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CONTINUOUS DEPENDENCE OF SOLUTIONS
OF SOME INVERSE PROBLEMS IN HEAT CONDUCTION

Abstract. We consider the problem of determination of boundary values
from internal data for the heat equation. For certain types of boundary
functions we prove continuous dependence upon the data. As an example
we state one of our results. Let u = u(z,t) and ¢ = g¢(t) satisfy u; =
Upy +VUz +7u, 0 < 2 < 00,1t >0, ‘U.,;(O, t) = Q(t)a u(m, O) =0, u(lat) = g(t),
lu(z,t)| < C1exp(Caz® +rt), a < 2, ¢(0) =0, |¢"(t)| < AeP*, p > 0. Then,
for any T > 0, there exists M > 0 such that |g(t)] < M/(log(K/||g|))?,
0<t<T,|gll £ K < oo

1. Introduction. In the paper a question of continuous dependence
of boundary values on internal data is considered for the heat conduction
equation in one spatial variable. The problem of determination of boundary
values from internal data is an inverse problem, which is improperly posed
in the sense that the solution does not depend continuously on the data.
To obtain continuous dependence the set of permissible boundary value
functions must be suitably restricted.

Inverse boundary value problems (IBVPs) of heat conduction arise of-
ten in physical applications when one or all of the boundaries of the heat
conductor are inaccessible to measurements (e.g., turbine engine walls, pro-
peller surfaces, etc.). The idea is to measure the temperature at one or more
interior points and use the readings to determine the boundary temperature
values and subsequently the temperature throughout the whole domain.
There exists an extensive literature on the analytical and numerical aspects
of the IBVPs for parabolic equations (see [2] for a bibliography). One of the
first papers [8] on the subject proposed an integral equation method, which
yielded a numerical algorithm with unstable behavior for small time inter-
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vals. This was due to the lack of continuous dependence of the solution on
the data and not to the instability of the algorithm. Other numerical meth-
ods which were proposed later took this into the account by approximating
the solutions using some stabilization techniques [1, 4, 5, 7, 9].

The question of continuous dependence upon internal measurements of
the solutions of inverse problems in heat conduction were studied in [2, 4, 6]
and many other papers. Some of the results showed the Holder-continuous
dependence of the solution at point z in the interior of the domain upon
the internal data. The Holder exponents, however, depend on the distance
of z from the boundary and decrease to 0 as z moves toward the boundary
[2]. It is of interest to examine the question of continuous dependence of the
solutions to inverse boundary value problems. Since it is well known that,
in general, small errors in the data magnify errors in a high frequency com-
ponent of the boundary functions, some smoothness requirements must be
imposed on the boundary functions in order to recover continuous depen-
dence on internal measurements.

In the paper we show the uniqueness and (logarithmic) continuous de-
pendence upon the internal measurements for several IBVPs in heat con-
duction assuming some smoothness of the unknown boundary functions.
The method of proof assumes that the solution of a corresponding direct
initial-boundary problem can be expressed in terms of heat potentials. All
problems considered are spatially one-dimensional.

2. Problem description. Given an open and simply connected set 2 C
R™ with a smooth boundary I', a (direct) initial-boundary value problem
for a linear parabolic equation is to determine a function u satisfying

(2.1) (%~kV2-v-V—r)u(z,t):F(m,t), veR", k>0,
for z € £2, t > 0, together with

(2.2) u(z,0) = p(z),

(2‘3) u(y: t) = g(y} t)) y € ‘r:

where F'; v and g are the source, initial, and boundary functions, respec-
tively.

A corresponding inverse boundary value problem is to determine the
boundary function g(y,t), y € I', from the internal data 1 given by

(2‘4) u(y,t) =9P(y,t), yeI,
where Iy C 2, Il # 0, so that the direct problem (2.1)-(2.3) with such g
has the solution u satisfying (2.4) on I7.

An example of another inverse problem would be to determine a func-
tion g such that the solution of (2.1)—(2.2) together with the (Neumann)
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boundary condition

ou
—_— = t el,
By (w,t) =g(w,t), ¥

satisfies (2.4) on I'y. Here 0/0n, denotes the normal derivative at y € I'.

Under certain conditions it is possible to express a solution to the direct
problem stated above in terms of certain potentials, similar to the classical
heat potentials, which take into account the influence of the source and the
initial and boundary conditions. These potentials are defined in terms of the
fundamental solution w of equation (2.1) given by

. 1 vz v-v ||
@9 wed = g | -5 - () G
where |z| is the euclidean norm of z. For example, assuming without loss of

generality that ¢ = F = 0, u can be expressed in terms of the single layer
potential:

(2.6) u(z,ty = ffw(m—&,t—r)h(g,r)dsgdf, z €,
or

where h is the (unknown) potential density to be determined from the
boundary condition (2.3).

For an inverse problem observe that u defined by (2.6) satisfies equation
(2.1) for all z € £2, so in particular for z = y € I'; we have

(27 bW t) = [ [ wly—&t—1)h(E7)dsedr.
0 r

This is a Volterra integral equation of the first kind with an infinitely smooth
kernel w. Note that if it is possible to determine the potential density h
uniquely from (2.7), then the values of u or du/du, can be calculated using
the properties of single layer potentials,

u(¢,t)= [ [w(¢—&t—7)h(E r)dsedr, (€T,
0 r

ou 1 s w
3,—%(c,t)=—§h(c,t)+ JJB—M(C—E,t—T)h(E,T)dSsdﬂ

where the kernels of the above integrals have weak singularities at { = &,.
T=1t.

Note that the uniqueness of the density h for the integral equation (2.7)
does not imply the uniqueness of the solution of the inverse boundary value
problem. The uniqueness of the IBVP solution will follow if it is known
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that a solution to the corresponding direct boundary value problem given
by (2.6) is unique.

In the rest of the paper we assume that given an inverse boundary value
problem there exists a potential representation of u for the corresponding
direct problem. We shall focus on the determination of the potential density
functions from Volterra integral equations similar to equation (2.7). More-~
over, we restrict our attention to initial-boundary problems depending on
a single spatial variable. This will have an effect of reducing the Volterra
equations to the convolution equations of the form

(2.8) by,t)= [ Hlyt—7)h(r)dr,
0

where y € I, £ € I', t > 0 and H(y,0) = 0, for y # 0. Equations of
this form cannot be reduced to the equation of the second kind by the
standard procedure of differentiation. It is easy to see that the solution A
does not exist unless ¥(y, 0) = 0. However, if the solution A exists, a suitable
restriction placed on the set of admissible solutions results in uniqueness and
continuous dependence of h upon 1. The next sections of this paper serve
to support and illustrate this assertion.

3. Uniqueness and continuous dependence of the solution of a
Volterra convolution equation of the first kind. Assuming that the
functions ¢ and H are of exponential type we can take the Laplace transform
L of both sides of equation (2.8) and obtain

LHLh =Ly .

It is clear that the solution Lh of the above equation exists and it is unique
if LH # 0. The existence and uniqueness of h follows provided that Ly /LH
is invertible.

In order to show continuous dependence of h upon 1 we use the following
lemma, which appeared in [3] with more restrictive hypotheses.

LEMMA 1. Let h € C?[0,00), h(0) = 0 and |h"(t)| < Aexp(pt), A > 0,
p > 0. If h is the solution of the integral equation

g(t) = jH(t—T)h(f)dT, 0<t< oo,
0

where the kernel H satisfies |CH(s)|™* < C(exp(B|s + D|?)), 0 < ¢ < 1,
B,C,D > 0, then given T > 0 there exists M > 0 such that

|n(t)| < M(log(K/|lgll)) "¢, 0<t<T,
where ||g||® =[5~ (9(t))?dt < K < .
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Proof. Setting s = o + in, 0 > p we have

1Lg(s)| = 'f g(t)e~* dt| < ||g|l(20)~1/2
0

by the Cauchy—Schwarz inequality. Now, if o > p then
o+iN o+ico

1 1
h(t)=2—ﬂ_i f Lh(s)e* ds""ﬁ f Lh(s)e** ds
og—iN o+iN
1 o—ilN
st
g f Lh(s)e*tds.

The lemma follows after estimating each of the above integrals. For the first
we have

1 THN st 1 i Eg O'+ 'H?) crt
Ef_ﬁ'a_"{N ﬁh(s)e ds| < —ﬂ ‘{; ‘I:H(O' T M}) dn
eat C N )
S g (26!1)‘3”2 f exp(Blo + D + in|?) dn
-N
e’t B
g (2J|)91E2 N exp[B((0 + D)? + N?)¥/?]

< C1e”"||g|| exp(B1N9), for some B; > B, C; > C.

For the second integral we have

o+ioco o+ico
L f Lh(s)eds| = — f s72[R'(0) + LA (s)]e* ds
o+iN o+iN

—

= [ IsI?{I%'(0)] + |£h” |} || dn
N

-.-q

t[|h’(0)|+—£—*] f (62 +7?)"tdn < Ce’* N1,

The third integral can be bound in the similar way. Hence,
|h(?)] < Cs{llgllexp(B1N?) +1/N}, 0<t<T,

where C3 depends on o, p, h'(0), A, B, and ¢. Choosing N9 =
log(K/||g||)*/?/B; we obtain

Ih()] < Ca{llgl’? + (log(K/Ilgll)) 9}, 0<¢t<T.m
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4. Continuous dependence of the heat flux upon the internal
measurements for a semi-infinite slab. Consider the following inverse
problem: find a piecewise continuous function g satisfying ¢(¢) = u.(0,t) for
0<t<T, with some T > 0, given that u satisfies

(4.1) U = Ugg + VU +TU, O0< <00, t>0, v,r >0,
(42)  u(z,0)=0, u(1,t) = g(t), |u(z,t)| < Ciexp(Coz® +rt), a < 2.

It can be shown [2] that a solution of the corresponding (direct) initial-
boundary problem -with the boundary condition ¢(t) = u.(0,%) can be ex-
pressed as a single layer potential,

t

(4.3) u(@,t) = -2 [ w(z,t—r)g(r)dr, z>0,t>0,
0

where w is given by formula (2.5). For z = 1 we have

9(t)= [ H(t—r)q(r)dr,

Hl) = —2 w1, ) = = e | — 2

ex
mp[z

After application of the Laplace transform L one gets

Lq(s) = Lg(s)/LH(s),

+ (r—v? /4t —1/(4t)| .

where

exp(—(s — A)'/?)
(s — A)L/2

Since LH(s) # 0, when Re(s—A) > 0, the uniqueness of the solution g of the

inverse problem follows if u given by (4.3) is the unique solution of the direct

problem. This is assured under the assumption |u(z,t)| < Cy exp(Coz*+rt),
a < 2. Thus we have

LH(s) = —exp(—v/2) , A=r-—v’/4.

THEOREM 1. There ezists at most one solution of the problem (4.1)—(4.2).
Also, since 1/LH(s) = consty/s — Aexp(v/s — A), it follows that
|CH(s)|™' < Bexp(Cy/|s|), for some B,C > 0.

Thus a simple application of Lemma 1 yields

THEOREM 2. Let q(0) = 0, |¢"(t)| < Aexp(pt), ||g|| < K < 00, T > 0.
If q is the solution of the problem (4.1)—(4.2), then there exists M > 0 such
that

M
IQ(t)|§W, 0<t<T.
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5. Continuous dependence of boundary temperature upon in-
ternal data for the finite layer. Consider the problem of determination of
piecewise continuous boundary functions uo(t) = u(0,t) and uy(t) = u(1,t)
so that u is bounded, continuous in z on [0,1] and satisfies

(5.1) U = Uz, O0< <1, t>0,
(5.2) u(0,t) =0, u(A,t)=a(t), u(B,t)=0b(t), 0<A<B<I.

There exists an integral representation of the unique solution u to the
direct initial-boundary problem with ug, u; as the boundary data given by
t t
u(z,t) = f [K(a:,O,t — 7)ho(T) — f K(z,1,t— T)hl('r)] dr,
0 0
where
z-y —(z —y)?
exp
4\/_ (t—1)3/2 4(t—1)
By substituting A and B in the above equation, a system of two Volterra
equations of the first kind for the density functions ho and h; is obtained.
Note that a necessary condition for the existence of the solution {ho, h1} to
the system is that the internal data {u4,up} be smooth. Once the densities
are obtained the boundary functions can be recovered from

K(z,y,t—1) =

(5.4) uo(t) = —hg(t f K(0,1,¢ — 7)hy (1) dr,

(5.5) will) = Of K(1,0,t — r)ho(r) dr + %hl(t)

(the jump conditions).
To show continuous dependence of u;’s upon a and b apply the Laplace
transform to (5.3) (with z = A and z = B) to obtain

(5.6) La(s) = LK(A,0,s)Lho(s) + LK(A,1,58)Lhy(s),

(5.7) Lb(s) = LK(B,0,s)Lho(s) + LK(B,1,8)Lhy(s).

The solution of this system of equations exists if the system’s determinant
‘det(s) = LK(A,0,s)LK(B,1,s) — LK(B,0,s)LK(A,1,s)

is not identically zero. Since for any ¢ and d

_ [sem(—vs(c—d), c>d,
LK (c,d,s) = { —1exp(—y/5(d —¢)), c<d,

it follows that
det(s) = —%[exp(—\/g(l + A— B)) —exp(—vs(1+ B — A))] #0,
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unless A = B. Moreover,
|1/det (s)| = Cexp(B|s|*/?), for some C, B > 0.
Combining this with an argument similar to Lemma 1 we obtain

THEOREM 3. Let u;(0) = 0, |u(t)] < Aexp(pt) (i =0,1), ||g|]| = ||la|| +
18]l € K < 00, T > 0. If up, uy are the solutions of (5.1)—(5.2), then there
exists M > 0 such that

i) € et
= (log(X/llgll))?’

Proof. Since u; are calculated from (5.4)—(5.5) it can be shown that
lui(t)| < Cmax;(|hi(t)]), t > 0, for some C > 0. Thus it suffices to show
that

0<tLT.

const

e IR,
| = Gogl&T 147
Solving equations (5.6)—(5.7) for Lh;(s) we obtain

|Lhi(s)| < Cexp(BV/Is])(llal] + 1)
The theorem follows from an argument similar to that in Lemma 1 applied to
the functions h;. Note here that the conditions h;(0) = 0, |k} (¢)| < Aexp(pt)
(i = 0, 1), needed in the argument, follow from the hypotheses of the theorem
via the equations (5.4)—(5.5). (The fact that these integral equations are of
the second kind greatly simplifies this check.)

|h;( e,

6. An inverse boundary value problem in the unit ball. Let 2 C
R3 be the unit ball; given g : [0,00) — R and a fixed point z € (2, find
a piecewise continuous function ¢ such that a bounded, radially symmetric
function u solves the direct initial-boundary value problem

(6.1) (%—kvz—r)u(a:,t)=0, €N, t>0 k>0,
(6.2) u(z,0) =0, %({,t) =gq(t), €£€09,
together with

(6.3) u(z,t) =g(t), g(0)=0, =z€ 2 (internal data).

An application of Lemma 1 yields:

THEOREM 4. Let u be a bounded, radially symmetric function satisfying
equations (6.1)—(6.3) with ¢(0) = 0, |¢"(t)| < Be*, ||g|| < K < oo. Then,
given T' > 0, there exists M > 0 such that

M
lg(t)| < W: 0<t<T.
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Proof. The solution u can be expressed as a potential of the single layer,
t
u(z,t) = f f w(z — &t —7)h(€,7)dsc dr,
or
where w is given by

w(z,t) = exp [rt " 'ﬁfﬁ] .

(4knt)3/2 4kt

Note that as a consequence of the radial symmetry of u the potential density
h does not depend on £. To see this assume that z,y € £2 with |z| = |y| and
F is a rotation about the center of a unit sphere such that F(z) = y. Given
¢ € I', define £ by F(£) = (. Then

f f w(y — ¢t —1)h(¢,T)dsc dr
o r
= [ [ wly-F(),t—)h(F(),)dsdr

= f f w(z —§,t — T)h(F(§),7)ds¢dr

I

f f w(z — &t —7)h(&T)dsedr.
or

The second equality holds since w(z —§,t —7) = w(y — {,t — 7) and the last
one follows from u(z,t) = u(y,t). Thus,

[ [ wia—-¢&t—1)R(FE),r)—h( 7)) dsedr =0, ¢>0,z€,
0o r

which implies h(F'(£),7) — h(€,7) = 0.
For z = z we can write

g(t) = f H,(t — 7)h(r)dr,
0

where

H.()= [ w(z—¢&t)dse.
r
Since ¢ is given by

t
q(t) = —%h(t).—l— f f g—:(c — &t —7)ds¢ h(r)dr for any ¢ € 012,
o r
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the hypotheses of the theorem imply that h(0) = 0, |h"(t)| < BeP'. Hence
it suffices to show that |[CH,(s)|™! < exp(C|s|®), a > 0. After some com-
putations we obtain

1 |z —€|?
H,(t) = 1‘!‘ @)/ exp [rt —ig ] dse
_ exp(rt) 1 @Q-1]z)* (14 ]2])?
= (k)72 || [ex —dkt | P T gk |2

where |2|? = 2% + 22 + 22 . In the case z = 0 this reduces to

1 1
H{](t) = Wz—flﬂ'exp [Tt = 4—kt:| .

The Laplace transforms of H, and Hy are:

LH,(s) = Alexp(—B+v/s — 1) — exp(=C+/5 —7)|/\/s —,
LHy(s) = Aexp(—Bvs—r),

for some generic, positive constants A, B and C. This implies that

|CH.(s)| ™! < exp(D]s|'/?)

for all z € £2, including z = 0, and Lemma 1 can be applied to prove the
theorem.
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