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THE GENERALIZED p-POINT METHOD
OF ESTIMATION OF REGRESSION COEFFICIENTS

0. Introduction. This work is a generalization of papers [5] and [6].
A multiple regression model in which p independent variables are arbitrary
random variables is considered. In order to define a generalized sample di-
vision in such a model, multifunction notation is introduced. Divisions used
in [5] and [6] are particular cases of the very general one presented in the
paper. On the basis of this division the estimators of regression coefficients
are determined.

1. Assumptions on the regression model. Let Z = (Xy,...,X,,Y)
be a random vector defined on a probability space (12, By, P) with values
in a measure space (Rz, By, vz).

We say that the random vector Z corresponds to a regression model if it
satisfies the following assumptions:

AssuUMPTION 1.1. (Rz, Bx,,vz) is a product space, i.e.

(1.1) Rz =Mz x Qz where Mz C R? and Qz C R are Borel subsets,
_ By, = Bm, X Bg, is a o-field which is the product of the Borel
o-fields Bon, and Bg, of Mz and Qz,
vz = pgz X 7z is a product measure where the measures pz and 7z
are defined on (Mz, Bo, ) and (Qz, Bg, ), respectively.

AsSUMPTION 1.2. There exists a density fz of the random vector Z =
(X1,...,Xp,Y) with respect to the measure vz such that

(12) fz(mla---!xp)z ffZ(mlv'-le:y)dFZ>0
Qz
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for each (z1,...,zp) € Mz. The function fz(z1,...,T,) defined by (1.2) is
the marginal density function of the vector (X1,...,Xp) with respect to the
measure fiz.

AssumPTION 1.3. The random vector Z = (X3,...,X,,Y) satisfies the
conditions:

EY | Xy,....Xp)=ao+ a1 X1 +...+apX,,

(L3) E(X)=...=E(X,)=0,

E(Y —ap— a1 X1 — ...-—apo)2 | X15...,Xp) = o’ < 0,
and X; and Y —ag — a1 X1 — ... — apX, are independent for i = 1,...,p,
where (ao, ...,ap) € RP*1 is a vector of constants, and o2 € R.

2. The method of sample division

2a. The sample. A sample of size n is a random vector Z = (Zy,...,Z,)
in which Z;, ¢ = 1,...,n, are independent random variables of the form
Z; = (Xa,.. -,Xz‘p,Yi) and

Z;: (.Q,B.Qg P) — (mZanRz‘-': Vés)'

Moreover, we assume that each Z;, 1 = 1,...,n, satisfies assumptions 1.1-
1.3. It is clear that this definition admits different distributions of the ran-
dom vectors Z;. This is an essential generalization of the usual definition.

For convenience, the following notations are introduced:

(Ri, By, vs) for (mszmz,-:Vzi):

(R, Bg,v) — product of the measure spaces (R;, By,,v;), i = 1,...,n,

(9N, Box, u) — product of the spaces (9M;, Bop,, pi), 1 =1,...,n,

(X;,Y;) —a component of Z.

The space (R, B, v) is called a sample space and (9, Ben, 1) a sample
space plan, or briefly, a plan.

2b. Sample division. We now consider multifunctions ¢* on (2, Bp)
with values in 2®” such that there exists a multifunction ¢ : 9t — 2% for
which

¢* (W) = p(X1(w); -, Xn(w)), weR.

Here 2%” is the family of all subsets of R?. The multifunction ¢ is required
to satisfy the conditions:

{(x1,...,%X5) EM:Xx; € o(X1,...,Xn)} €EBog, i=1,...,n,

(2.1) PQoz(n{(xl,“,,xn) €EM:x; & p(x1,... ,xn)}) =0,
i=1
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where
Q(mla"'imp)y) = (mla"')"‘:?) for (xls"':mgny) €eRP xR

and PQ°Z js the probability induced on 9 by the variable (Q o Z)(w) =
(Q(Zl(w))} sy Q(Zn(w)))

Each such multifunction ¢* induces a multifunction on (2, Bp), called
a sample division, defined by C*(w) = {Z;(w) : X;(w) € ¢*(w)}. Alterna-
tively, we may also define a multifunction C : R — 2R** by C(z) = {z; :
X; € (X1,...,Xn)}. Then

(CoZ)(w) = {Z;i(w) : Xi(w) € p(X1(w), ..., Xn(w))}
= {Z:(w) : Xi(w) € ¢* (@)} = C" ().

Hence C o Z = C*. Therefore we do not differentiate between C* and C.
It will always be clear from the context which multifunction is discussed.
Hence, further we write C in both cases.

Notice that the size k of C(w) is a random variable: k = cardC :
(£2,Bq) — {0,1,...,n}.

LEMMA 2.1. The size k(w) of an arbitrary division C(w) is greater than
zero with probability 1.

Proof.
P{w: k(w) =0}) = P{w: C(w) =0})

= PQ°7‘( ﬂ{(xl,. oy Xy) $%¢ Zg(xy5 .,xn)}) =0,
i=1
which follows directly from assumption (2.1).

3. Estimation of regression parameters. In order to obtain estima-
tors of the regression parameters a, . ..,a, in the model (1.3) we carry out
p + 1 divisions Cg,...,C, in the sample Z by choosing p + 1 multifunc-
tions g, ..., yp. To each division C, there corresponds a random variable
g : 2 — RP x R defined by

gr(w) = (X1(W), ..., Xpw),Y"(w))
where
Tr(w) = —L ’ Friw) = L .
Xj )= kr(w) geKZr(w)XU e ¥l kr(w) geKZr(w] i

with k,(w) = card C,(w) and K, (w) = {i: Z;(w) € C,(w)} for j=1,...,p,
r=20,1,...,p. We assume that Cg is equal to the sample Z and ko = n.
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LEMMA 3.1. For fized w € 2 the set of the points go(w), g1(w), . .., gp(w)
uniquely determines a p-dimensional hyperplane if and only if the matriz

Xiw)-Xw) ... Xpw)-Xp(w)
(3.1) W(W)= | -omeeeee- g Tonli L
Xw) - XYw) ... Xpw)- Xow)
is nonsingular (see [5]).
We assume that P({w : det W(w) = 0}) = 0, E(det W(w)) # 0 and
E(X;) exists for 0 <r <p, 1 <j<p.
As in [5] we propose

- ~ _ Wr(w)
3.2 =Y?° =ty =1,...,p,
as estimators of the regression coefficients in assumption 1.3, where W (w) =
det W(w) and W;(w) is the determinant obtained from W(w) by replacing
the ith column with the vector (Y —Y?°,... Y7 - Y?)T.

4. Properties of the estimators obtained by the p-point method
LEMMA 4.1. For each vector (x1,...,X,) EM andi =1,...,n

P
ElY: | X; =x1,....Xp=3,) = 00+Za£$ej
j=1
where x; = (Zi1, ..., Tip)-
The lemma follows from the conditional expectation formula and from
assumption (1.3).

LEMMA 4.2. Forr =0,1,...,p

P
EY")=a0+ ) a;E(X}).
i=1
Proof. Let us introduce the following notations:
M, . . ={(x1,-..,xn) EM:x;, € p(x1,...,%p) for s {1,...,k}
and x; & p(x1,...,%s) for i & {iy,...,ik}}

where ¢ is the multifunction representing the division C,, k = 0,1,...,n
and 1 <4; < ... < i < n. It results directly from assumption (2.1) that
the sets M;, ;. are measurable and disjoint, i.e.

M, . .o Mj,. ;=0 for{i,...,ix} # {d,..., 51}
and
P(UiMi,.s i 1S < ... <in <m, k21}) =1.



Estimation of regression coefficients 465

We can write
E(ﬂ1+---+Yu
k

k p
1 1
= E ZE(Y:"‘ ] X1 =%X1,...,Xp = Xn) = EZ (Go + Zajmisj)
s=1 s=1 J=1
T R L8
_GG+Z j iy k ‘kJ_aO_i_ZaJ
j=1 j=1
where E; is the arithmetical mean of z;,;,...,z;,;. Hence

EY)= [EBF"|Xi=x%1,...,Xn =%a)f1(x1) -+ - foa(Xn)d(1 X . . X i)
m

= Z f E(}_"']Xl =x1,...,Xn=xn)ﬁ(x1)...

k=1 1<i:1<...<ix<n M;

2

1ot

ﬁt(xn)d(ﬂl X oo X i)

Z > f (ao+Za3 1) i) . Fala)d(un x ... % )
=

1<i1<...<ipx<n M ki

aofi(z1) - .. fal(@n)d(ps X ... X pn)

o~ p —
+ Zafj f E;;fl(xl) o Fn(Xn)d(p1 X ..o X pin) = ap + ZajE(X;:)
i= m

i=1
and the lemma is proved.

LemMmA 4.3. If, for somer = 0,1,...,p, there ezists 0 < ¢, < 1 such
that
v, [lim PH{w: |kr(w)/n—c| <e}) =1

>0

then for each m > 1, limy oo (P(kr = 1) + ...+ P(k, = m)) = 0.

Proof. By assumption, for every € > 0 there exists ng such that for
n>mng
P({w: |kr(w)/n—c;| <e}) >1—¢,
ie.
P({w: kr(w) < n(cr —€)}U{w : kp(w) > ncr +€)}) <e.
Without loss of generality, we may assume that ¢, —e > 0. Then n(e, —¢) >
m for n sufficiently large, hence

P({w: kr(w) < m)} < P({w : kp(w) < n(er —€)}) <,



466 C. Platt and Z. Paprzycki

which completes the proof.
Now set
Diy(e)={we 2:|Xiw) - EX)| e}, j=1,...,p,
B ={weR:k(w)=k}
where the subscript n denotes the sample size.
THEOREM 4.1. If

sgo r=(¥,...,p 0{251 nh—-?;o P({w : |k,.(w)/n N Crl < E}' =

and
Y lim sup P(D,(e) | By,) =0 forj=1,...,p
>k

>0 k—ooy

then
V lim P{w:|d.(w)—a.|>€})=0 forr=0,1,...,p.

£>0 n—oo

Proof. First we must show that for fixedr = 0,1,...,pand j=1,...,p,
Y™ and )T} tend stochastically to the constants E(Y") and E(X %), respec-
tively.

By the total probability formula we obtain

P(Di,(€)) =) _ P(BE,)P(Di,(e) | BE,).
k=1
For m > 1, define

P'(Di(e))= )_ P(BE,)P(Di.()|BE,).
k=m+1
Since
P(D},(€)) < |P(D1,(€)) — P'(Din(€))] + |P'(Dinfe))
it is sufficient to show that for any € > 0 there exist ng such that for n > ng

(41) |P(Di,(€)) — P'(Din(e))l < —¢/2,
(42) P'(Di,(e)) < ¢/2.
Indeed,

|P(Din(€) = P'(Din(e)l = ) P(Bf,(e)P(Din(e) | Bf,) < D P(BE,).
k=1 k=1

By Lemma 4.3 the right side tends to zero for any m. Therefore there ex-
ists n’ such that (4.1) holds for n > n’. Also under the assumptions of
Theorem 4.1, for sufficiently large m, if m < k < n then

P(DI,(e) | By,) = P(IXj(w) — E(X})| 2 € | kr(w) = k) < €/2.
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Hence
P'(Di ()= Y. P(BE)P(Di,(e)|Bf) < Y P(BR)e/2<¢/2
k=m+1 k=m+1

and (4.2) is satisfied. This ends the proof of the stochastic convergence of
X7 to E(X7).

To prove the stochastic convergence of Y™ to E(Y") notice that by as-
sumption (1.3) we can write

Yi=a0+alxﬂ+---+apXip+Uis 3:=1!"'1n$
where
Ui=Y;— E(Y; | Xi1y--., Xip)

are independent random variables. Hence Y™ = ag+ a1 X[ +...+apX| o T Ur
where

U =Y —-EY: | X;=x1,...,Xn =Xp).
Since E(U") = 0, by Lemma 4.2 we have
Y —E(Y")=a1(X] - E(X]))+...+ap(X; - E(X},))+U".
We have to show the sf.ochastic convergence of U to 0 for r = 1,...,p. It

is enough to notice that by (1.3) the variables U; and X; are independent.
Then

P([U"(w)| 2 € | kr(w) = k) = P([U"(w)| > €)
and by the weak law of large numbers
lim sup P(|JU"(w)| > ¢ | kr(w) = k) =0.
T—00 nZk
The estimators a = (@y,...,ap) of the regression coefficients are the

solution of a system of p equations which in matrix notation has the form
W(w)a=h where h= (Y! -Y?,...,Y? - Y%7, Then

(4.3) a=W(wh.
From Lemma 4.2 it follows that
(44) EY")-EBY° = Zaj (BE(X5)-EBE(X?), r=1,...,p.
Set
h; = (E(?l) - E(?O)t cee !E(?p) - E(?o))T )
Wi = [B(X]) — BXDjiret,.p-

Then from (4.4), h; = Wja. By Slutsky’s theorem the matrix W(w) tends
stochastically to W1, the vector h tends to h;, and by (4.3) the vector a of
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estimators tends to W 1W,a = a. This completes the proof of Theorem 4.1,
since the convergence of the estimator @ =n~' Y ., ¥; to ag is evident.

It is easy to notice that for all terms of the matrix W(w) the following
relations hold:

E(X_}" | X1 =%1,...,Xp =X5) =T},

P
E(Y" |X1=x1,...,Xn=xﬂ)=a0+ZajE;,
j=1

where x; = (Zi1,...,%ip) are fixed values and Z7 is the arithmetical mean
of the quantities z;; for ¢ such that x; € C,. The first of these relations is
obvious. The second comes from Lemma 4.1.

THEOREM 4.2. The vector & = (@1,...,d,)T is an unbiased estimator of
the vector a = (ay,..., ap)T.

Proof. Asin [5] we can show that
E@G, | X1 =%1,...,Xn=%Xp)=0a,, r=1,...,p.

The conditional expectation does not depend on the values of the random
variables Xj,...,X,, which completes the proof.
For fixed (x1,...,X,) € 9 we set
(4.5) E(U; | Xj =%1y..., Xpn=%,) =0,
EBU? | X; =x1,...,Xpn =Xp) =07,

¢ =100

We assume that ag = (ao,...,a,)7 is the vector of parameters in the
model (1.3) and @y = (ap,...,ap) is the vector of estimators of these pa-
rameters.

THEOREM 4.3.
Zo = E[(8 ~ a0)(8o — 20)T | X1 =x1,..., X = %]
_[o®*/n 0
1 0 AW lAWHT
where

(4.6)

o krs k‘l"O ksO kOO
A - [krks krk(} ksko * kﬂ"h)]f.g:l,...,p :

ks = card(C, N Cs), and Wy is the matriz obtained from W (w) by substi-
tuting T; for X7.

The proof is analogous to one presented in [5].
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LEMMA 4.4. Let {F,}en be a sequence of real-valued functions defined
on R? x R™. If

Y ( lim S, = So, Sa,So €ER™ = Y lim Fy(z,Sn) =F(a:,30))

{Sn}nen \n—oo zERP n—oo
then
VvV V 3 3V YV (ly-5l<é = |Fulz,y) — F(z,5%)| <e¢)

ZERP e>0npEM >0 n>ng yeR™
where || - || is the Euclidean norm in R™.
Since the proof of this lemma is evident we omit it.

LEMMA 4.5. Let {T,}nen be a sequence of random vectors on R™ with
values in RP and {S,}nen a sequence of random vectors on §2 with values
in R™, Let T and S be random wvectors of the same type as T, and S,
respectively. If for each sequence {s,}nmen in R™,

(47) lim sp,=s0 = Y lim P(T, <t|Sn=8,)=P(T <t|5=sp)

tER n—oo
and
Y, lim P(|S, —soll < 6) >0
then

J Y3 3 Y|P <t][Sa—soll <§)~PT<t| S =)l <e.

Proof. Defining P(T, < t|Sp, = sn) = Fn(t,8,) and P(T < t|S = s0) =
F(t,s0) we obtain from Lemma 4.4

3 3V
teERP £>06>0npEN n>ng yeR™

(ly—soll<e = |P(Th<t|Sn=y)—P(T<t|S=s)<e).
The right-hand side of the above implication may be written as
—e+P(T<t|S=35)<PT,<t|Spn=y)<e+P(T<t|S=sp)),
and after simple calculations

[ P@T.<t|S=y)fe()dy
< ly—soll <&

—e+P(T<t|S=sp) I - e
sa\Y) Y

lly—soll<é
<e+P(T<t|S=s).

This gives
—e+P(T <t|S=350) < P(Tn <1t | ||on—50|| <6) <e+P(T <t|S=s0g),

and hence the assertion of the lemma.
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LEMMA 4.6. If sequences of random vectors {T,,} and {S,} satisfy as-
sumption (4.7) of Lemma 4.5 and if for some s

Yo Jim POIS, — ool <€) =1

then
v lim P(T, <t)=P(T<t|S=sg).

teRP n—oo

Proof. By the total probability formula,
(4.8) P(Tn <t) = P([Sn — s0ll = 8)P(Tn <t |||Sn — 50l > 6)

+ P(||Sn — soll < 8)P(Tn < t|[|Sn — 50|l < 6),
providing that P(||S, — so|| = ) > 0 and P(||S, — so|| < §) > 0. Then by
Lemma 4.5 for fixed ¢ and € > 0 there exist 6 > 0 and ng € N such that for
n 2 ng
(4.9) |P(Tn <t|||Sn —s0l| <8)—P(T<t|S=s0) <e/2.

By assumption, there exists n; € N such that for n > n,
(4.10) P(||Sn = soll < 8) >1—¢/2.
Hence for n > max(ng,n; ), from (4.8)—(4.10) we obtain

P(T, <t)> (1 - %)P(T,. <t||Sn — sol| < 6)

> (1—%)(P(T<t|5’=sg)—%)

E € g2 '
=—(§+§P(T<t|s=50)—Z)+P(T<t|5=3o)
>—e+P(T<t]|S=s0)

since
2 2
E € 5 E € €
§+§P(T<t|8—-50)—X<§+§—z<€.
In a similar way we get P(T, <t) <e+ P(T <t | S = sp), which yields
|P(T, <t)—P(T<t|S=s0)|<e€.
Finally, notice that if the conditions P()|S, — sol| = 8) > 0 and P(||S, — so||
< §) > 0 are not both satisfied then under our assumptions the only possi-
bility is P(||S» — 80|l > 6) = 0 and P(||Sn — so|| < 6) = 1, which does not
affect the proof.

THEOREM 4.4. If
(i) %Cﬂ-rdcrﬂcr>0 forr=0,1,...,p,

(ii) nA 5 Ay where Ag is a positive definite matriz,
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(iii) W E W, where |[det Wo| >0,

then the joint distribution of the random vector T(™) = (Tf“’), ..., T where

TJ_(”)=u, ji=1,...,p,
D)
is asymptotically normal N(0,Z,) where
T - [ WIAW, ]
" |/WTAW,/WTAW, |
Proof. First we define a sequence of random vectors S,, whose con-
secutive components are n~!card Cy,...,n ! card C, followed by all ele-

ments of the matrices nA and W. Then each S, has values in R™ where
m = (p+ 1)+ 2p%.
Under assumptions (i)—(iii) these vectors satisfy the condition
EEO Jim P(||Sn—soll <€) =1
where sg is the vector whose components are cg,...,c, followed by all ele-
ments of the matrices Ay and Wy. Furthermore, as a sequence of random
vectors {T(™} we take the statistics

) = (27, .., 74

depending on the sample size n. Using Lemma 4.6, it is enough to prove the
convergence of the conditional distributions of the vectors T (™) given that
X; = x1,...,Xn = X, to the distribution N(0,Z,) under the assumptions:

(i) lim k./n=c. >0,
n—oo
(it’) lim nA = Ay where Ay is a positive definite matrix,
T—00
(i) lim W =W, where |[det Wy| > 0.

In cases (i’')—(iii”) we have limits of sequences whose terms are not random.
The proof of the above statement is presented in [5].

5. The influence of the way of sample division on the efficiency
of estimators. In the class of linear estimators of unknown regression pa-
rameters, the least squares estimators are the best. Therefore the efficiency
of estimators obtained by other methods is defined as the ratio of variances
or generalized variances of estimators obtained by the considered method
and the least squares method.

In the case of estimation of regression coefficients in the model E(Y |
X = z) = ap + a1z, Wald [9] proposes to divide the sample into two groups
taking to one group those values of the sample which are less than the
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median, and to the other the remaining ones. This method, however, does
not lead to high efficiency.

Nair and Shrivastava [4] and later Bartlett [1] and Theil and Yzeren [§]
showed that better efficiency can be attained if the sample is divided into
three groups in the following way. The first group consists of those observa-
tions X; which are less than some fixed quantity ()1 and the second consists
of those X; which are greater than some given Q2 (Q2 > @1). The remaining
observations do not take part in the estimation.

The authors investigate the efficiency of the estimators obtained by this
method using samples from different distributions. In particular, if the vari-
able X has uniform distribution the efficiency of the considered estimators
is 0.89.

Ay A3

III

II

A Ap
Fig. 1

As a generalization of this method, to estimate the regression coefficients
in the model E(Y | X1,X2) = ap + a121 + azz2 Theil and Hooper divide
the sample into four groups. In particular, they consider the case when the
bivariate random variable (X7, X3) has uniform distribution on the square
A; Ay A3 A4. The optimal sample division is presented in Fig. 1. The part of
the square labelled IV corresponds to that part of the sample which does
not take part in the estimation of the parameters.

The efficiency of the estimators in that case is 0.61. This is significantly
less than for the division of the sample into three groups for p = 1. It
should be mentioned that both estimation methods presented above are
troublesome because of the very complicated divisions.

6. Divisions by the p-point method. On an n-dimensional plan of
some space we define multifunctions ¢, : 9t — 28" r =0,1,...,p, by

(Pﬂ(xla"-}xﬂ) = Rp’

L1j+ .-+ Ty,
n

@i(X1ye ey Xn) = {(xl,...,xp) ERP:z; <
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for j =1,...,p, where x; = (z1,...,Zip) € RP for i = 1,...,n. Conditions
(2.1) are satisfied, so the above multifunctions induce the following divisions
Cos.--+Cp:

(6.1) Co = {(x1,%1),---»Xn, )}, Cj ={(xi,%) : zi; <7},

where

1+ ...+ Tnj
xj— e ———

n
Such divisions are considered in [5], [6].

The matrix W defined by (3.1) is the matrix of a system of equations
whose solution is the vector of estimators (@i,...,ap). In order to examine
the behaviour of W as n — oo when the division (6.1) is used, we must
investigate the stochastic convergence of X' 7= X9

For simplicity we assume that the considered random vectors X4,...,X,
have the same distribution as a conventional vector X = (X1,...,X,).

LEMMA 6.1. Forj=1,.

P A o
X=X} = 3%, 249 where d9 le - XY|.

The proof of this lemma can be found in [7].
It follows directly from the above that

- d,.
i _ g0 B 7=
X =% 2p;
where
(62)  doy= [le-mifi@dp. pi= [ fil)du,
R {Xj<m}

}';— is a marginal density function of the variable X;; and m is its expectation.

LEMMA 6.2. For j,l=1,...,p, if p > 0, then

P dz: ijm
2p; 52

where Sz,z, = Cov(X;,X;) and S2, = D*(X;).
Proof. It is enough to notice that

-xni

. _ X—J _ X"O
X]-X)=(X}-X7 }?; f:)
T

and that (X7 — )??)/(fﬁ — X9) is an estimator of the slope of a straight
line regression describing the dependence of X; upon X;. Hence by Theo-
rem 4.1 the above estimator is stochastically convergent to the estimated
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coefficient which can be written as S;,,/52,. The conclusion now follows
from Lemma 6.1.

Lemma 6.2 shows that

P . da:l d:z:g d.’b ]
6.3 W S di ; AT e
(3 8 [2131331 20252, 2p,S2 | X

where Zx is the covariance matrix of the vector X.

To compare the p-point method with the four groups method let us
consider the bivariate distribution of a random variable (X;, X3) used by
Theil and Hooper to investigate the efficiency of the estimators obtained
by the four groups method. Therefore we assume that the vector (X, X>)
has uniform distribution on the unit square with vertices 4,(0,0), A2(1,0),
A3(1,1), A4(0,1). From (6.2)

D1 =p2=1/2, dzl =dz2=]_/4,

and hence taking into account (6.3), the generalized variance det £ of the
vector of estimators satisfies

n?det A p
———— )
det” W
where the matrix A is defined by (4.6).

Calculating similarly the generalized variances for the least squares esti-
mators we obtain an expression (1202)? and hence

_ [(1202)2

Applying the divisions (6.1) we reached a considerable improvement of effi-
ciency from 0.61 up to 0.75.

In the methods presented in [1], [4], [7], [8] one of the groups does not take
part in the estimation. Moreover, when p increases, the efficiency decreases
and the divisions are more and more complicated. Despite this the authors
of those methods maintain that their methods are the best. But for the
sample division (6.1) the efficiency of the estimators is independent of p and
equal to 0.75.

n*detL = (160%)?

7. The extended Gauss—Markov model and examination of an
influence function. The properties of the conditional expectation and vari-
ance of the variable U; = Y; —ag—a1X;1 —...—apX;p defined by (4.5) follow
from assumptions 1.1-1.3 on the regression model.
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Now we generalize the previous assumptions by assuming that the dis-
tributions of the variables U; are characterized as follows:

E(U,ﬁ |X1,...,X-n) = mg(Xl,...,Xn),

7.1
( ) Dz(U:'|xl;---:xn)=ag(xb-“axn)

for i = 1,...,n, where m; are not necessarily zero and 2 = 02 need not
hold almost everywhere as is the case in (4.5).

For simplicity of notation we fix the variables X;,...,X, and assume
that they are equal to some constants, say Xi,...,Xn, Where x; € RP. Under
this assumption we can omit in (7.1) the symbols X, ..., X, writing briefly
m; and o; for the conditional expectation and variance of U; respectively.

THEOREM 7.1. For r = 1,...,p the bias and risk of the considered esti-
mators are
1

(i) bias(a,) = E(@,) — a, = dethTW"

where

M7 = (My — My, ..., M, — My), M; = z mi, Wy = (Wip,...,Wp)T
zeC_.;

and Wj, is the algebraic complement of the element wj, of the matriz W,
and

1
T
dtsz DW, +cl W

where D is the matriz with elements

1 1 1
dis = e — ok %t g
! kik z 4 kok: Z K koks iecgc, gs;oa

I*s jecinc, i€CoNC;y

(i) R(a,)= E(a, - ar)z (MTwr)z

The proof can be found in [6].

As in [6], we now assume that a contamination ha.ppened for the ith
observation (X, Y;) only (recall that by assumption X; has some fixed value
x,:). :

An influence function for a functional T : P — R is defined to be the
expression

ICr(z | i1, .-, Tip) = h T[Pi(a)]_T[P"(O)],

provided that the limit exists. Here

Pi(a)z(Fl?"‘!Fi—la(lT_Q)Fi+a6:l:1Fi+l)---aFn)EP:
={Pi(e):0<a<l, i=1,...,n},
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for the distribution F; we assume
(12) m@FE)= [ydFi=0, o*F)= [ (y—m(F))*dF; =0
R R

and 6, is the distribution concentrated at =z € R.
~ Taking for T bias and risk of estimators we obtain the influence functions

of interest to us. First notice that as a consequence of assumptions (7.2) we
have
my =0, 02 = o2 fori' #4,i=1,...,n,
mi =azx, o;=(1-0a)o+a(l-a)z?.
THEOREM 7.2. For the divisions (6.1) the influence functions for bias
and risk are

2 1
(1) ICbiaSﬁr(m | ZLily-o- }xip) = detwLTWr
where LT = (Ih,...,1,) and
1 1 )
- (Ej—-—;)w if z; € Cy,
5 1 ) ,
—Ew tf z; € Cs s

55 1
ii ICriy(z | Zit, - .y Tip) = ——WTUW,.
(ii) R(an) (T | Zi1 ») W

where U = [uyg)i,5=1,... p, with

1 1 1 1 2 2 "
(k;ks nk; nks + n2)($ ~-0°) ifz; €CNC,,
1 1
Uls = § n{cs 711
2 2 3
(_EE+E)(“’ ~0) if z; € C,NC,,
1
| e =) if z; € CNC,,

Proof. (i) Taking for T' the bias of the estimator @, in the definition of
the influence function and using Theorem 7.1 we obtain

IChissa, (z | Zixy .- .2 Zip)

_ iy WM (P())W, — 5w MT (P(a))W,
a—0+ « '
By (7.2), MT(P;(0)) = (0,...,0) and, for @ # 0, MT(Pi(a)) = (l,..-,lp) =
LT. Hence we have the assertion of (i). The more complicated calculations
leading to (ii) are omitted.
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Remember that the above results have been achieved under the assump-
tion that X;,...,X,, are fixed. Now we no longer assume the variables to
be fixed and consider the influence function in two cases: when the variables
X,,..., X, have multidimensional uniform and normal distribution.

Ta. Influence functions in the case of uniform distribution. In this case
we assume that X,,...,X,, are independent random variables with the same
uniform distribution on a p-dimensional polyhedron. This distribution has

density

1 if-1/2<z;<1/2forallj,
7.3 s = =0
(7:5) f@..2p) 0 otherwise

with respect to p-dimensional Lebesgue measure. Hence we immediately
obtain Z = I where I is the unit matrix. By (6.2) we have

1/2
f|m|dz—1/4 pj=1/2,
-1/2

hence by (6.3)

w B 1

N

and the Slutsky theorem yields
7500,...,0,(1/4%7%,0,...,0)
where (1/4)P~! is in the rth place. Using the Slutsky theorem once again
we obtain
detW 5 (1/4)7.
Now we turn to examining the influence functions. Using Theorem 7.2
we obtain

ﬂfcbiaaa'_(x I Ti1y--- I,rp)
1 T 1 P T
= "L W- (1/4)p(n11,...,n5p)(0,...,(1/4) N )
nl,
r—1 _
=@ 4)19(1/4) 4nl,

and since |nl,| L z we get

(7.4) InFChiasa, (2 | i1, - .., ip)| 2 4lz|.

2

Next, by the same theorem n2u;, L 22 — 02 and after simple calculations

we have

(7.5) |n2ICR(&,) (% | Birs o1 Zip) & 16|z% — 2.
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To compare the above results we give the similar relations for the influ-
ence functions of the estimators b obtained by the least squares method:

75) IRICy 05, (2 | Tit, - .., Tip)| = 122 |2,
IR ICk. (@ | Tits ., Tip)| = 144Jir |22 — 0?].
Defining the influence coefficients
P ;gb:asbr(z | i1y -- -y Zip) 1
- biasa, (T | Zi1,--. ,Zip)
_ ICRp,y (x| Ti1,- - -, Tip)
ICR((& | Bitiyen s 2ip)’
we can formulate the following theorem.
THEOREM 7.3. For independent random variables X1,..., X, with dis-

tributions determined by (7.3),

|ebias| = Blirl,  ler| 5> 922,

The proof is immediate from (7.4)—(7.6).

It can be seen that the p-point method is more robust than the least
squares method with regard to both bias and risk for |z;;| > 1/3, because
for such |z;;|, the values of the influence function for the p-point method
are less than for the least squares method. Notice also that for the p-point
method the influence of a disturbance is constant no matter for which X; it
happened.

Tb. Influence functions in the case of normal distribution. Now we as-
sume that the variables Xi,...,X,, are independent with the same multi-
variate normal distribution N (0, Z), where I is a matrix of the form

I = diag(o?,03,.. .,og) :

By assumption,

z? 2 1
= f|a:] exp 22 de = ;cr,-, pj=§.

THEOREM 7. 4 For mdependent random variables with the same distri-
bution N(0,L), by (6.3) and (7.7),

T B 2 22
|eb1as] ol [l t'rl 6 ; o:aé" .
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