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GAMMA-MINIMAX ESTIMATION OF MULTINOMIAL
PROBABILITIES

Abstract. Characterizations of a gamma-minimax estimator for the pa-
rameters of a multinomial distribution under arbitrary squared error loss are
established. It is always assumed that the available vague prior information
can be described by a class of priors whose vector of first moments belongs
to a suitable convex and compact set. Several known gamma-minimax and
minimax results can be obtained from the characterizations in the present

paper.

1. Introduction and notation. In the present paper the following es-
timation problem is considered. The parameter vector § = (,...,6;)T € ©
of a multinomial distribution Py = M(n, k;8) with

nl
Py({z}) = —-;——'9’" L0, z=(z1,... ,z1)T €X,
k
is to be estimated, where the positive integers n and k are assumed to be
known,
6 ={(61,...,0:)T €[0,1)% |61 +... + 6 =1}
is the compact parameter space, and
X={(z1,...,26)T €{0,...,n}F |21 + ... + 2 =n}

denotes the sample space. Let A be the set of all (nonrandomized) estimators
8 : X — 6. The risk function R(-,6) : © — R of an estimator § under squared
error loss is defined by

R(9,6) =) (0 - 8())7Q(0 — 6(z))Po({z}), 0€B,

zeX
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with Q € R¥*k being a symmetric and positive semidefinite matrix, called
the loss matrix. Let IT be the set of all priors, i.e. Borel probability measures
on the parameter space ©. For a prior 7 and an estimator §

r(m,8) = [ R(9,8)n(df)
e
is called the Bayes risk of § with respect to 7. The vector of the first moments

vi(r)= [ 6:;m(df), ie{L,...,k},
e

of a prior 7 is denoted by
v(r) = (i (x),. .., ve(m)T
and belongs to the compact moment space
M={v,...,ve)T €0,1]* | s +...+ v =1}.

Following Abraham Wald’s decision-theoretic approach (cf. [5]) two clas-
sical optimality principles, the Bayes and the minimax principle, are fre-
quently used. However, the application of the Bayes principle requires pre-
cise prior information on the distribution of the unknown parameter vector ¢
which can be described by a single prior 7. On the other hand, the minimax
principle makes it impossible to take into account vague prior information.
In order to avoid the disadvantages of both the Bayes and the minimax prin-
ciple, in the present paper the I'-minimax principle is used, where I" denotes
a nonvoid subset of IT. In particular, it is assumed that the available vague
prior information can be described by a subset of priors of the form

Ig={rell |v(r) € G}

with a suitable convex and compact subset G of the moment space M. A
I-minimax estimator §6* minimizes the maximum Bayes risk with respect
to the elements of I', i.e.

sup r(m,6") = inf sup r(m,¥§).

el ( ) €A qer ki)
Obviously, a I'-minimax estimator is a minimax strategy of the second player
in the statistical game (I, A,r). A pair of strategies (7*,6*) € I' x A with

ig;}?(ﬂ',é ) =r(r*,6 )=gg£r(1r ,0)

is called a saddle point in (I', A,r). In this case, as is well known, the esti-
mator §* is I'-minimax.

In the present paper characterizations of a saddle point in the statis-
tical game (I'g, A,r) are established. The second section contains further
definitions and some known preliminary results. The main result is stated
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precisely in the third section. Its proof is given in the fifth section. In the
fourth section several interesting special cases are discussed, where the sub-
set G of the moment space M is determined by linear inequality restrictions.

2. Preliminary results. Subsequently, a family (7,),eaq of priors is
introduced which is indexed by the elements of the moment space M. To
that end, put

I(v)={ie{l,....,k}|vi=0}, Ii(v)={1,....,k\L(v),
and
6, ={(61,...,0x)T €O 6; =0 for i € Ip(v)}

for v = (v1,...,)T € M. If |Ih(v)] = k — 1, then 6, = {v}. In this
case, let m, = ¢, be the Dirac measure on v. Otherwise, let m, denote a
Dirichlet distribution which is concentrated on 6,, i.e. m,(©,) = 1, and has
a Lebesgue density f, of the form

9“\/1'—!91‘—1
0 =rm [[ 2= 0=061....00)7€6,,
i€l (v) I(v/nw)
where I' denotes the usual I-function. It is well known (cf. [3], [4]) that
v(m,) = v and that the estimator §* = (6Y,...,6%)7T with

z; + /ny; '
6:’(3:):__;-&_"4':/‘_7;—" m=(m1,...,x;¢)TEX, lG{l,...,k},
is a Bayes estimator with respect to the prior , for every v = (11,..., )7
€ M. The risk function of the estimator §” can be written in the form (cf.

(4], [6])

R(6,6") = (g7 -27Q0+vTQv), feB,

1
(vn+1)2
where ¢ = (qu1,---,qxk)” denotes the vector of diagonal elements of the loss
matrix Q. Therefore, the Bayes risk of the estimator §“ with respect to any
prior T is given by

r(w;8") = (r) — 20T Qu(n) +vTQu).

1
W(QTV

3. Characterization of a saddle point. In this section necessary and
sufficient conditions for a pair of strategies (m,,6") with v € G to be a
saddle point in the statistical game (I'g, A,r) are stated. To that end, let
¥ : RF x R¥ = R be a function with

Y,p)=q¢ n—20"Qu, v,peR”,
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and let ¢ : R* — R be a concave function with
o) =q¢"v—-vTQv, veRk.
The proof of the following main result is given in the fifth section.

THEOREM 1. There ezists a v € G such that the following three equivalent
conditions are satisfied.

(i) The pair of strategies (m,,6") is a saddle point in the statistical game
("]-r‘1 G A, T) .
(i) $(v, ¥) = max,eq ¥(v, ).
(iii) ¢(v) = max,eg p(u)-
Furthermore, if the matriz Q is positive definite, then there exists ezactly
one v € G which satisfies these conditions.

The third condition of Theorem 1 shows that a saddle point in the statis-
tical game (I'g, 4, r) can be determined by maximizing the concave function
¢ on the convex and compact subset G of R*. In case the loss matrix is pos-
itive definite, it follows via the technique of Lagrange multipliers that

. 2-1TQ ¢
= - Y |
v 2Q (q i 17011

maximizes the function ¢ on the hyperplane H = {v € R* | 17v = 1},
where 1 stands for the vector (1,...,1)T € R*. If # € G, then  maximizes
@ on G as well. Otherwise, the point v on the boundary of G has to be
determined which minimizes (v — #)TQ(v — ).

4. Linear inequality restrictions. In this section some interesting
special cases are considered. It is always assumed that the set G is determined
by linear inequality restrictions, i.e.,

G={veM|glv>yforie{l,...,1}}

with vectors g1, ..., g € R¥ and real numbers 71,...,v. Let G be a matrix
with G = (g1,...,91) € R*¥*!| and recall that 1 = (1,...,1)T € R¥. Then
the Theorem of Kuhn—Tucker leads to another characterization of a saddle
point in the statistical game (I'g, A,r). Again, the proof of this result is
given in the fifth section.

THEOREM 2. Let G be defined as above. Then v = (v1,...,u)T € RF
belongs to G and the pair of strategies (m,,8Y) is a saddle point in the
statistical game (I'g, A,r) if and only if there exist subsets K of {1,...,k}
and L of {1,...,1} as well as a vector u = (uy,...,u)T € R and a real -
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number ¢ such that v,u, and c form a solution of the k+1+1 linear equations
(2Qv—-q—Gu)i=c, €K,
v;=0, ie€KC®,
glv=2, i€L,
u; =0, ielL%,

1Ty =1

with K€ = {1,...,k}\ K and L€ = {1,...,1}\ L and simultaneously satisfy
the k + [ inequalities
(2Qv—q—-Gu);>c, i€KC,
' v; 20, i1€eK,
Q?V 2 Yis i€ Lc ]
w; 20, i1€L.
For the unrestricted minimax problem, i.e. for G = M, Theorem 2 yields
the following result of Wilczyxiski [6].

COROLLARY 1. The vector v = (v1,...,v)T € R* belongs to the moment
space M and the pair of strategies (m,,8") is a saddle point in the statistical
game (I, A,r) if and only if there exist a subset K of {1,...,k} and a real
number ¢ such that v and c form a solution of the k + 1 linear equations

2Qv—-gq)i=c, i€eK,
Vi = 0, i€ K c 5
1Ty =1
with K€ = {1,...,k} \ K and simultaneously satisfy the k inequalities
(2QV_Q)§201 iEKca
v; >0, 1€K.

Finally, a special choice of the linear inequality restrictions which de-

termine the subset G of M is considered (cf. [2]). This form of G leads to

Corollary 2. In the following section its straightforward proof is sketched for
the sake of completeness.

COROLLARY 2. Let G be defined by
G={(,..., )Y EM|a;<v; <B; forie{l,...,k}},

—

where ay,...,ax and Bi,..., B are real numbers with 0 < a; < B; < 1 for
t€{l,...,k} andas+...+ar <1< fi+...+Pk. Thenv = (V]_,...,Vk)T €
R* belongs to G and the pair of sirategies (m,,8) is a saddle point in the
statistical game (I'g, A,r) if and only if there exist disjoint subsets Lo, Ly,
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and Ly of {1,...,k} with LoU Ly ULy = {1,...,k} and a real number ¢
such that v and ¢ form a solution of the k + 1 linear equations
(2Qv —q)i =c, i€ Ly,
vi=a;, 1€L;,
vi=p;i, 1€Ly,
1=
and simultaneously satisfy the k inequalities
(2Qv —q)i > ¢, i€ Ly,
(2Qv —q)i <c, i € La,
a; Sv;<Bi, i1€lLp.
In case the loss matrix is simply a diagonal matrix with diagonal elements

q11,- - - , kx Corollary 2 yields the following characterization of a saddle point
given in [2]. If the real number c satisfies

Sma(a (41 4) >

then v = (v1,...,u)T with

Vi_—_med(ai!%(%"'l)}ﬁi)} ie{lv"!k}v

belongs to G and the pair of strategies (7,,6") is a saddle point in the
statistical game (I'g, 4,7).

Known results for the unrestricted minimax problem in 3] are immediate
consequences of this characterization (cf. [2], Section 3).

5. Proof of the main results

Proof of Theorem 1. First, the equivalence of conditions (i) and
(ii) is shown. Let v € G be fixed. Then

r(x,,0") = v,v) +vTQu
(7 8) = o (H0) 417 Q0)
and
sup r(mw, 8" su v,v(m vTQu
TEII‘L(.@) (\/—+1)2( p'.b( (m)) +v" Q)
(\/_+1)2(sup¢(u 1) +vTQu)

follow from v(m,) = u for all u € G. Therefore, r(my,6") = suprep, 7(7,8")
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is equivalent to
P(v,v) = sup (v, ),
BEG
which yields the desired result, since 6” is a Bayes estimator with respect

to the prior m,.
Now, it will be shown that (ii) implies (iii). It follows from

o(v) =9, v) +v Qv = sup P(v, ) + v Qv
He
= sup[p(p) + (1 — v)TQ(r — v)] 2 sup p(u)
HEG HEG

that (v) = sup,cg ¢(u), i-e., condition (iii) is valid.
In order to show that (iii) is sufficient for (ii) assume that

p(v) = sup (k)
REG

for some v € G and that there exists a u € G with

Y, p) > p(v,v).
For a € [0,1] put vq = ap + (1 — a)v € G. A short calculation shows that
o(va) = p(v) +aly(v, b) = Y(v,v) = a(p - v)"Q(u - v)].
The assumption ¥(v, u) > (v, v) yields the existence of an a* € (0,1] with
Y(v,p) — (v, v) > a(u—v)" Q- v)

for all @ € [0,a*). Therefore, ¢(vo) > () for all @ € (0,a*), which is a
contradiction to condition (iii).

Finally, the existence of a ¥ € G which satisfies conditions (i)—(iii) follows
from the fact that the continuous function ¢ attains its maximum on the

compact set G. m
Proof of Theorem 2. First, put
gi+1 = (1,01"'!0)T € Rk:

gtk = (0,0,...,1)T e R¥,
Ji+k+1 = —Gi+k+2 =1,
Ne1=-..=N4+6 =0,
Vitk+1 = —Vi+k+2 =1,
and m =l + k + 2. Now, the set G can be written in the form
G={veRF|glfv>~ forie{l,...,m}}.

The function —¢ is convex and differentiable with V(—¢)(v) = 2Qv — ¢ for
v € R*. Then the Theorem of Kuhn-Tucker (cf. [1], Ch. 3.8) shows that



434 M. Brockmann and J. Eichenauer-Herrmann

v=(u,...,u)T €RF belongs to G and satisfies
¢(v) = maxo(p)

if and only if there exist real numbers uy,...,u,, with

m
2Qv—gq=> ugi,
i=1

m
> (o v—y)ui =0,

i=1
1Ty =1,
v; >0, i€{l,...,k},
9?”2%& iG{l,-..,!},
u; >0, i€ {l,...,m}.
These conditions are obviously equivalent to
2Qu — g — Gu = (Urs1,-- - U4k)T + (Uipks1 — Wpks2)],
(giTV""]’i)ui:Oa ‘iE{l,...,fr},
Viui4i = 0, S {1,...,k},
1Ty =1,
ViZO: iE{l,-..,k},
9311’2%: ‘!:E{l,...,l},
u; >0, i€{l,...,m}.

With the sets K = {i € {1,...,k} |» >0} and L={i € {1,...,1} | gfv =

v:} one obtains the result of Theorem 2. =

Proof of Corollary 2. Let I =2k, G = (g1,. Gk Gkt1y-- 1 1) =
(I,-I) € R¥*!, ~; = a; and Yx4i = —f; for i € {1,...,k}. Then the result
of Corollary 2 follows from Theorem 2, if one observes that the subset K

can be chosen as {1,...,k}. m
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