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MATHEMATICAL FOUNDATIONS OF
MULTIVARIATE PATH ANALYSIS

Abstract. A generalization of path analysis to the multivariate case is pro-
posed. The basic definitions which are not related to causality measurement
are given independently of the dimension of the random vectors considered.
Causality measurement is based on the concept of linear regression of a
random vector w.r.t. a system of random vectors.

1. Introduction. Traditional path analysis was originated by works of
the geneticist S. Wright [6]. Applications of the theory to genetics were also
given by C. C. Li [3]. Nowadays path analysis is more frequently used when
dealing with causal modelling in social sciences. This approach had often
been abused, before the formal foundations of the theory were stated in
Moran [4] and Carlin [1]. It seems that the main problem with using this
statistical technique is a clear understanding what tacit assumptions are
being made.

In this paper the formal foundations of path analysis are generalized to
the multidimensional case. Multivariate path analysis is understood as the
study of linear properties of the causal model (X, (P.,P*)).

We define a causal system as (X, (I,,I*)), where X = (X1,..., Xm+n)
is a system of m + n k-dimensional random variables, and I,, I* are inci-
dence matrices describing the mutual dependences between X, ..., Xmin-
The random variables X1,..., X, are called ezogenous, and X,,41 ... Xm+4n
are called endogenous. Causality measurement for the causal system
(%, (I.,I*)) is based on the concept of linear regression of the vector X;
(i > m) w.r.t. the direct causes of X;.
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The corresponding regression coefficients form matrices P, and P* which
are called path matrices. They are considered as measures of direct influence
on endogenous variables exerted by their exogenous causes. The residuals
pertaining to the linear regression are treated as endogenous variables in the
model. The graphical representation of the linear causal model (X, (P.,P*))
is given in the form of a complete path diagram. The diagram consists of
m + 2n points, each representing one variable (endogenous, exogenous or
residual). All direct causes of the endogenous variable X; (¢ > m) are linked
on the diagram with X; by a single arrow with head at X;. To each ar-
row there corresponds an element of the matrix P, or P*. The residuals
of X; (i > m) are also linked by such an arrow with X;, and in this case
the identity matrix corresponds to this arrow. Any two points represent-
ing exogenous variables are linked by an arrow with two heads in opposite
directions, provided the corresponding covariance matrix is not the zero ma-
trix. The rules of moving in the complete path diagram are dealt with in
Section 4.2. :

In Section 2 the problem of causality measurement for multivariate ran-
dom variables is stated. The relevant mathematical framework is contained
in Section 3. In Section 4.1 simple conditions are given under which the
construction of a linear causal model is possible. Moreover, the meaning of
residuals in the context of causality measurement is explained.

In traditional path analysis all random variables of the system X are
assumed to be normalized. Since for some applications this assumption ap-
pears to be too restrictive, we do not impose it in the paper.

2. Causal linear miodel

2.1. Definition. Let H({2, A, P; H) be the space of all random variables
defined on a probability space (§2,.4, P) with values in a normed space H
of finite dimension.

We distinguish a system X of m 4+ n elements of this space: X =
(X1,--+yXms Xm+1,-- -y Xm+n). The random variables X3, ..., X, are call-
ed ezogenous, and X;m41,..., Xm4n are endogenous. Moreover, we distin-
guish two functions:

fo i {Xma1,- - s X b % [ Koty Knnd ~+ 10,13
where f, is such that f.(X;, X;) =0fori=m+1,...,m+n, and
f X1, s Xm} X {Xm+1y- -y Xman} — {0,1}.
These functions can be represented in compact form by the matrices

(1) It = [ft(Xm+jJXm+£)]1 SEJ :1!"':”’1



Multivariate path analysis 389

and
(2) "= "X, Xng)], $=1....n f=1....m
(the indices 7 and j correspond to rows and columns, respectively).

DEFINITION 1. The function f, (resp. f*) is called an endogenous (resp.
exogenous) causal function for the system X'. The matrix I, (resp. I*) is an
endogenous (resp. ezogenous) incidence matriz for X.

If fu(X;,X;) =1 (resp. if f*(X,s,Xy) = 1) then we say that X; (resp.
X;) is a direct cause of X; (resp. of Xi) and that X; (resp. Xy) is a
direct effect of X; (resp. of Xj:); symbolically, we write X; — X; (resp.
X — Xy). f X;, » X, fori=1,...,v—1, v > 3, then we say that
X;, is an indirect cause of X;, (and X;, is an indirect effect of X, ).

Suppose that the ith row of I, (i = 1,...,n) has 1’s in columns ji,...
«++yJu(i); in other words, Xmij,..., Xm+j,, are the endogenous direct
causes of the endogenous variable X,,,;. On the other hand, let Xjtyeon
...,XJ-:’,(‘) be the exogenous direct causes of Xm4;, where ji,..., 7, in-
dicate the columns of I'* with 1’s in the ith row. The set of all direct causes
of the endogenous variable X; for i =m+1,...,m + n is denoted by &;.

DEFINITION 2. The ordered pair (X, (I,,I*)) is called a causal system.

Exogenous variables have no indirect causes. Any variable can be a direct
or indirect effect of other variables; a direct or indirect cause (effect) will be
shortly called a cause (effect). It can happen that an exogenous variable is
an indirect cause of itself.

DEFINITION 3. The causal system (X, (I, I*)) is called nonrecursive if
for some iy (ip = m + 1,...,m + n) the variable X;; of this system is an
indirect cause of itself. Otherwise, the system is called recursive.

Recursivity of a causal system can be easily characterized by means of
the endogenous incidence matrix I,.

LEMMA 1. The causal system (X, (I.,I*)) is recursive if and only if I,
is nilpotent of order n (i.e. I} = 0).

The proof is analogous to that of a similar lemma of Kang and Seneta [2]
for the one-dimensional case.

Remark. It follows from the proof given by Kang and Seneta that recur-
sivity of a causal system occurs if and only if the matrix I, is essentially lower
triangular, possibly after some permutation of rows and columns. This per-
mutation of rows and columns corresponds to a permutation (Xj,,...,Xj,)
of all endogenous variables such that X;; is not a cause of X; " for 7 > 7/,
ff e Losnas
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The condition I? = 0 implies that I,, — I, is invertible, where I, is the
identity matrix of order n. It is easy to check that (I, — I,)~! = S0 1 IE.

=0 “=*
EXAMPLE. Let X = (X;,...,X5) be a system of random variables. Let
0 00O 1
1000 i
L=11 000" T=|o
1 010 1

Thus, m = 1, n = 4. The causal system (X, (I,,I*)) can be graphically
represented by a path diagram (Fig. 1) which consists of m + n points
corresponding to the variables in &'.

X1 Xs

—— e g

\.Xa [

0/ L]

Xs Xa
Fig. 1

Any endogenous variable X;, i = m +1,...,m + n, is joined to any direct

cause (endogenous or exogenous) of X; by an arrow with head in X;. Such
arrows are called single step paths.

2.2. Path matrices. The causal system (X, (I.,I*)) indicates the links
between causes and effects, but the strength of these links is not measured.
Now, we present an intuitive background of such a measurement.

Consider an arbitrary endogenous variable X; from (X, (I, I*)), i =
m + 1,...,m + n. The direct causes (exogenous and endogenous) of X;
form the set X;. The indices of these direct causes can be read off from the
ith rows of I, and I"*. Let Xyntj,,..., Xm+j, () and Xji,. "’X-"Lfm be the
endogenous and exogenous direct causes of X;, respectively.

IfH=R’°thenXg=(X,-l,...,X,:k)T,i=1,...,m+n. ;

We assume that the conditional expectation of any endogenous variable
X; (i=m+1,...,m+n), conditioned on the set A; of its direct causes, is
of the form

v(i) V' ()

(3) E(X:| %) =) BejXmii + ) B Xy
=1 =1
where B,j,,l =1,...,v(i), and B;I’ l=1,...,V/(i), are some k X k matrices.
We decompose the endogenous variable X;, i = m+1,...,m+n, in
H($2,A,P;H) as

(4) Xi=E(X; | X))+ U,
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where U; € H($2, A, P; H); U; is called the residual of X; (w.r.t. &;).
Geometrically, E(X; | &;) is the projection of X; on the subspace Hy,,
where
v(i) V' (4)
= { D AiXmaic + 3 A5 X+ Ay A € Mi}
1=1 I=1
and M, is the set of all real k X k matrices.
Formula (4) is equivalent to
v(i) v'(d)
(5) Xi=) By Xmij+ Y BjiXji + ka,, :
=1 =1
where I} is the k X k identity matrix. To shorten notation, we introduce
some changes and define some block matrices. Let

X; =12, i=1,...,m, X‘m+1=y’£1 i=1,...,n,

=[Z]; #=1...m; Y=, i=1..,n,
(6) P*=[Ptij]a i,j=l,...,ﬂ,
(7 P‘:[H}], i=1,...;0;, F=1l,....,m

The elements of P, are k x k matrices. Similarly,

Py = 0 if the (¢, j) element of I* is 0,
B* where j; = j, otherwise.

The system of equations (5) is then given by

(8) Y=P.Y+P'Z+U, U=[U].
Let P and P*! be the ith rows of P, and P*, respectively. Then
(9) Y; =P.Y +P“Z + I,U;.

This means that endogenous variable Y; is a “linear combination” of its di-
rect causes (endogenous and exogenous) and of U;. According to (9), the
nonzero elements of P and P** can be treated as measures of direct influ-
ence on Y; (causality) of direct causes, endogenous and exogenous. Also, the
direct influence of U; on Y; is represented by Ij.

DEFINITION 4. The elements P,;; and P}j of P, and P* are called path

matrices which measure the direct influence () of the endogenous X,+j
and exogenous X; on the endogenous X, ;.

If the casual system X is recursive then equality (8) can be rewritten as
(10) Y=(I-P)'P'Z+(I-PJ)U.

(*) This influence exists if and only if P,;; and P} are not zero matrices.
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This is due to the remark following Lemma 1. The block matrix P, is nilpo-
tent of order n. Hence, the matrix I — P, is invertible.

Note that the matrices P, and P* appearing in (10) are unknown, since
in formula (3) the coefficients corresponding to the direct causes X; are not
specified. However, suppose that these matrices are somehow specified. Then

DEFINITION 5. The ordered pair (X, (P.,P*)) is called a linear causal
model for the causal system (X, (I,,I*)).

3. Mathematical background

38.1. The space L*(£2, A, P; R¥). In Section 2 we have dealt with H(£2, A,
P; H). Setting H = R* we obtain the space of k-dimensional random vectors
which is considered in Section 4.

Assume that the covariance matrix exists for each vector and that the
expectations are zero. Let L?(2, A, P; R¥) be the subspace of H(£2, A, P; R¥)
consisting of all centered random vectors.

For any given k X k matrix A which is symmetric and positive definite
we introduce a scalar product ( , )4 in L?(£2, A, P;R¥) by
(11) (21,224 = E(ZT A71 Z3) = tr(A7! cov(Z1, Z2)),

Zl.: 22 € L2(Q1 As P; Rk) 3
where cov(Z1, Z5) is the covariance matrix of the pair of vectors Z;, Z3. The
corresponding norm, denoted by || || 4, is complete. For any Z;, Z,, let

(21,22)a
1211 4l|Z2]| 2
- tr(A~1 cov(Z1, Z2))
"~ tr(A~Y cov(Z1, Z1))) 2 (txr(AL cov(Za, 22))) 12

This index was introduced by Sampson [5] as a measure of dependence
between Z; and Zs.

(12) QA(ZhZ:!) =

3.2. Linear regression. Most of the facts stated here come from the au-
thor’s paper [8].

Let Y and Xj,..., X, be elements of L2(2, A, P;RF). Minimizing ||Y -
ST A; X;||a over all “linear combinations” A;X; + ... + ApX,, where the
A; are k x k matrices, we get the vector R(Y.1,...,n) = Y.I_, B;X; with
uniquely specified matrices By,...,By,. The vector R(Y.1,...,n) is called
the linear regression of Y on (X3,...,X,). It satisfies the equalities

e {g"1 (Y’Z AiXi) A EMg, i=1,..., n} = (“R(Ylll'i,”A: n)||11)2

= Q?&(Y;Xls-“sxn)'
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The expression p4(Y; X1,...,Xy) is called the multiple correlation between
Y and (X]_, ¥ ,Xn).

Let Y = (Yl,...,Yk)T, X; = (X,‘l,...,X“k)T, i =1,...,n, and let
X be the column vector X = (X7,...,X7T). Finally, let ¥ = cov(X, X),

—~

2 =cov(X,Y), and let B be the block matrix B = [B;].

LEMMA 2. If ¥ is nonsingular then the regression of Y on (Xi,...,X,)
is given by
(13) BTX = ¥Tg-1X.

Remark. The geometrical interpretation of the linear regression of Y on
(X1,...,X,) is indicated in Wysocki [7]: under the scalar product (11), the
linear regression is the orthogonal projection of Y on the subspace Hx,,... x,,
defined analogously to Hy, from Section 2 (X; = (X1,...,X,)).

The residual U =Y —-BTX is orthogonal to Hy, ... x, and, in particular,
to AX;, where A is any k x k matrix:

(U,AX;)A"—“O, t=1,...,n.

Finally, we introduce partial covariance matrices. Let Y3, Y2, X3,...,Xn
belong to L?(R2,.A, P;R*). The partial covariance matriz of (Y1,Y2) on
(X1,...,Xy), denoted by cov(Y;,Y2.1,...,n), is the covariance matrix. for
the pair of random vectors Y; — R(Y1.1,...,n) and Y> — R(Y2.1,...,n).

4. Path analysis

4.1. Construction of a linear causal model. Let us specify the assump-
tions under which a linear causal model exists. Let

Xi = (XJ;, ceey Xj:.'(‘_),Xmi.jl, ey Xm-l—j,,(,-)) -
Recall that for any endogenous X;, i = m+1,...,m+n, the primed variables
indicate its direct exogenous causes, and the nonprimed ones its endogenous

causes. Define

X; = (XTv—°’X£f(.-)’X'£+ﬁ’""Xrﬂr:-ﬂ'pu,)T: i=1,...,n,
X = cov(X;, X;), §=1:040
fg=cov(Xi,l’;), f=d;000 0

Bi = [BI]T 1' B; € M'k, 12315’3:1'(3)’ m+j1,...,m+j,,(§) i
LEMMA 3. Suppose that the variables from (X, (I.,I*)) satisfy the fol-
lowing conditions: _
(i) all variables belong to L*(R2, A, P; R¥);
(ii) the conditional expectation of any endogenous X; (i = m+1,...,
m + n) given its direct causes X, is a.e. equal to the linear regression of X;
given X;;
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(iii) the matrices X; (i = 1,...,n) are nonsingular.
Then there ezists ezactly one linear causal model (X, (P.,P*)).

Proof. The matrices (6) and (7) have to be uniquely determined. We use
Lemma 2 substituting X = X;, ¥ = %;, B = B;. By (13), BT = ZT 5.

From (i) and (iii) it follows that B; exists and is uniquely detern:uned Mor&
over, for any i = 1,...,n,

P,; = {Bm+j g ap, femcle oot

0 ifj€{1,...;n\{1s-- s I s
P B; ifi=g l=1,...,9
=10 ifjes,.. m}\{h, Iyt

This ends the proof.

Now, let us change the notation in the model (X, (I.,I*)) to make it
consistent with Section 2.2.

By (10), the vector U = [Uy,...,U,] is uniquely determined. The vec-
tors,Uj,...,U, can be treated in (X, (P,,P*)) as direct exogenous causes
of Xppyi,i=1,...,n. Let X denote the system X augmented by the resid-
uals Uy,...,U,. For convenience, the set of all exogenous variables in X
(including residuals) is denoted by (Ui, ...,Up). Then

i= (Uh"'aUms Xm+1:---9Xm+n)-
So we have a new block matrix
=[P*P.]=[Pj], i=m+1,....m+n, j=1,...,m+n,

where P* is a suitable modification of P*. The linear causal model corre-
sponding to X is called an augmented linear causal model for (.?L’ (1., 1*))
and is denoted by (.Jt' P).

To construct the linear causal model (X, (P,,P*)) in practice, we need
the incidence matrices (I,,I*) for X and the covariance matrix for this
system. The starting point is to determine X = (X},...,Xm4n) in such
a way that the X;, ¢ = 1,...,m + n, have a real interpretation. Then we
determine the incidence matrices I, and I* which represent direct causal
relations between the real entities. Mathematically, these matrices can be
arbitrary.

The path matrices (elements of P, and P*) “measure” the direct influ-
ence of direct endogenous and exogenous causes on endogenous variables.

LEMMA 4. Let (X,P) be the augmented linear causal model for the re-
cursive causal system (X, (I.,I*)). The following conditions are equivalent:

(i) for any (i,7) such that X; is an indirect cause of X;, the partial
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covariance matriz of (X;, X;) on all direct causes X; is the zero matriz:
COV(X@, XJXJ) =0;

(ii) for any (¢',5'), i’ # j', such that X{ is a cause of X}, the covariance
matriz of (Uyr,Uj) is the zero matriz.

The proof is omitted as it is analogous to that of Kang and Seneta [2]
in the one-dimensional case.

If (X,P) is a linear causal model then the covariance matrix of U is
easily obtained from (8):

cov(U,U) = (I - P,)cov(Y,Y)(I - P,)T — (I - P,) cov(Y, Z)P*T
—P*cov(Z,Y)(I - P,) + P* cov(Z,Z)P*T .

4.2. Decomposition of the covariance matriz. An augmented linear causal
model (X, P) for a causal system (X, (I, I*)) can be graphically represented
as the so-called complete path diagram. It consists of the causal system
(X, (I.,I*)) and of n points which represent the residuals Us,...,U, ap-
pearing in the linear causal model. Each point U; (2 = 1,...,n) is linked
with each point representing an endogenous variable X,,;; by a single arrow
with head at X,, ;. A pair of points from the union of points representing
exogenous variables and residuals is linked by an arrow with two heads in
opposite directions provided that the respective covariance matrix is not the
zero matrix.

To any single arrow starting at a point representing an endogenous vari-
able or an exogenous variable which is not a residual we attach the respective
path matrix belonging to P, or P*; to any single arrow linking U; and X4
we attach the respective identity matrix; to any double arrow we attach the
respective covariance matrix.

Now we generalize the famous Wright rules of moving in the complete
path diagram of the augmented linear causal model.

Let (X, P) be the augmented linear causal model for the recursive causal
system (X, (I, I*)). Suppose that X; and X; are two endogenous variables,
represented as

X; = Z FPuXy, X;j= Z Pjj X .

Xy €X; X €ex;
Then
(14)  cov(Xi,X;)= Y. Pacov(Xy, X))P§
X1€X;NX;
+ Z ' Pﬁcov(X;r,X_,-r)Pf;.

X;:G-l‘i, Xj! EXj,Xi:;!':Xjr

Putting X; = X; we get the so-called complete determination equation.
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Equation (14) has an interesting interpretation. Note that each term in
the first sum of the right-hand side of (14) corresponds to a two-step path:
X; «— X; — X;. This can be interpreted as moving in the diagram in the
following manner: from X; to X; (this direction is opposite to the direction
of the arrow) and from X; to X; as indicated by the arrow. The variable X;
is a common direct cause of X; and X;.

The terms in the second sum of the right-hand side of (14) correspond
to a three-step path of the form

Xi—Xi o X = X;.

Here, Xy is a direct cause of X;, while X is a direct cause of Xj.

Paths of the first and second kinds correspond to the matrices Py cov(Xj,
X;)P and Py cov(Xy, X;/)P,. Thus, the covariance matrix of (X, X;)
is the sum of all such products of matrices over both kinds of paths linking
Xg and X j*

Equation (14) and the complete determination equation can be applied
to covariance matrices appearing on the right-hand side of (14), yielding a
further decomposition of cov(X;, X;).

LEMMA 5. If X; and X; are two arbitrary variables of an augmented
linear causal model (X, P) for a recursive causal system (X, (L., I*)) then

(15) COV(X,?,X')
T T
z i1i2 '2‘3 '-r—ltr- COV(X'P’ X‘r I,-+1!, l,-+2l,-+1 Pl'.,-+.l'.-+._1

+ z P;152Piajs - -+ Pig_sig cov(X,q, X; q+l) Jat2dq+1 """ PJ{+S5¢+$—1
where the summation Y is taken over all paths without loops which have
the form

(16) Xi=Xj, ~ Xig+— ...+ Xy, = X5, > ...0 X

frts — .? *
and Y" over all paths without loops which have the form

(17 Xi=X; X ... Xp o Xpp ¥ Xy = X

The proof is analogous to that of Kang and Seneta [2] for the univariate
case and is omitted.

Formula (15) has a clear interpretation in the complete path diagram.
In case of a path described by (16) we start from X; and move against the
direction of the arrows till the point X;_ is reached and then proceed to X
according to the direction of the arrows. The variable X;_ is a common cause
of X; and X;. On a path of the form (17) we move analogously; the only
difference is that instead of one changing point X; we have two variables
X;, and Xj ., linked by a double arrow. Here, X j, and X ., are exogenous
causes of X; and X, respectively.
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