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THE INFINITESIMAL ROBUSTNESS OF TESTS
AGAINST DEPENDENCE

Abstract. It is shown that tests are infinitesimally robust against depen-
dence. A new tool called Riischendorf’s e-neighbourhoods for investigations
of dependence is proposed.

1. Introduction. Situations with some kind of dependencies for a cer-
tain test were investigated by Hollander, Pledger, Lin [1], Serfling [5], Pettit
and Syskind (2], Zieliniski [6], [7]. Concluding his papers Zieliniski states that
it would be interesting to study the performance of a test under small de-
pendencies described nonparametrically. In this paper we propose such a de-
scription of dependence called Riischendorf’s e-neighbourhoods (Section 3).
Section 6 contains motivations for such a description. We take advantage
of our new tool to investigate the infinitesimal robustness of tests against
dependence (Section 4).

2. Problem and notation. Consider a random sample Xj, ..., X, from
a distribution with distribution function F € F. Let X’ denote a sample space
and F* the corresponding product measure. Denote by ¢ : X — [0,1] a test
of size @, ie. [, ¢dF* < a (VF € Fy) where Fyg C F is the family of
distribution functions for which the tested hypothesis H holds.

Moreover, let P(F) = {P : P(X; < t) = F(t), i = 1,...,n} describe
all possible violations of independence. We denote P(F) briefly by P. Let
Pc C P be the subfamily of all continuous distribution functions.

We shall consider robustness of a test ¢ against dependence, specifically
the influence of dependence on the size of ¢. So we shall investigate the
functional [, ¢dP for those P € Pc which correspond to infinitesimally
small departures from independence (i.e. to departures which tend to zero).
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Without loss of generality we assume that F is the uniform distribution
on the interval [0, 1].

3. Riischendorf’s e-neighbourhoods. Let M, be the set of all mea-
sures on [0, 1]" with uniform marginals and continuous w.r.t. the Lebesgue
measure dy on [0, 1]™.

THEOREM 1 (Riischendorf [3]). h is the density of @ measure P € M, if
and only if h =1+ Sf where f € L1([0,1]®) and S : L' — L! is the linear
operator given by

Sf=f- Z [ fda.. dz,+(n-1) [ fdzy...dz,

i=1 [g,1]* ! [0,1]"

where the hat denotes omission. If, moreover, Sf > —1 then P is a proba-
bility measure.

By this theorem, the function f which is identically zero gives us the
product measure, and so do all f € L([0, 1]”‘) such that Sf = 0 (for more
details see Section 5.2).

One may ask whether functions close to zero (in L' norm) lead to proba-
bility measures which describe small violations of independence. The answer
to this question is positive. This enables us to construct a nonparametric
family of distributions corresponding to the joint distribution functions of a
sample with small departures from independence.

Precisely, let £, = {f € L*([0,1]") : Sf > —1} and [0,u|” = {z €
[0,1)*:0<z; Suéi=1,...,n

DEFINITION 1. A Riischendorf e-neighbourhood is R, = {f € L,
ISf|l < €}, where || - || is the L* norm.

DEFINITION 2. Set Ce = {C': C(u) = [ (1 + Sf)dp, f € Re}.
COROLLARY 1. |J,50Ce = Pc.

The following lemmas will be useful:

LEMMA 1.
VfeL,) [ Sfdu=0.
o
Proof. By Theorem 1, h = 1 + Sf, J-lﬂ,ll“ hdp = 1, thus f[o,l]n Sfdp
=0 =

LEMMA 2. If f € R., then (Vu € [0, 1]“)f[0’u],, Sfdu <e/2.

The proof follows immediately from Lemma 1.
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4. The infinitesimal robustness of tests. The notions introduced
in the previous section enable us to investigate robustness of tests against
infinitesimally small departures from independence:

THEOREM 2. Statistical tests are infinitesimally robust against depen-
dence (in the sense of stability of size) provided that we restrict the class of
joint distribution functions to those continuous w.r.t. Lebesgue measure.

Proof. Take a test ¢ and a sample with a joint distribution function
C € Pc (we recall that C* denotes the corresponding product measure). By
the lemmas above we get

f¢dC|= [ ¢dc* + I¢Sfdp|
[0,1]" {0,1)" [o,1]™
<| [odc|+| [ossay
[0,1]" [0,1]™
<| [edc*|+ [isflau<]| [ ¢dc?|+e.

[0,1)" [0,1]* [0,1]*
Hence

ase—0.

| [ ¢dc| -] [gac

[o,1]" (0,1"

So we get the stability of size, which completes the proof. =

5. Additional remarks

5.1. Let [, #dP be a functional which characterizes a certain statistic
(e.g. power of test, bias etc.).

COROLLARY 2. The statistic given above is infinitesimally robust against
dependencies in a sample provided that we restrict the class of joint dis-
tribution functions to those continuous w.r.t. Lebesgue measure and & is
bounded.

The proof follows immediately from Theorem 2.

5.2. It was shown in Section 3 that all functions f € L'([0,1]") such
that Sf = 0 lead to the product measure. The following theorem gives us
the form of such functions.

THEOREM 3. Let f € L'([0,1]*). Then Sf = 0 if and only if f =
i ¥i(z:) + C, where ¢p; € LY([0,1]), i =1,...,n, and C is a constant.
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Proof. Suppose Sf = 0. Then

f(@1,..s@)= [ fdza...dwn+ [ fdeides...dz,...

[0’111'1—1 . [D,IIR—I
+ [ fdzy...dzpy—(n-1) [ fdz,...dz,
[o,y"* [0,1]"

=1(z1) +... +¥a(za) + C.
Conversely, if f = Y., ¥i(z:) + C then

5f=i"/’i(93£)+0—[¢1(31)+ 1l (i¢;(mi)+0)da:2...da:ﬂ+...

[0,1]7-1 =2

+ ¢n($n) + f (nz:_l‘l,bg(xi) + C) dzy ... dmn—l]

foaje-t =1
+(n-1) [ (Zepi(xi) +C) day.....dzn
[0,)* i=1
= Zgbg(a:,-) + C — Z‘w,’(w,‘) — [(ﬂ — 1) f 1}'1(.7:1) d:!:l +...
i=1 i=1 0

+(n—1) [ ¥n(en) dxn] —nC + (n—1)C
0

1 1
+(n-1)[f Wi(e)dz+...+ [ ¢n(mn)da:n] =0,
0 0

which proves the theorem. =

6. Riischendorf’s e-neighbourhoods and dependence. Many mea-
sures of dependence have been proposed and studied in the literature. The
most familiar are (see [4]):

11
o(C) =12 f f |C(u,v) — uv|dudv,
0o o
1" 1 12
1C)=(% [ [ [C(uv)-ufdudv) ",
0o 0
k(C)=4 sup |C(u,v)—uv|,
u,v€[0,1] &



Infinitesimal robustness of tests 459

1 1
7(C) =4 f f C(u,v)dC(u,v) =1 (Kendall’s 7),
0 0
where C is a joint distribution function.
In this section we are interested in connections between these measures
of dependence and Riischendorf’s e-neighbourhoods.

THEOREM 4. If C € C,, then o(C) = O(g). Conversely, if o(C) = 0, then
G € CE=O-

Proof. Suppose that C € C.. Then by Lemma 2 we get

1 1
o(C)=12 [ [ |C(x,v)—uv|dudv
0o 0

1 1 u w

=12 Sf(z,y) dz dy| dudv < 125 = 6¢,
J I [ st y| :
which establishes the first part of the theorem.

Now suppose that o(C) = 0. Then fol f01|f3‘l Iy Sf(z,y) dz dy|dudv
= 0. Thus | [y [y Sf(z,y)dzdy| = 0 ae. (u,v) € [0,1]%. Therefore if
g9(z,v) = [y Sf(2,y)dy we have, for any fixed v, [’ g(z,v)dz =0 a.e. w.

Let g* and g~ be the positive and negative parts of g. Hence
fy gt (z,v)dz = [ g7 (z,v)dz ae. u. It follows that [, g*(z,v)dz =
jig_ (z,v)dz for all Borel sets A C [0,1], and hence g(z,v) = 0 a.e. z for
a fixed v. So g(z,v) = 0 except on a set N, of = values which has Lebesgue
measure zero and which may depend on v. Since g(z,v) is a continuous
function of v for any fixed z, we get g(z,v) = 0 a.e. z for all v.

Thus finally Sf =0 a.e. (u,v), which completes the proof. m

The same reasoning applies to the case of remaining measures of depen-
dence and to other measures of dependence which satisfy the modified Rényi
axioms (see [4]).

COROLLARY 3. The family of distributions C. built on Rischendorf’s
e-neighbourhoods corresponds to the distributions of samples with departures
from independence.

This motivates the application of Riischendorf’s e-neighbourhoods in the
investigations of robustness against dependence.
References

[1] M. Hollander, G. Pledger and P. E. Lin, Robustness of the Wilcozon test to a
certain dependency between samples, Ann. Statist. 2 (1974), 177-181.



(2]
3]
(4]
(5]
(6]
(7l

P. Grzegorzewski

A. N. Pettit and V. Siskind, Effect of within-sample dependence on the MWW
statistic, Biometrica 68 (1981), 437-441.

L. Riischendorf, Construction of multivariate distributions with given marginals,
Ann. Inst. Statist. Math. 37 (1985), 225-233.

B. Schweizer and E. F. Wolf, On nonparametric measures of dependence for ran-
dom variables, Ann. Statist. 9 (1981), 879-885.

R. J. Serfling, The Wilcozon two-sample statistic on strongly miring processes,
Ann. Math. Statist. 39 (1968), 1202-1209.

R. Zielifiski, Robustness of two-sample tests to dependency of the observations,
Mat. Stos. 32 (1989), 5-18 (in Polish).

—, Robustness of the one-sided Mann-Whitney—Wilcozon test to dependency between
samples, Statist. Probab. Lett. 10 (1990), 291-295.

PRZEMYSLAW GRZEGORZEWSKI
INSTITUTE OF MATHEMATICS

WARSAW UNIVERSITY OF TECHNOLOGY
PL. POLITECHNIKI 1

00-661 WARSZAWA, POLAND

Received on 20.12.1991



	0469.tif
	0470.tif
	0471.tif
	0472.tif
	0473.tif
	0474.tif

