F. CZEKAŁA (Wrocław)

THE ASYMPTOTIC DISTRIBUTIONS OF STATISTICS BASED ON LOGARITHMS OF SPACINGS

1. Introduction and preliminaries. Let X_1, \ldots, X_n be a sample from a distribution on the interval [0,1]. We denote by $0=X_{0:n} \leq X_{1:n} \leq \ldots \leq X_{n:n} \leq X_{n+1:n}=1$ the order statistics from the sample. The purpose of this paper is to find the asymptotic distributions of the statistics $\sum_{i=0}^{n} \log(X_{i+1:n}-X_{i:n})$ and $\sum_{i=0}^{n} (X_{i+1:n}-X_{i:n}) \log(X_{i+1:n}-X_{i:n})$ in the case when the distribution of the sample has a density which is a step function on [0,1]. The asymptotic distributions of the above statistics in the case of the uniform distribution on [0,1] were found by Darling [1] and Gebert and Kale [2], respectively. The problem of finding asymptotic distributions of some other statistics based on distributions with densities in the form of step functions was considered by Weiss [3], [4].

Let $k \ge 1$ be a fixed integer and let $0 = x_0 < x_1 < \ldots < x_k = 1$ be fixed real numbers. Let us introduce the following notation:

$$I_0 = [0,1], \quad I_1 = [x_0, x_1), \quad \dots, \quad I_{k-1} = [x_{k-2}, x_{k-1}), \quad I_k = [x_{k-1}, x_k],$$

$$|I_i| = x_i - x_{i-1}, \quad i = 1, \dots, k.$$

Let $f_i > 0$, i = 1, ..., k, be fixed numbers such that $\sum_{i=1}^k f_i |I_i| = 1$. These numbers together with the intervals I_i define a probability density f:

(1)
$$f(x) = \sum_{i=1}^{k} f_i \mathbf{1}_{I_i}(x).$$

Define $p_i = f_i |I_i|$. We have $\sum p_i = 1$ and hence there exist numbers $0 = x'_0 < x'_1 < \ldots < x'_k = 1$ such that the intervals I'_i , defined similarly to I_i , have lengths p_i . It is well known that there exists a probability space (Ω, \mathcal{F}, P) , on which we can define a vector of random elements

¹⁹⁹¹ Mathematics Subject Classification: 62E20, 62G20, 62G30.

Key words and phrases: spacings, convergence in distribution, consistency of tests.

(2)
$$(\underline{U}, \underline{Y}_1, \dots, \underline{Y}_k) : \Omega \to (\mathbb{R}^{\infty})^{k+1}$$

with the following properties:

- (a) the coordinates of this vector are stochastically independent,
- (b) $\underline{U} = (U_1, U_2, ...)$ is a sequence of independent random variables uniformly distributed on I_0 ,
- (c) for $i=1,\ldots,k,\ \underline{Y}_i=(Y_{i,1},Y_{i,2},\ldots)$ are sequences of independent random variables with uniform distribution on I_i .

We can now define a sequence $\underline{Z} = (Z_1, Z_2, ...)$ of independent random variables with density f:

(3)
$$Z_n = \sum_{i=1}^k \mathbf{1}_{I_i'}(U_n) Y_{i,n}, \quad n \ge 1.$$

The independence of the variables Z_n results from the properties of the vector (2). We check that they have density f. Let $A \subset I_0$ be a Borel set and let λ be the Lebesgue measure. Then we have

$$P(Z_n \in A) = \sum_{i=1}^k P(Z_n \in A \cap I_i) = \sum_{i=1}^k P(U_n \in I_i') P(Y_{i,n} \in A \cap I_i)$$
$$= \sum_{i=1}^k f_i |I_i| \frac{\lambda(A \cap I_i)}{|I_i|} = \int_A f(x) \, d\lambda(x) \,.$$

Now denote by $N_{i,n}$ the number of random variables Z_1, \ldots, Z_n taking values in the interval I_i , that is,

(4)
$$N_{i,n} = \sum_{j=1}^{n} \mathbf{1}_{I_i}(Z_j).$$

Since $Z_j \in I_i$ if and only if $U_j \in I'_i$, we have

(5)
$$N_{i,n} = \sum_{j=1}^{n} \mathbf{1}_{I'_{i}}(U_{j}).$$

It follows that the sequence $(N_{1,n},\ldots,N_{k,n})$ is independent of $(\underline{Y}_1,\ldots,\underline{Y}_k)$. For simplicity of notation we now introduce two real functions defined on $\mathbb{N} \times I_0^{\infty}$ as follows:

(6)
$$\phi(n,\underline{y}) = \sum_{j=0}^{n} \log(y_{j+1:n} - y_{j:n}),$$

(7)
$$\phi^*(n,\underline{y}) = \sum_{j=0}^n (y_{j+1:n} - y_{j:n}) \log(y_{j+1:n} - y_{j:n}),$$

where $n \geq 1$, $\underline{y} = (y_1, y_2, ...) \in I_0^{\infty}$. The Darling and the Gebert-Kale statistics based on a sample from the uniform distribution on I_0 can now be written as $\phi(n, \underline{U})$ and $\phi^*(n, \underline{U})$, where \underline{U} is the sequence (2).

2. Darling statistic. The asymptotic distribution of the Darling statistic in the case of the uniform distribution on I_0 is given by the following theorem:

LEMMA 1 (Darling [2]). If $\underline{U} = (U_1, U_2, ...)$ is a sequence of independent random variables with uniform distribution on [0, 1], then

(8)
$$\frac{\phi(n,\underline{U}) + n(\log n + \gamma)}{\sqrt{\pi^2/6 - 1}\sqrt{n}} \xrightarrow{d} N(0,1),$$

where $\gamma = 0.5772...$ is Euler's constant.

Using Lemma 1 we find the limiting distribution of the statistic ϕ when the distribution of the sample variables is given by (1):

Theorem 1. If $\underline{Z} = (Z_1, Z_2, ...)$ is a sequence of independent random variables distributed according to (1) then

(9)
$$\frac{\phi(n,\underline{Z}) + n\{E[\log(nf(Z_1))] + \gamma\}}{\sqrt{\pi^2/6 - 1 + \operatorname{Var}[\log f(Z_1)]}\sqrt{n}} \xrightarrow{d} N(0,1).$$

To prove Theorem 1 we need some lemmas.

LEMMA 2. Let X, X_n , $n \ge 1$, be random variables such that $X_n \xrightarrow{P.1} 0$, $\sqrt{n}X_n \xrightarrow{d} X$. Then

(10)
$$\sqrt{n} \left| \log \left(1 + X_n \right) - X_n \right| \stackrel{P}{\to} 0.$$

Proof. Using the Taylor expansion it is easy to show that $|\log(1+x)-x| \le x^2$ for $|x| \le 1/2$. Consider the set $B_n = \bigcap_{j=n}^{\infty} \{|X_j| \le 1/2\}$. Since $X_n \xrightarrow{P.1} 0$, $\lim P(B_n) = 1$. The assumption that $X_n \xrightarrow{P.1} 0$, together with $\sqrt{n}X_n \xrightarrow{d} X$, gives $\sqrt{n}X_n^2 \xrightarrow{P} 0$. We conclude that for arbitrary $\varepsilon, \eta > 0$ there exists j_0 such that $P(\Omega \setminus B_{j_0}) < \eta$ and $P(\sqrt{n}X_n^2 \ge \varepsilon) \le \eta$ for $n \ge j_0$. Hence

$$P(\sqrt{n}|\log(1+X_n) - X_n| \ge \varepsilon)$$

$$\le P(\Omega \setminus B_{j_0}) + P(B_{j_0}, \sqrt{n}|\log(1+X_n) - X_n| \ge \varepsilon)$$

$$\le \eta + P(B_{j_0}, \sqrt{n}X_n^2 \ge \varepsilon) \le 2\eta \quad \text{for } n \ge j_0.$$

This proves (10).

LEMMA 3. For arbitrary i = 1, ..., k and $\varepsilon > 0$ we have

(11)
$$\frac{1}{\sqrt{n}} \left| \log \left(\min_{1 \le j \le N_{i,n}} Y_{i,j} - x_{i-1} \right) \right| \xrightarrow{P} 0,$$

(12)
$$\frac{1}{\sqrt{n}} \left| \log \left(x_1 - \max_{1 \le j \le N_{i,n}} Y_{i,j} \right) \right| \stackrel{P}{\to} 0.$$

Proof. The random variable $N_{i,n}$ is independent of the sequence \underline{Y}_i , and $N_{i,n} \xrightarrow{P.1} \infty$, so it suffices to show that

$$\frac{1}{\sqrt{n}}|\log(\min_{j\leq j\leq n}Y_{i,j}-x_{i-1})|\stackrel{P}{\to}0,$$

and similarly in the case of (12). We have

$$P\left(\frac{1}{\sqrt{n}}|\log(\min_{1\leq j\leq n}Y_{i,j}-x_{i-1})|\geq \varepsilon\right) = P(\min_{1\leq j\leq n}Y_{i,j}-x_{i,j}\leq \exp(-\varepsilon\sqrt{n}))$$
$$= 1-(1-|I_i|^{-1}\exp(-\varepsilon\sqrt{n}))^n.$$

We now prove that $(1-|I_i|^{-1}\exp(-\varepsilon\sqrt{n}))^n \to 1$. Take arbitrary $\eta > 0$ and $\delta > 0$ such that $\exp(-\delta) \ge 1 - \eta$. For sufficiently large n,

$$1 \ge (1 - |I_i|^{-1} \exp(-\varepsilon \sqrt{n}))^n \ge (1 - \delta/n)^n \ge \exp(-\delta) - \eta \ge 1 - 2\eta$$
.

This ends the proof of Lemma 3.

LEMMA 4. Let $X_{i,n}$, i = 1, ..., k, $n \ge 0$, be the random variables defined as follows:

$$X_{i,n} = \left\{ \begin{array}{ll} 0 & \text{for } n=0 \,, \\ \frac{1}{\sqrt{\pi^2/6-1}\sqrt{n}} \bigg[\phi(n,\underline{Y}_i) + n \bigg(\log \frac{n}{|I_i|} + \gamma \bigg) \bigg] & \text{for } n \geq 1 \,. \end{array} \right.$$

Then

(13)
$$\left(X_{i,N_{i,n}}, i = 1, \dots, k, \frac{N_{i,n} - np_i}{\sqrt{n}}, i = 1, \dots, k\right) \xrightarrow{d} (X_1, \dots, X_k, W_1, \dots, W_k),$$

where the X_i are independent and normally N(0,1) distributed random variables, the vector (W_1, \ldots, W_k) is independent of (X_1, \ldots, X_k) and has the multivariable normal distribution $N(0, \Sigma)$, where $\Sigma = [\sigma_{i,j}]$ and

$$\sigma_{i,j} = \begin{cases} -p_i p_j & \text{for } i \neq j, \\ p_i - p_i^2 & \text{for } i = j, \end{cases}$$

 $i, j = 1, \ldots, k$.

Proof. We first show that $(X_{1,n},\ldots,X_{k,n}) \xrightarrow{d} (X_1,\ldots,X_k)$. It is obvious that spacings from the uniform distribution on a certain interval divided by the length of this interval have the same distribution as spacings from the uniform distribution on [0,1]. Thus

$$\frac{1}{\sqrt{\pi^2/6-1}\sqrt{n}}[\phi(n,\underline{Y}_i/|I_i|)+n(\log n+\gamma)]\stackrel{d}{\to} X_i.$$

Moreover,

$$\phi(n,\underline{Y}_i/|I_i|) + n(\log n + \gamma) = \phi(n,\underline{Y}_i) + n\log(n/|I_i|) + \gamma) - \log|I_i|.$$

Since $\log(|I_i|/\sqrt{n}) \to 0$, we have $X_{i,n} \stackrel{d}{\to} X_i$. Because X_i are independent, we have also

$$(X_{1,n},\ldots,X_{k,n}) \stackrel{d}{\to} (X_1,\ldots,X_k).$$

Now we show that

(15)
$$\left(\frac{N_{1,n}-np_1}{\sqrt{n}},\ldots,\frac{N_{k,n}-np_k}{\sqrt{n}}\right) \xrightarrow{d} (W_1,\ldots,W_k).$$

This follows from the central limit theorem because $N_{i,n} = \sum_{j=1}^{n} \mathbf{1}_{I'_1}(U_j)$, $E[\mathbf{1}_{I'_1}(U_1)] = p_i$ and $Cov[\mathbf{1}_{I'_1}(U_1), \mathbf{1}_{I'_2}(U_1)] = \sigma_{i,j}$. Since the sequence $N_{i,n}$ is independent of the sequence Y_i , (14) and (15) together give (13).

Proof of Theorem 1. Consider the sequence $Z_{\alpha_{i,1}}, Z_{\alpha_{i,2}}, \ldots$ of those successive random variables Z_n whose values belong to the interval I_i . The sequence $\alpha_{i,n}, n \geq 1$, is determined by the sequence \underline{U} , so it is independent of \underline{Y}_i . Since $Z_{\alpha_{i,n}} = Y_{i,\alpha_{i,n}}$, the sequence $Z_{\alpha_{i,n}}$ has the same probability distribution as \underline{Y}_i . It can be shown similarly that the joint distribution of the vector $(Z_{\alpha_{i,n}}, n \geq 1, \ldots, Z_{\alpha_{k,n}}, n \geq 1)$ is the same as that of $(\underline{Y}_1, \ldots, \underline{Y}_k)$. It follows from the above remarks and from Lemma 3 that the statistic $\phi(n,\underline{Z})$ has asymptotically the same distribution as $\sum_{i=1}^k \phi(N_{i,n},\underline{Y}_i)$.

To prove Theorem 1 it is now enough to show that

(16)
$$\frac{\sum_{i=1}^{k} \phi(N_{i,n}, \underline{Y}_i) + n(E[\log(nf(Z_1))] + \gamma)}{\sqrt{n}\sqrt{\pi^2/6 - 1 + \text{Var}[\log f(Z_1)]}} \xrightarrow{d} N(0, 1).$$

Set $C = \sqrt{\pi^2/6 - 1}$. Since $\sum_{i=1}^k N_{i,n} = n$, after elementary calculations we obtain

$$(17) \quad \frac{1}{C\sqrt{n}} \left[\sum_{i=1}^{k} \phi(N_{i,n}, \underline{Y}_{i}) + n(E[\log(nF(Z_{1}))] + \gamma) \right]$$

$$= \frac{1}{C\sqrt{n}} \left[\sum_{i=1}^{k} \phi(N_{i,n}, \underline{Y}_{i}) + N_{i,n} \left(\log \frac{N_{i,n}}{|I_{i}|} + \gamma \right) \right]$$

$$- \frac{1}{C\sqrt{n}} \sum_{i=1}^{k-1} (N_{i,n} - np_{i}) \log \frac{N_{i,n}}{N_{k,n}} + \frac{1}{C\sqrt{n}} \sum_{i=1}^{k} (N_{i,n} - np_{i}) \log |I_{i}|$$

$$- \frac{1}{C\sqrt{n}} \sum_{i=1}^{k} np_{i} \log \left(\frac{N_{i,n}}{np_{i}} \right).$$

We first show that

(18)
$$\frac{1}{\sqrt{n}} \sum_{i=1}^{k} n p_i \log \left(\frac{N_{i,n}}{n p_i} \right) \stackrel{P}{\to} 0.$$

Define $\alpha(x) = \log(1+x) - x$. We have

$$\begin{split} \sum_{i=1}^k p_i \log \left(\frac{N_{i,n}}{np_i} \right) &= \sum_{i=1}^k p_i \frac{N_{i,n} - np_i}{np_i} + \sum_{i=1}^k p_i \alpha \left(\frac{N_{i,n} - np_i}{np_i} \right) \\ &= \sum_{i=1}^k p_i \alpha \left(\frac{N_{i,n} - np_i}{np_i} \right). \end{split}$$

Lemma 2 shows that

$$\sqrt{n}\alpha\bigg(\frac{N_{i,n}-np_i}{np_i}\bigg)\overset{P}{\to}0$$

and this implies (18).

It follows from (17), (18) and Lemma 4 that

(19)
$$\frac{1}{C\sqrt{n}} \left[\sum_{i=1}^{k} \phi(N_{i,n}, \underline{Y}_i) + n(E[\log(nf(Z_1))] + \gamma) \right]$$

$$\stackrel{d}{\to} \sum_{i=1}^{k} \sqrt{p_i} X_i + \frac{1}{C} \sum_{i=1}^{k} W_i \log |I_i| - \frac{1}{C} \sum_{i=1}^{k-1} W_i \log \frac{p_i}{p_k},$$

where X_i , W_i are the same as in Lemma 4. Since $\sum_{i=1}^k p_i = 1$ and $\sum_{i=1}^k W_i = 0$, we have

$$\sum_{i=1}^{k} W_{i} \log |I_{i}| - \sum_{i=1}^{k-1} W_{i} \log \frac{p_{i}}{p_{k}} = \sum_{i=1}^{k} W_{i} \log \frac{|I_{i}|}{p_{i}}.$$

The variance of the sum of the coordinates of an arbitrary random vector is equal to the sum of the elements of the covariance matrix of this vector. Hence

$$\operatorname{Var}\left[\sum_{i=1}^{k} W_{i} \log \frac{|I_{i}|}{p_{i}}\right] = \sum_{i=1}^{k} \sum_{j=1}^{k} \left(\log \frac{|I_{i}|}{p_{i}} \log \frac{|I_{j}|}{p_{j}}\right) \sigma_{i,j}$$

$$= \sum_{i=1}^{k} p_{i} \log^{2} \frac{|I_{i}|}{p_{i}} - \left(\sum_{i=1}^{k} p_{i} \log \frac{|I_{i}|}{p_{i}}\right)^{2} = \operatorname{Var}[\log f(Z_{1})].$$

Now (19) shows that

$$\frac{\sum_{i=1}^k \phi(N_{i,n},\underline{Y}_i) + n(E[\log(nf(Z_1))] + \gamma)}{\sqrt{n}C\sqrt{1 + (1/C^2)}\operatorname{Var}[\log f(Z_1)]} \xrightarrow{d} N(0,1).$$

This ends the proof of Theorem 1.

3. Gebert-Kale statistic. In this section we prove an analogue of Theorem 1 concerning the Gebert-Kale statistic. Our considerations are based on the following theorem which gives the asymptotic distribution of the Gebert-Kale statistic in the case of the uniform distribution on [0, 1].

LEMMA 5 (Gebert and Kale [2]). If $\underline{U} = (U_1, U_2, ...)$ is a sequence of independent random variables uniformly distributed on [0, 1] then

(20)
$$\frac{\sqrt{n}}{\sqrt{\pi^2/3-3}}(\phi^*(n,\underline{U}) + \log n - (1-\gamma)) \xrightarrow{d} N(0,1).$$

The asymptotic distribution of the Gebert-Kale statistic when the underlying distribution has density (1) is given by the following theorem.

THEOREM 2. If $\underline{Z} = (Z_1, Z_2, ...)$ is a sequence of independent random variables with density (1) then

(21)
$$\frac{\sqrt{n}\left(\phi^*(n,\underline{Z}) + E\left[\frac{\log(nf(Z_1))}{f(Z_1)}\right] - (1-\gamma)\right)}{\sqrt{\left(\frac{\pi^2}{3} - 2\right)\operatorname{Var}\left[\frac{1}{f(Z_1)}\right] + \left(\frac{\pi^2}{3} - 3\right)}} \xrightarrow{d} N(0,1).$$

We prove Theorem 2 analogously to Theorem 1. We need some counterparts of Lemmas 3 and 4.

LEMMA 6. For arbitrary i = 1, ..., k we have

(22)
$$\sqrt{n} (\min_{1 \le j \le N_{i,n}} Y_{i,j} - x_{i-1}) \log (\min_{1 \le j \le N_{i,n}} Y_{i,j} - x_{i-1}) \xrightarrow{P} 0,$$

(23)
$$\sqrt{n}(x_i - \max_{1 \le j \le N_{i,n}} Y_{i,j}) \log(x_i - \max_{1 \le j \le N_{i,n}} Y_{i,j}) \xrightarrow{P} 0,$$

Proof. It is easy to show that $n(\min_{1 \le j \le n} Y_{i,j} - x_{i-1})$ converges in distribution to an exponentially distributed random variable. In the proof of Lemma 3 we have shown that $(1/\sqrt{n})\log(\min_{1 \le j \le n} Y_j - x_{i-1}) \xrightarrow{P} 0$. Hence

(24)
$$n(\min_{1 \le j \le n} Y_{i,j} - x_{i-1}) \frac{1}{\sqrt{n}} \log(\min_{1 \le j \le n} Y_{i,j} - x_{i-1}) \xrightarrow{P} 0.$$

Since $N_{i,n}$ is independent of \underline{Y}_i and $N_{i,n} \xrightarrow{P.1} \infty$, (22) follows from (24). The proof of (23) is quite similar and is omitted.

LEMMA 7. Let $X_{i,n}^*$, $i=1,\ldots,k, n\geq 0$, be the random variables defined as follows:

$$X_{i,n}^* = \left\{ \begin{aligned} &0 & \text{for } n=0 \,, \\ &\frac{\sqrt{n}}{\sqrt{\pi^2/3-3}} \bigg[\phi^*(n,\underline{Y}_i) + |I_i| \log \frac{n}{|I_i|} - |I_i| (1-\gamma) \bigg] & \text{for } n\geq 1 \,. \end{aligned} \right.$$

Then

(25)
$$\left(X_{1,N_{1,n}}^*, \dots, X_{k,N_{k,n}}^*, \frac{N_{1,p} - np_1}{\sqrt{n}}, \dots, \frac{N_{k,n} - np_k}{\sqrt{n}} \right)$$

$$\xrightarrow{d} \left(|I_1| X_1, \dots, |I_k| X_k, W_1, \dots, W_k \right),$$

where $(X_1, \ldots, X_k, W_1, \ldots, W_k)$ is defined by (13) in Lemma 4.

Proof. Taking into account the remark at the beginning of the proof of Lemma 4, we deduce from Lemma 5 that

$$\frac{\sqrt{n}}{\sqrt{\pi^2/3-3}} \left(\phi^* \left(n, \frac{\underline{Y}_i}{|I_i|} \right) + \log n - (1-\gamma) \right) \stackrel{d}{\to} X_i.$$

After some easy calculations we get

$$\frac{\sqrt{n}}{\sqrt{\pi^2/3-3}} \left(\phi^*(n,\underline{Y}_i) + |I_i| \log \frac{n}{|I_i|} - |I_i|(1-\gamma) \right) \stackrel{d}{\to} |I_i| X_i.$$

The rest of the proof is similar to the proof of Lemma 4 and is omitted.

Proof of Theorem 2. Similarly to the proof of Theorem 1 the statistic $\phi^*(n,\underline{Z})$ can be replaced by $\sum_{i=1}^k \phi^*(N_{i,n},\underline{Y}_i)$. Set $D=1/\sqrt{\pi^2/3-3}$. We have to show that

(26)
$$\frac{D\sqrt{n}\left(S_n^* + E\left[\frac{\log(nf(Z_1))}{f(Z_1)}\right] - (1 - \gamma)\right)}{\sqrt{(1 + D^2)\operatorname{Var}[1/f[Z_1)] + 1}} \xrightarrow{d} N(0, 1).$$

We have the following identity:

$$D\sqrt{n} \left[\sum_{i=1}^{k} \phi^{*}(N_{i,n}, \underline{Y}_{i}) + \sum_{i=1}^{k} |I_{i}| \log \frac{np_{i}}{|I_{i}|} - (1 - \gamma) \right]$$

$$= D\sqrt{n} \left[\sum_{i=1}^{k} \phi^{*}(N_{i,n}, \underline{Y}_{i}) + \sum_{i=1}^{k} |I_{i}| \log \frac{N_{i,n}}{|I_{i}|} - (1 - \gamma) \right]$$

$$- D\sum_{i=1}^{k} \frac{|I_{i}|}{p_{i}} \frac{N_{i,n} - np_{i}}{\sqrt{n}} - D\sum_{i=1}^{k} |I_{i}| \sqrt{n}\alpha \left(\frac{N_{i,n} - np_{i}}{np_{i}} \right),$$

where $\alpha(x) = \log(1+x) - x$. Similarly to the proof of Theorem 1 we can show that

$$\sum_{i=1}^{k} |I_i| \sqrt{n} \alpha \left(\frac{N_{i,n} - np_i}{np_i} \right) \stackrel{P}{\to} 0.$$

Hence Lemma 7 yields that

$$D\sqrt{n} \left(\sum_{i=1}^{k} \phi^*(N_{i,n}, \underline{Y}_i) + E\left[\frac{\log(nf(Z_1))}{f(Z_1)}\right] - (1 - \gamma) \right)$$

$$\xrightarrow{d} \sum_{i=1}^{k} \frac{|I_i|}{\sqrt{p_i}} X_i - D\sum_{i=1}^{k} \frac{|I_i|}{p_i} W_i.$$

Computing the variance of the right side above, we get the conclusion of Theorem 2.

4. The consistency of tests based on the Darling and Gebert-Kale statistics. Let us now consider the problem of testing the hypothesis that a given distribution F is equal to the uniform distribution on [0,1]. Using Theorems 1 and 2 we can show that tests based on the statistics ϕ and ϕ^* are consistent if the alternative distributions have a density of type (1). For ϕ we have

$$\frac{1}{\sqrt{n}} [\phi(n,\underline{Z}) + n(\log n + \gamma)]$$

$$= \frac{1}{\sqrt{n}} [\phi(n,\underline{Z}) + n(E[\log(nf(Z_1))] + \gamma)] - \sqrt{n}E[\log(f(Z_1))].$$

The desired consistency follows from the known fact that $E[\log(f(Z_1))] > 0$ if the density f is not identically 1. Similarly for ϕ^* the consistency is equivalent to $E[\log(f(Z_1))/f(Z_1)] < 0$ for f not identically 1.

References

- D. A. Darling, On a class of problems relating to the random division of an interval, Ann. Math. Statist. 24 (1953), 239-253.
- [2] J. R. Gebert and B. K. Kale, Goodness of fit tests based on discriminatory information, Statist. Hefte 3 (1969), 192-200.
- [3] L. Weiss, The asymptotic power of certain tests of fit based on sample spacings, Ann. Math. Statist. 28 (1957), 783-786.
- [4] —, The limiting joint distribution of the largest and smallest sample spacings, ibid. 30 (1959), 590-593.

FRANCISZEK CZEKAŁA MATHEMATICAL INSTITUTE UNIVERSITY OF WROCŁAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND