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THE ASYMPTOTIC DISTRIBUTIONS OF STATISTICS
BASED ON LOGARITHMS OF SPACINGS

1. Introduction and preliminaries. Let X;,..., X,, be a sample from
a distribution on the interval [0,1]. We denote by 0 = Xo., < X1 <
oo € Xpon < Xpg1.n = 1 the order statistics from the sample. The pur-
pose of this paper is to find the asymptotic distributions of the statistics
E?:Q lOg(Xi+1:ﬂ - Xi:n) and E;;[)(Xé-’rl:n . Xi:n) IOg(Xé-le:n . Xi:n) in the
case when the distribution of the sample has a density which is a step func-
tion on [0, 1]. The asymptotic distributions of the above statistics in the case
of the uniform distribution on [0, 1] were found by Darling [1] and Gebert
and Kale [2], respectively. The problem of finding asymptotic distributions
of some other statistics based on distributions with densities in the form of
step functions was considered by Weiss [3], [4].

Let k > 1 be a fixed integer and let 0 = z¢g < 21 < ... < z} = 1 be fixed
real numbers. Let us introduce the following notation:

Io=1[0,1, hL=l[ze,21), ..., Ip—1=[Tr-2,%k=1), Ix=[Tr—1,28],
|Iz'|"——2?i—:’£§_1, %zl,,k

Let f; > 0,47 =1,...,k, be fixed numbers such that Zf=1 FKlL] = L
These numbers together with the intervals I; define a probability density f:

(1) f(@) = _Zfah (z).

Define p; = f;|I;|. We have ) p; = 1 and hence there exist numbers 0 =
o < 2] < ... < z;, = 1 such that the intervals I/, defined similarly to
I;, have lengths p;. It is well known that there exists a probability space
(£2, F, P), on which we can define a vector of random elements
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(2) (_Ualfla"'}xk) 12> (Roo)k+1
with the following properties:

(a) the coordinates of this vector are stochastically independent,

(b) U = (U,Us,...) is a sequence of independent random variables
uniformly distributed on I,

(c) for i = 1,...,k, ¥; = (Y;1,Y;2,...) are sequences of independent
random variables with uniform distribution on I;.

We can now define a sequence Z = (Z;, Z3,...) of independent random
variables with density f:

k
(3) Zn =) 17(Un)Yip, n>1.

i=1
The independence of the variables Z,, results from the properties of the

vector (2). We check that they have density f. Let A C Iy be a Borel set
and let A be the Lebesgue measure. Then we have

k k
P(Z, € A) = Zp(zn €ANL) =) PU,€I)P(Yin€ ANL)

=3 24N [ 100

Now denote by N;, the number of random variables Z1,...,Z, taking
values in the interval I;, that is,

k]
(4) Nin =) 11(Z;).
j=1
Since Z; € I; if and only if U; € I}, we have
L]
(5) Nin=) 15(U;).
j=1

It follows that the sequence (Ny p,,..., Nk ) is independent of (Y3,...,Y%).
For simplicity of notation we now introduce two real functions defined on
N x I§° as follows:

(6) é(n, 2) = Zlog(yj+1:n - yjm) ’
j=0
(7) (,'b’ (‘R, ?_J_) = Z(yj+1:n = yj:n) log(yj+1:n . yj:ri) ]

=0
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where n > 1, y = (y1,¥2,.--) € I§°. The Darling and the Gebert-Kale
statistics based on a sample from the uniform distribution on Iy can now be
written as ¢(n,U) and ¢*(n,U), where U is the sequence (2).

2. Darling statistic. The asymptotic distribution of the Darling statis-
tic in the case of the uniform distribution on I is given by the following
theorem:

LEMMA 1 (Darling [2]). If U = (U1, Us,...) is a sequence of independent
random variables with uniform distribution on [0, 1], then

() é(n,U) + n(logn +7) d
VAT -1/

where v = 0.5772... is Euler’s constant.

4 N(0,1),

Using Lemma 1 we find the limiting distribution of the statistic ¢ when
the distribution of the sample variables is given by (1):

THEOREM 1. If Z = (Z1,Z3,...) is a sequence of independent random
variables distributed according to (1) then

9) ¢(n,Z) + n{Bllog(nf(Z)] + 1} «
\/7%/6 — 1 + Var[log f(Z1)]v/n

To prove Theorem 1 we need some lemmas.

—N(0,1).

LEMMA 2. Let X, X,, n > 1, be random wvariables such that X, f‘—lrﬂ,
VX, % X. Then
(10) Vnllog (1+ X,) — Xa| 50.

Proof. Using the Taylor expansion it is easy to show that |log(1+z)—z|
< z? for |z|] < 1/2. Consider the set B, = J,,_,;[]XI < 1/2}. Since

X, 250, lim P(B,) = 1. The assumption that X, —0, together with

VnX, LI5S , gives \/nX2 £,.0. We conclude that for arbitrary €, > 0 there
exists jo such that P(2\ Bj,) < n and P(y/nX2 > €) < 7 for n > jo. Hence

P(v/n|log(1+ Xn) — Xa| > €)
< P(2\ Bj,) + P(Bj,, Vn|log (1 + X») — Xa| 2 €)
< n+ P(Bj,,VnX2>¢e)<2n forn>jo.
This proves (10).

LEMMA 3. For arbitmryi =1,...,k and € > 0 we have

P
(11) \/_|Iog(1{‘r?rém Y:;—zi—1)| >0,
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1 P
JrloBE g Tl =0,

;|

(12)

Proof. The random variable N;, is independent of the sequence Y;,

and N; 2L 00, so it suffices to show that
1 . P
ﬁllog (jg‘-jlgﬂn Y —zi-1)| >0,
and similarly in the case of (12). We have
1
— : e > - : o peiamn =
P(Jxllog i, ¥i; — zi-1)| 2 €) = P(min, Yy — 21, < expl—ev)

vn
=1 (1— L[ exp(~ev/m))"
We now prove that (1 — |I;|~* exp(—e4/n))™ — 1. Take arbitrary n > 0 and
6 > 0 such that exp(—é) > 1 — 7. For sufficiently large n,
1> (1 - L  exp(=ev/n))™ > (1= 6/n)" > exp(—6) —n > 1 —27.
This ends the proof of Lemma 3.

LEMMA 4. Let X; n,i=1,...,k, n > 0, be the random variables defined
as follows:

0 forn=0,
o=\ T e 1 (e )
i,n n?r- +nl| log— + orn>1.
1?2/6—1\/6 é( 8.) g|I;| ‘T f
Then
. Nin_ni.
(13) (Xi,Nim,E=1,-..,k,—'7ﬁu—P~,1=1,...,k)

S (X1yee s Xes W, .., W)
where the X; are independent and normally N(0,1) distributed random vari-
ables, the vector (Wi, ..., Wy) is independent of (X1,...,Xx) and has the
multivariable normal distribution N (0, %), where ¥ = [0, ;] and

g = d TPiP;_ Jori#j,
W \pi—p fori=j,

3

§,5=1,...,k.

Proof. We first show that (X1 n,..., Xk n) 2 (X1,..., Xk). It is obvious
that spacings from the uniform distribution on a certain interval divided by
the length of this interval have the same distribution as spacings from the
uniform distribution on [0, 1]. Thus

m[ﬁs(ﬂ,l@ﬂfd) + n(logn + 7)) i»Xi,
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Moreover,
6(n,Yi/|L]) + n(logn + ) = ¢(n,X;) + nlog(n/|L]) + ) — log | L.

Since log(|L;|/y/n) — 0, we have X;n 2 X;. Because X; are independent,
we have also

(14) (Xgimsr e s Xboin) 2 (X1, Xi) -

Now we show that

Nin —np1 Ngn —npr \ d
—_— Wiy, Wi).
@) (Mg B ) o, )

This follows from the central limit theorem because N;n = 37 11/ (Uj),
E[17:(Uy)] = p; and Cov[1y(U1),11(Ur)] = 0i,;- Since the sequence N; p is
independent of the sequence Y;, (14) and (15) together give (13).

Proof of Theorem 1. Consider the sequence Zg,,,Za; ,,--- Of
those successive random variables Z,, whose values belong to the interval I;.
The sequence a; 5, n > 1, is determined by the sequence U, so it is indepen-
dent of Y;. Since Z,, ,, = Yj a; ., the sequence Z,, , has the same probability
distribution as Y;. It can be shown similarly that the joint distribution of the
vector (Za; ,»n > 1,...,Z4, ,,n > 1) is the same as that of (Yipuovy i) Ih

i,n?

follows from the above remarks and from Lemma 3 that the statistic ¢(n, Z)
has asymptotically the same distribution as Z:’:l ¢(Nin, Yi).
To prove Theorem 1 it is now enough to show that

Sty 6 (Nim, Yi) + n(Ellog(nf(Z1))] +7) a
Va/w2[6 — 1+ Varllog /(Z1)]

Set C = 1/n%/6 — 1. Since Zf‘:l N; n = n, after elementary calculations we
obtain

(16) N(0,1).

k
57| 20 i, Yo+ n(Bllog(nF (20))) )]

i=1
1

~ Cvn

Cvn

3

k N
> $(Nig, Yi) +N§,n(log = +’T)]
i=1 | il

k—1 k

Nim 1
Z n = npi) log T o > (Nin — npi) log L]
i=1

Cf

1 N;
—_— ; 1 b1 T
C’\/f_z;np Og(npi)
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We first show that

(18) VD) ans log (Zp‘ ) Eo,

Define a(z) = log(1 + z) — z. We have

iz;;pilog( =) -

ey
( ")

\/Ea(Né,n ; ﬂpé) 30
£

Ef:

Lemma 2 shows that

n .
and this implies (18).
It follows from (17), (18) and Lemma 4 that

k
>~ 6N, Yi) + n(Ellog(nf (21))] + 7))

(19) %ﬁ[ 3

k k k-1

d 1 1 Pi

=3 ;\/E‘XH‘ 5;Wi108|1£| - ‘é;Wilng:,
where X;, W; are the same as in Lemma 4. Since Zfil p; = 1land Ele W; =
0, we have

ZW10g|I|—ZW10gp‘

i=1
The variance of the sum of the coordinates of an arbitrary random vector
is equal to the sum of the elements of the covariance matrix of this vector.
Hence

Var[ZWl II'] ZZ(lglflloglfjl)

=1 i=1 3=1

k

2|‘| L1\* _
-szlog — (o pitos ) = varfog sz

i=1
Now (19) shows tha.t
Zt—l ¢(Nin, Yi) + n(Eflog(nf(Z1))] +7) KA
VnC+/1+ (1/C?) Var[log f(Z1)]
This ends the proof of Theorem 1.

4 N(0,1).
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3. Gebert—Kale statistic. In this section we prove an analogue of
Theorem 1 concerning the Gebert—Kale statistic. Our considerations are
based on the following theorem which gives the asymptotic distribution of
the Gebert-Kale statistic in the case of the uniform distribution on [0, 1].

LEMMA 5 (Gebert and Kale [2]). If U = (U1,Us,...) is a sequence of
independent random variables uniformly distributed on [0, 1] then

V_
20 ——(¢*(n,U) + logn — (1 — 'y—r»NOl)
) U +logn— (1= 7) SN
The asymptotic distribution of the Gebert-Kale statistic when the un-
derlying distribution has density (1) is given by the following theorem.

THEOREM 2. If Z = (Z1,Za,...) is a sequence of independent random
variables with density (1) then

ﬁ(w(n,ZHE[%] -4 "7)) 4 N1

\/(%2 2) Var [f(zl)] : (f' - 3)

We prove Theorem 2 analogously to Theorem 1. We need some counter-
parts of Lemmas 3 and 4.

(21)

LEMMA 6. For arbitrary i =1,...,k we have

i P

(22) \/;L(l‘cr_l'élﬁ. Yii — %i-1) 1og( nglzjr\lrﬂ Yij—®i-1)—0,
' P

(23) vn(zi — I Y;;)log(zi — max Y.;)=0,

Proof. It is easy to show that n(min;<j<,Y;; — ®;—1) converges in
distribution to an exponentially distributed random variable. In the proof
of Lemma 3 we have shown that (1/y/n)log(mini<j<,Y; — :c,;_l)fr(}.
Hence

; P
(24) n(lgglsnnY,-,, m,_l)\/_log( mm Y‘Jr z;—1)—0.

Since N; ,, is independent of ¥; and N;;,, £, 0, (22) follows from (24). The
proof of (23) is quite similar and is omitted.

LEMMA 7. Let X}, i=1,...,k, n > 0, be the random variables defined
as follows:
0 forn=0,
Xin =\ i | ¢ (1) + log o 1EIA = )| forn21.
Vr2/3 — | L]
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Then

(25) (X;,Nl,ﬂ, s X b

Ny, —npy Nin — NPk
N vn

QXL s kK Wiy e o, W),
where (X1,..., Xk, W1,...,Wy) is defined by (13) in Lemma 4.

Proof. Taking into account the remark at the beginning of the proof of
Lemma 4, we deduce from Lemma 5 that

—71';;‘:_—3(& (n, ]l;:‘) +logn — (1— fy)) LY

After some easy calculations we get

g (4 0 + Eos = 1511 =) ) S84

The rest of the proof is similar to the proof of Lemma 4 and is omitted.

Proof of Theorem 2. Slmlla.rly to the proof of Theorem 1 the sta.t.ls-

tic ¢*(n,Z) can be replaced by Ea—l ¢*(N;in,Y:). Set D = 1/4/72/3 —
We have to show that

pya(s: + 8| -a-) SL(CRY

V(14 D?) Var[1/f[Z1)] + 1
We have the following identity:

(26)

D\/"[qu (Nm,Y)+Z|r|1og m -a-)

i,nydi

=D\/EL "—(1—7)]

N;,
|Li|
Di@N@m —np; Di”'i\/ﬁa(Ni’n —nps:)

1 5 \/T'—i =1 i np; ’

where a(z) = log(1 + ) — . Similarly to the proof of Theorem 1 we can
show that

Zlﬂf o Bazrm ‘) Z9.
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Hence Lemma 7 yields that

Dﬁ(éaﬁ*(mm,mw[w] . (1—7))

f(Z1)
4 i Ly _p Z |I P
o VP i=1
Computing the variance of the right side above, we get the conclusion of
Theorem 2.

4. The consistency of tests based on the Darling and Gebert—
Kale statistics. Let us now consider the problem of testing the hypothesis
that a given distribution F is equal to the uniform distribution on [0, 1].
Using Theorems 1 and 2 we can show that tests based on the statistics
¢ and ¢* are consistent if the alternative distributions have a density of
type (1). For ¢ we have

“I—[tb(n, Z) +n(logn + )]

/n
= %wn,@ + n(Ellog(nf(Z1))] +7)] - VaEllog(f(Z1))].

The desired consistency follows from the known fact that Elog(f(Z;))] >
0 if the density f is not identically 1. Similarly for ¢* the consistency is
equivalent to Eflog(f(Z,))/f(Z1)] <0 for f not identically 1.
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