.1
20 2 21.6 68.3 56.8 50.4
3 14.1 27.0 39.2 31.1
1 95.3 92.1 86.5 78.6
40 2 15.4 77.8 71.4 59.5
3 11.0 21.9 55.2 43.7
1 95.3 90.5 85.8 76.0
80 2 13.6 84.7 78.7 66.5
3 11.0 16.0 66.2 53.1
1 95.7 91.9 86.6 7.7
o0 2 10.0 91.9 86.6 T
3 10.0 10.0 86.6 7.7

of bounded variation. Since max(Sn(g:), Sn(—9:)) = |Sn(g:)], for a two-
sided alternative we propose the following test statistic which is a special
case of (13):

Tiy = max ci|Sn(gi)l, e >0,i=1,...,k.

Just as in (10),
2 D v .
(14) Ty— Juax ci|Y; + (g, b)) .

As in the one-sided case, Tﬁr‘k is asymptotically unbiased under (4) in all
directions b € {2:;1 7gi : v € R}.

We would like to compare the above statistic with the statistics defined
by Neuhaus [12] for the omnibus alternative K. For this purpose, we have
chosen the statistic Tﬁ}k with k = 4 and

c1 =095, c2=081, e3=0.67, c4=0.5,

and the statistic Par-2 defined by Neuhaus [12], which can be written in the
form

Par-2 = 0.9 - Sn(g1)% + 0.66 - Sy (g2)? +0.38 - Sn(g3)?
+0.16 - Sn(94)® +0.05 - Sn(gs)? + 0.01 - Sn(gs)? .

As can be seen in Table 4 the asymptotic power of T , is greater than
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the power of Par-2 in the directions g;, i = 1,...,4. However, in some inter-
mediate directions it must be smaller because both tests are asymptotically

admissible.
TABLE 4

Asymptotic power (in %) of the tests Par-2 and Tif.i at level a = 0.1 for Hy versus (4)
withb=3g;,i=1,...,4.

i 1 2 3 4
Par-2 86.7 80.2 62.1 29.2
TH 4 87.9 81.1 67.8 37.1

Now consider k = 2 and as in Section 3.2 investigate the asymptotic
behaviour of T% , (the case of equal weights ¢;) under the alternatives (4)
in directions b from P, = {yg1+ B9z : 7%+ % = const.}. It can be proved by
a straightforward calculation that the asymptotic power of T3, , takes a local
maximum for the main directions +g;, +g5. Our numerical results presented
in Table 5 show that minimum powers are observed for the intermediate
directions 271/2(+g; + g5).

TABLE 5

Asymptotic powers (in %) of the two sided test statistic T‘?vg under the alternatives
by = d(g1 cos ) + g2 sin ) for various d, @ and ¢ = (r/10) - (x/4), r =0,...,10.

d=2 d=3
i 2 0.1 0.05 0.01 0.1 0.05 0.01
0 54.51 42.16 21.40 86.09 78.31 57.89
1 54.41 42.03 21.27 85.99 78.13 57.59
2 54.14 4167  20.88 85.68 77.61 56.68
3 53.71 4110 2027 85.19 76.78 55.23
4 53.16  40.37 19.49 84.55 75.71 53.33
5 52.55  39.56 18.62 83.83 74.48 51.12
6 51.94 38.75 17.74 83.10 73.21 48.81
7 51.39 38.00 16.93 82.42 72.02 46.64
8 50.94 37.41 16.29 81.86 7106  44.85
9 50.66 37.02 15.87 81.51 7043 4367
10 50.56 36.89 15.72 81.38 70.21 43.25

4.2. Simulated powers of some two-sided maz-type statistics. We present
(Table 6) some power values of some tests for the omnibus alternative Kj.
The simulations have been done for the orthonormal system

(15) vi(u) = 242 cos(min), i=1,2,...,
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considered by Neuhaus [12]. In Table 6, |Snx(g1)| is a two-sided linear rank
statistic. T 5, T'a 4» T 10 are two-sided max-type statistics (see (14)) with
equal weights, i.e.c; = 1,i =1,...,k. As in Table 3, the lower power of T?V,‘l
and T% ,, in the direction v; is compensated in other orthogonal directions.

TABLE 6
Powers (in %) of some two-sided tests at level & = 0.1 for Hy versus Ko (see (1)) under
the alternatives (4) with by = 3v; for i = 1,2,3,4 (see (15)), m=n, N=m+n = 20,
40, 80 (obtained by 3000 Monte Carlo runs) and N = oo (the asymptotic power).

N alt. 4 |Sn (v1)] X2 T Th .10
1 96.1 91.9 86.6 79.6
2 2 18.6 86.8 78.6 69.2
3 11.1 21.6 66.7 56.0
4 11.2 14.7 55.0 46.6
1 94.2 89.6 84.0 73.4
40 2 14.0 85.4 78.8 67.5
3 12.4 18.2 72.6 60.8
4 10.3 13.6 63.3 52.0
1 91.5 87.1 80.9 70.8
80 2 11.9 85.0 78.6 67.7
3 10.6 14.5 76.0 64.5
4 10.4 13.2 69.2 58.7
1 91.2 86.1 79.7 70.0
5 2 10.0 86.1 79.7 70.0
3 10.0 10.0 79.7 70.0
4 10.0 10.0 79.7 70.0

5. On some improvements of the Wilcoxon statistic. Now, con-
sider the two-sample Wilcoxon statistic which is a linear rank statistic de-
termined by the function e;(u) = 3'/2(2u — 1).

If we want to improve the two-sided Wilcoxon statistic (the absolute
value of the one-sided Wilcoxon statistic) in some directions other than e;,
we can use, instead of (15), the orthonormal system of Legendre polynomials
whose first elements are

er(u) =3Y2(2u—1), ea(u)=5"2(6u —6u+1).

This kind of orthonormal system has been used by Neyman [13] to construct
some smooth tests of fit.
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If we want to improve the one-sided Wilcoxon test for testing Hy against
the stochastically larger alternative using methods considered in this paper,
we need an orthonormal system in C' which contains the above function e;.
Unfortunately, such a system does not exist, also for some other functions.
This can be seen from the following simple but interesting fact (analogous
to a part of Lemma 7.3.1 of B&N [7]).

PROPOSITION 3. Consider a strictly increasing function h in L2(0,1).
Then for all functions f # 0 a.e. from the cone C we have

1

[ hw)f(u)du>0.

0

Proof. Note that if f € C then for every ¢ € (0,1), F(¢) = f[: f(u)du
< 0. Moreover,
1 1
[ h(w)fw)du=— [ F(u)dh(u)
0 0
is nonnegative and can be 0 only for F/(u) = 0. This contradicts f Z0. =

The above proposition also shows that the linear rank statistic deter-
mined by a strictly increasing function h (e.g. Wilcoxon or van der Waerden
tests) has an asymptotic power greater than the significance level for the
alternatives (4) with an arbitrary direction b € C.

Because of the above difficulties in constructing the appropriate or-
thonormal system we propose the following solution. Define two functions:

f1=0.8'81+0.6'82, f2=0.6'€1—0.8-82,

from the cone C. Consider

Tha= mnx Sn(fi), Tna=max{Sn(f1),Sn(f2),Sn(e1)}.

These statistics are not much more complicated than Wilcoxon’s but they
are sensitive in a greater number of directions.

In Table 7 we present some simulation results for T’ ,, Ty ; and Sy (e1)
— the Wilcoxon test statistic. Note that the calculations of powers under
the alternatives (4) would give results similar to those in Table 3. To make it
more interesting we consider another kind of alternative, viz. the generalized
shift alternative (see [12]):

(16) F <G, where F=G(z— D(z))

for some shift functions D > 0. Such an alternative is more realistic than
the traditional constant shift (for more details see B&N [7]). We have chosen
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(as in [12])

upper shift :  D(z) = G(4z)/2,

central shift : D(z) = 2G(2z) - (1 - G(2z)),

lower shift: D(z) = (1 - G(4z))/2,

pure shift:  D(z) =1/2,

with the standard logistic and Cauchy df G. Additionally, we consider the
double-exponential df G. It is seen that under the above alternatives the
new max-type tests are frequently better than the Wilcoxon test (except
for the pure shift), especially for the upper and lower shifts. Moreover,
new tests have powers similar to that of the one-sided test considered by
Neuhaus [12]. Note also that in the exact logistic shift model (pure shift),

the Wilcoxon test is an asymptotically optimal and locally most powerful
rank test.

In Table 8 we give critical values of some tests considered in this paper.

(17)

TABLE 7

Simulated powers (in %) of some one-sided tests considered in Section 5 at level & = 0.1
under generalized shift alternatives (16) with G the standard double-exponential (exp),
logistic (log) and Cauchy df. The shifts are defined according to (17). The powers have
been obtained by 3000 Monte Carlo runs in the cases m = n and N = m + n = 20, 80.

| N =20 | N =80
Test | Thao Ths Sn(wr) | Thy Ths Sn(w)

G shift

upper 23.1 234 210 48.4 493 431
_— central 24.5 254 228 41.9 438 468

lower 21.2 225 18.5 40.1 41.6 32.8

pure 31.3 33.9 33.7 63.3 68.0 72.0

upper 189 186  17.1 31.7 323 284
o central 18.2 19.0 17.1 26.4 289 293

lower 18.0 18.8 15.1 29.9 30.8 23.6

pure 22.4 24.1 23.3 41.9 45.7  50.0

upper 17.9 18.8 16.5 27.3 27.3 26.5

central 20.4 20.8 19.3 28.8 318 348
Cauchy

lower 17.7 183 159 25.3 266  23.0

pure 22.6 24.0 22.7 39.8 42.8 46.1

6. Two samples differing in scale. In Sections 3.3 and 5 we consider,
as an example of one-sided alternative, the stochastically larger alternative.
Now we present another example to show how to construct max-type statis-
tics for a different kind of alternatives.
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TABLE 8

Critical values of some one-sided and two-sided tests considered in Sections 3.3, 4.2 and 5
at various levels o for N = 20, 40, 80 (obtained by 8000 Monte Carlo runs) and for
N = co (asymptotic values).

a | W | Th2 Thxa Thnio Tnz Thna Thao
20 2.02 2.28 2.49 1.66 1.94 2.17

01 40 1.98 2.25 2.56 1.65 1.96 2.26
80 1.95 2.24 2.56 1.63 1.94 231

00 1.96 2.23 2.56 1.63 1.95 2.31

20 2.32 2.51 2.73 1.95 2.22 2.42

0.05 40 2.26 2.50 2.76 1.95 2.25 2.46
80 2.23 2.50 2.80 1.96 2.25 2.53

0 2.24 2.49 2.80 1.96 2.24 2.57

20 2.78 2.94 3.12 2.48 2.73 2.81

0.01 40 2.81 2.97 3.21 2.55 2.77 2.97
80 2.86 3.09 3.26 2.59 2.83 3.06

o0 2.81 3.02 3.29 2.58 2.81 3.08

Under the notation of Section 2.1 we deal with testing of the hypothesis
Hy : F = G against the alternative of dispersion about p € [0, 1]:
K§: F#Gand F(z) > G(z) if G(z) < p,
F(z) < G(a) if G(z) = ,
considered by B&N [T7].

The reparametrization as in Section 2.1 yields the testing problem in the
form (2) with the cone

L=S*‘={beL (0,1) : fbd,\> 0 for all ¢ € (0, u)

and f bdA < 0forall t € [p,,l)}

For more details and general information as well as motivation see B&N (7],
Chapter 4.1. To construct one-sided max-type statistics for this case, we
should have an orthonormal system of functions in S*. Given any p € [0, 1]
we propose the orthonormal system

(18)  2(z) = 22 sin{drile — ul/[1 + (1 - 2) sga(z — W)},
$=1,2,..0,1n ¥,

Now consider. two special cases of S¥.

1) p = 0. Then S° = C (cf. (3)). In other words, S is the stochasti-

cally larger alternative. Moreover, the orthonormal system (18) with =0
coincides with w; (see Section 3.3, formula (12)).
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2) p = 1/2. This is the case of dispersion about the median and the

orthonormal system (18) takes a simpler form

25/2(3) = —21/2sin(27i|2z — 1]).
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