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MATHEMATICAL MODEL OF AN IMMUNE SYSTEM
WITH RANDOM TIME OF REACTION

1. Introduction. In Marchuk’s model [3] of an immune system there
appears a delay of reaction of the system with respect to the contamination
moment. Accordingly, the system does not react immediately, it needs some
time to detect and investigate the contamination by an antigen. Marchuk
assumes this delay to be constant. According to the opinion of immunolo-
gists (a discussion at the Infant Health Center, Warsaw some years ago),
this assumption is not satisfied in reality. The delay may depend on cells
individually, so we rather have a family of delays, some of them being more
probable than others. In this paper we try to answer the question raised
by immunologists and to insert this phenomenon into Marchuk’s model. We
replace the fixed value of delay by the average of delays which appear in
reactions of the immune system.

Mathematically, this means that in place of functions of delayed argu-
ment we are concerned with their averages with respect to a certain weight
function.

2. The construction of the model. The following notation is used in
the model:

1) V(t) — antigen concentration at time ¢;

2) C(t) — plasma cell concentration at time ¢;

3) F(t) — antibody concentration at time ¢;

4) m(t) — a characteristic of the damage of the organ-target in which
the antigen is placed. m is defined as follows:

m(t) _ My — M](t)
My ’
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where M is a characteristic of a healthy organ (mass or area) and M, is a
characteristic of a healthy part of this organ.

The model is derived under the following assumptions:

1) The number of antigens depends on their reproduction rate and the
suppression by antibodies, according to the equation

= BV() = 1FQV (),

with the following meaning of the symbols:

B — antigen reproduction rate coefficient;
v — a coefficient expressing the probability of the antigen-antibody
meeting and their interactions.

2) Stimulation of B-cell by VT-complexes is a trigger of plasma cell pro-
duction (the VT-complex rate depends on the number of antigen-antibody
meetings). The plasma cell production process is delayed relative to the
B-cell stimulation process. This stimulation also depends on the organ dam-
age m(t). The plasma cell production decreases with the increasing deviation
from the normal level C*:

dC

0
- = a{(m)_{ w(R)F(t+ )V (t + h)dh — p(C — C¥),

where:

T — the maximum time delay of the plasma cell production process;

w(-) — time delay probability distribution over the interval [—T', 0];

a — an immune process stimulation coefficient;

i — a plasma cell coefficient, with p.* equal to the plasma cell lifetime;

&(-) — a decreasing function which attenuates generation of plasma cells
according to the magnitude of infection.

Typically, the function £ is expressed as follows:

1 if m € [0,m*],
(X1) §(m) = { m= 11 if m € [m*,1];

this means that initially, immune processes do not depend on the organ
damage rate; as soon as m > m* (where m* is a certain level of organ
damage), £ begins to decrease to zero linearly, reflecting the rapid decrease
of defence possibilities.

3) The number of antibodies depends on their production rate and their
death due to the immune reactions and ageing:

% = 0C(t) =MV (t)F(t) — psF(t)
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where:

o — the antibody production rate per plasma cell;
n — rate of antibodies necessary to suppress one antigen;
ps — an antibody coefficient, with p?l equal to the antibody lifetime.

4) The work of the immune system depends on the normal work of other
systems and organs, and also on the normal work of the organ-target. The
organ damage depends on the antigen damage possibilities and the organ

recovery rate:

-‘;—T .

where:

o — rate of organ damage by the antigen;
Km — an organ recovery coefficient, with pt equal to the organ recovery
time.

Summarizing, we obtain the following system of four equations:
V'=(8-7F)V,

C" = af(m)Py(V, F) — pe(C — C*),

F'=oC — (us + mV)F,

m' =0V —pmm ifm(t)<1.

(s1)

The assumptions are as follows:
0
Py(V,F)(t)= [ w(h)F(t+h)V(t+ h)dh,
i
0
w(h) 20 forhe[-T,0, weC(-T,0,R), [ w(h)dh=1,
1
£ € C([Ua 1]) [01 1])1 6(0) =1, 6(1) =0,
m(t) <1 for every t > 0,

a:ﬁs’Y: ey @5 of 377, Ty P, C* > 0.

If z = (21,22,23,24) = (V,C, F,m), z;(h) = z(t + k) for h € [-T,0], then
the system (s1) takes the form
(f1) ' = f(z),
where the functional f represents the right sides of equations (s1). This is
an autonomous system.

Initial conditions. We may assume t° = 0 because the system is au-

tonomous. An initial condition is a pair (0, X°(h)), where X© is a function
on [-T,0], X° = (V° C° F° mP). We assume that X° is continuous on
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[—T,0), V? can be discontinuous at h = 0 and other functions are continu-
ous also at h = 0.

3. Fundamental properties of the model
THEOREM 1. Assume VO(h) > 0, F°(h) > 0 for h € [-T,0]. Suppose

that there ezists a solution of the system (sl) for everyt > 0 and initial data
satisfying
(V(0),€(0), F(0),m(0)) 20 [V°(0) > 0].
Then
(V(8),C(t), F(t),m(t)) 20 [(V(2),C(t), F(t), m(t)) > 0]
for every t > 0.

Proof. Since V(t) =V exp(f;(ﬁ — vF(s))ds), by our assumptions we
obtain V (t) > 0 for ¢t > 0. Further,

t
m(t) = m®(0) exp(—pmt) + o f exp(pm(s — t))V(s)ds,
0
and by our assumptions we get m(t) > 0 for ¢ > 0.

To deal with C and F, consider three possibilities: either C' or F' becomes
negative first, or they become negative simultaneously.

Suppose F' becomes negative sooner than C. So there exists £; > 0 such
that F becomes negative at ¢; we have F(¢;) =0, C(t) > 0 and F(t) > 0 for
t <t1, F'(t1) < 0 and there exists t; > t; such that C(t) > 0 and F(t) <0
for t € (tl,tg). If F’(tl) < 0 then F’(tl) = gC(tl) < 0 and C(t;) >0, a
contradiction. If F'(¢;) = 0 then there exists a sequence (tx)325 such that
limg o0 B = 1, tk > t1, F(tx) < 0 and F'(¢x) < 0. Therefore we can find
K € N such that for every k > K we have t; € (t1,t2) and V(tx) > 0
so F'(tx) > oC(tx) > 0, a contradiction again. The proofs in the other two
cases are similar. Therefore the solutions of the system (s1) are nonnegative.

THEOREM 2. Suppose that the initial data function X° is continuous.
Then for any initial condition (0, X°) there ezists a solution of the system
(s1) and it is unique.

Proof. We consider the system (s1) in the form (f1). It is easy to see
that for £(-) differentiable the functional f(-) is of class C'! in all variables,
so we can apply the general theorem of RFDE (see [2]). The same argument
can also be applied if £(-) is continuous and piecewisé linear.

The same argument works in the case of the initial data function being
discontinuous at one point and having one-sided limits at it.
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THEOREM 3. If (0, X°) is an initial condition such that X° > 0 then the
solution of the system (sl) is defined for every t > 0.

Proof. By Theorem 2 we know that there exists an interval [0, t,), t. >
0, where the system (s1) has a unique solution. We show that this solution
is defined for every ¢ > 0. Solutions of the system (s1) for nonnegative initial
data are bounded by a continuous function of the variable :

V(R) = V) exp ( [ (B—7F(s)ds) < VO(0),
0

m(t) = m®(0)e *mt + o f exp(um(s —t))V(s)ds
0

< m2(0)e ™+t + %Vn(ﬂ)eﬁ‘.

Now, if C(t) < C* for all t, we have a constant estimate; if there exists ¢; > 0
such that C(¢;) > C* then C(t) > C* for t > t1, so C' < a§(m)P,(V,F) <
aP,(V, F).

Assume that F(t) is the maximal value of the function F(s) over s < ¢.
Then

0
P,(V,F) < F(t) [ w(h)V(t+h)dh < VO(0)F(t)e.
-T
Hence C’ < aVO(0)F(t)e”t, so

C(t) < C°(0) + aV?(0) f F(s)ePtds < C°(0) + %V"(O)F(t)eﬁ‘.
Therefore 0
F' < 00°(0) + GV O)F () ~ (ug +mV)F
< 0C%(0) + %VO(O)F(t)em .
So we have

F(s) < F(t) < (FO(0) + eC°(0)¢) exp (g%rf“(meﬁ*) |

If F is increasing on [0,t) for some t > 0 then this estimate is valid for
s € [0,t]. If F is increasing on [0,t) and decreasing on (t,t;) where t > 0
and t; > t then just replace F(s) by F(t). If F is decreasing on [0,t) where
t > 0 then :

F(s) < F°(0) < F°(0)exp (%V“(O)em)
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and further estimation is similar. Hence the estimate for F is valid for the
whole domain. Hence

C(t) < C°0) + %VO(O)e'B‘(FO(O) + 0C°(0)t) exp (;—EV“(O)eﬁ‘) ;
Therefore for the finite time interval [0,¢,), £, > 0, the solution z(t), t €

[0,t.), is bounded. Thus z'(t), t € [0,%.), is also bounded and the solution
extends up to the point i,.

Properties of the solutions:
1) If 2% > 0 and C°(0) > C* then C(t) > C* for every ¢t > 0.
2) If 2° > 0, V°(0) > 0, &(m) > 0 then:
a) if C°(0) > C* then C(t) > C* for every t > 0;
b) if C°(0) = C* then C(t) > C* for every t > 0;
c) if C°(0) < C* then there exists ¢; > 0 such that C(t) < C* for
0<t<ty, C(ty) =C* and C(t) > C* for t > t;.

Proof. It is similar to the proof of Theorem 1.

__ 4. Stationary solutions. Assume that £(m) = 1. Suppose that
(V,C,F,m) is a stationary solution, i.e.

0=(8—F)V,
0= aPy(V,F) - p.(C - C),
0=0C — (us +MV)F,
0=0V — ppim .

This system has two solutions:

X1 = (0,C*, F*,0) = (V1,Cy, F1,/m), where F*= f-c*;
f
X0 = ( peps(B = YF*) aBus =y’ ueC* B opeps(B - 'yF*))
D= H 3 )
Blao —nype) ' y(ae—nype) v Bum(co — nype)
= (V21 021 F2: ﬁZ)-

The interesting case is when V3 > 0 (since V5 is an antigen concentration).
So we have:

1) B>~F* and o > nype or 2) [ <~F* and ap < nype.
If B =~F* then Vo =V, =0 (for ap # m«,u.c)'.

Letz=X-X=(V-V,C-C,F — F,m:ﬁ) = (v,¢, f,n), where
(v, ¢, f,n) is the vector of small perturbations of X.
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After linearization the system (s1) takes the following form:
V' =(B—vF)v-Vf,
¢= aFf_OTw(h)v(t + h)dh + anETw(h)f(t + h)dh — e,

f'=o0c— (mMV + ps)f — nyFo,
n = ov— pmn .

(s2)

The vector neglected in the linearization process is
R(z) = (- fv, @ f (k) fi(R)vr(R)dh, —nyfv, 0),

where z; = (v, ¢4, ft, ), ze(h) = z(t + k) for h € [-T,0].

The vector R(z;) satisfies the assumptions of the linearization theorem
(see [2]). Thus we can study the stability of the solutions of (s2) instead of
those of (s1). In our case it is enough (to satisfy the linearization theorem) to
check that lim,, -0 [|[R(z:)||/||z¢]| = 0, R(0) = 0, DR(0) = 0 and DR(z;)
is continuous. It is easy to see that the last three conditions are satisfied.

Since ||R(z¢)|| < Al|z¢||?, where A = T sup(w(h) : h € [-T,0]), we have

us.-lfﬁll.o |1 R(z:)|l/ ||l = 0.

Denote f_DT w(h)e*dh by g()\). Then the characteristic matrix of (s2)
takes the following form:

B—4F -\ 0 -V 0
A = QFQ(A) —(pe +A) an(’\_) 0
- F ) —(ps+mV + ) 0

a 0 0 '_(Jum . )\)

5. Stability of the solution X;. For X; we have

B—yF* -\ 0 0 0

= . aF*g(/\) _(F'c =¥ /\) 0 0

A= —nyF* 0 —(us +A) 0
o 0 0 ~(ftm + A)

The characteristic quasipolynomial is of the form
W) = —(bm + M) (s + ) (e + A)(B = 7F" = A).
THEOREM 4. If B < yF* then the stationary solution X, = (0,C*, F*,0)
18 asymptotically stable.

Proof. W(A) = 0 if and only if A\; = —pe, A2 = —pim, A3 = —puy,
Ay = B —«F*. The numbers A1, A2, Az are apparently negative and Ay < 0
because 8 < yF*. So X; is asymptotically stable.
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Now consider the following case: VO(h) = 0 for h € [-T,0), F°(0) = F*,
C°(0) = C*, m°(0) = 0, V°(0) > 0 (which means that we have a healthy
organism infected by a small dose of the antigen).

THEOREM 5. If X0 = (V9,C*, F*,0), B < vF*, 0 < VO < V*, where
vt = EL(aF* - g)

- mB
then V (t) decreases for t > 0, limy_,oo V(t) = 0 and V(t) < VO0e 4, where
veC*
Sope . —
pf+ Vo .

Proof. See the proof of Theorem 4 in [1].
COROLLARY 1. If X0 = (V°,C*, F*,0), 0 < VO < V*, B < vF* then
tlingo(V(t), C(t), F(t),m(t)) = (0,C*, F*,0).

Proof (). We have lim;_,o, V(¢) = 0 by Theorem 5 and m' = oV —
pmm, m(t) > 0 for t > 0.

For any € > 0 there exists £ > 0 such that V(t) < e /o for t > t. Then
m' < gpm — pmm so m(t) < (1 — e #m?) < e. Therefore lim;_, o, m(t) = 0.

We show that F' is a bounded function for t — oco. We know that V(t) <
V04t Assume that F(t) = max{F(s) : s < t}. Then

C'=a fo w(h)F(t + )V (t + h)dh — p(C — C*)
-7

< aVOo%eAT-DE(t) — p(C — C*).
Since C° = C*, we have

0
C(t) < C* + aV0%4 f e~ Aske(t=8) P(5) ds
-T

—At e—p’,ct

e
< C*+aVO%ATF(t

(t) -
Applying this inequality we get

F' < oC— uyF < O + 28V ATt _ o=ty _y \
0 ppF < oC" + #c—AE (e e ) — py | F.

Estimating solutions of the equation

0
F.’ — Qc* i (}?_Qi/zeAT(e-—At _ e"}-‘-ct) _ ,uf)F
c

(}) In [1] and [3] it is claimed that Corollary 1 is an easy consequence of Theorem 5.
In the author’s opinion the implication is not so obvious.
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we show that F(t) < G(t) where

0 y [ — At —pet _ 1
G(t)=F‘exp(—,u.ft+ ol id eAT( R .. ))

Be—A A He
. aoV® ,pl—e A -
+ F*exp (“C —4° 1 (L—e™#77).

It is easy to see that

' - agV0eAT
tl_lr.rgoG(t) = F* exp (A(p.c—-A) ;

In the same way as in the proof of Theorem 3 we obtain F(t) < G(t) for
every t > 0. Therefore F is a bounded function. Then lim;_,o F(¢)V(t) = 0.
Hence we get our assertion applying the same argument as in the proof that
m(t) — 0 as t — oc.

6. Stability of the solution X3. The characteristic matrix for X, takes
the following form:

- 0 :‘}’_172 0
Ap)= | TIN ~(ke+X)  aVagd) 0
-nB 0 —(ps +mVa+ ) 0

o 0 0 —(pm + A)

The characteristic quasipolynomial is
W(X) = det A(A) = —(pm + A)Y (N);

0
Y(A) = —-A° = AN — BA+ D+ (GA+ H) [ w(h)e*dh;
-7
A=pe+ps+mVa>0, B=pc(ps+mVa)—ny8Va,
D=nyBu.V2>0, G=0pVs>0, H=aBoVs>0.

The proof bases on the so-called Mikhailov Criterion. We present here
the extended Mikhailov Criterion:

THEOREM 6. Consider an arbitrary system of differential equations with
a characteristic quasipolynomial of the form

D(p) = N(p) + M(p)g(p) = 0,
where N and M are polynomials, deg N > deg M, g is the functional given
by g(p) = f_OTw(h)e”hdh. (9(p) = 7P in Marchuk’s model.) The solution
of such a system is asymptotically stable if and only if the argument of D(iw)
increases by 5 deg N while w varies from 0 to oo.
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Proof. We consider the curve Sg = I'r + Cr on the complex plane,
where I'g is the interval [—R, R| on the imaginary axis and Cpg is the half-
circle in the right half-plane with center at 0 and radius R.

The quasipolynomial D(p) has no poles. If the solution is asymptotically
stable then, for every radius R, D(p) has no zeros inside the domain bounded
by Sk and on Sk (and conversely). Hence the increase of the argument of
D(p) on Sg is equal to 0, that is, Ag, arg D(p) = 0.

Writing D(p) in the form

D) = N o)1+ HLoo)) =0

we get

0= Aoy a1 Dlp) = Asy arg No) + Asg axe (1+ 3 9(0)).

Assume that N(p) has g zeros in the right half-plane and no zeros on the
imaginary axis. Then for sufficiently large R, Ag, arg N(p) = 27q, so

((”)) g(p)) g,

Since deg N > deg M, on Cr we have p = R(cos¢ + isin¢) where ¢ €
(=m/2,7/2), ||M(p)/N(p)| — O uniformly as R — oo, and ||g(p) < 1.
Hence

Agy arg (1 +

Acy arg (1+ (p)g(p)) as R — 0.
Therefore
Ary arg (1 + ﬁ—((gg(p)) — —2mq as R— oo.
So
Aconcconnt (14 H (i) ) = 2r4.
We have

A_ocw<oo arg N(iw) = (deg N — ¢)7 + q(—n) = (deg N — 2q).
Thus arg N (iw) = — arg N(—iw) s0 Ag<w<oo arg N(iw) = (deg N — 2q)7/2.
Also arg D(iw) = — arg D(—iw) and therefore

Ap<w<oo arg D(iw) = deg N - /2.
COROLLARY 2. If —psmy(w) <1 and
H-D

0<m<BhG+Hm1(W),
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where my(w) = fET hw(h)dh, then the solution X2 of the system (sl) is
asymptotically stable.

Proof. See the proof of Theorem 6 in [1].
COROLLARY 3. The solution X5 is stable only if cp > nyp. and B > yF*.

Proof. By Theorem 6 we have H — D > 0, so afoVa —nByucVa > 0.
Therefore ap > nypc. From the assumption Vi > 0 we have 8 > yF*.

COROLLARY 4. If a — oo and
0<B—7F* < ((pe+pg) ™" —ma(w)) ™!
then the solution X5 is asymptotically stable.
Proof. See the proof of this fact in [1].

7. Stationary solutions for {(m) < 1

Remark. Proofs in this section are similar to those in Section 3.5 of [1].

Assume that ¢ has the typical form (X1).
Let X} = (V4,Ch, F),mb) be a stationary solution in the case of
My > m*.
In the same way as in [1] we can show that
pey — 06y opueps(B—7F") _ o
b afedpm
where § = 1/(1 — m*) > 1.

LEMMA 1. If B < vF*, ap > nype and there exists a solution Xo with
My < m* then there erists a unique stationary solution X} with Ty equal
to the greater root of the equation (*).

(*) (m3)* +

1

COROLLARY 5. If there exist two roots of the equation (x) then there is
no stationary solution for ma < m*.

For the solution X3 the characteristic quasipolynomial is
W(A) = _((Mm + /\)Z(’\) +p) ]
where
_ 0
p=0Peos(V5)?, Z(\)=-X3—aX®—bA+d+(gA+h) [ w(s)e*ds
~T
and

a=pc+ps+mVs >0, b=upulps+mVs)—mBVs,
d=nyBucVs >0, apt(@p)Vs>0, h=pFg>0.



532 U. Forys$

COROLLARY 6. If —p.mq(w) <1,
h—d
—_— < b h
0< a+gm1(w) < g+ ml(w)a
0

my(w) = f sw(s)ds,
-7

2
A=(1Fw) 44y >0,
apd

opcps(B—vF*) Mbe .
s p e
A0= " cBobum " \' e "
then there erists a unique stationary solution X} such that
1
0<m*<-(1-1% _VA)=m)<1
2 apb

and it is asymptotically stable. The solution Xo with Ty < m* does not
exist.

QUESTION: Under what conditions may a light chronic stable form of
disease (7 < m*) become a heavy chronic stable form (7% > m*)?

LEMMA 2. If
g H-D
A+ Gmy(w)

and pemq(w) > —1 then the assumptions of Corollaries 2 and 6 are satisfied.

0 < b— g+ hmy(w)

8. Results of computer simulation. In this section we present the
computer simulation results for the model. This simulation is based on a
number of data published by Marchuk and Belykh in [1] and [3]. It turns
out that our results do not differ from Marchuk’s results and, generally,
agree with the experimental data.

There exist three basic types of infection evolution: subclinical, acute
and chronic. In Figs. 1-6, Vi,ax is the maximum admissible concentration of
the antigen in the organism.

1) B < yF*

In Fig. 1, a subclinical form of disease with normal stimulation of the
immune system is shown. This means that ap > nyu..

For Fig. la, wi(h) = 1/T; for 1b, wa(h) = e~"/(eT — 1); for 1c, we
have a constant delay (Marchuk’s model). In the other cases the curves are
presented only for w; (h).
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Fig. 1a
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30 days
Fig. 2
10—2 A
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10—5 4
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15 30 days
Fig. 3
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V/Vinax
104
1075
106
107
10-8

—>

45 90 days

Fig. 5

In Fig. 2 we have a subclinical form of disease with weak stimulation.
This means that ap < nyu.. Here, we obtain a lethal form of disease for
large initial concentration of the antigen.

2) B>F*

In Figs. 3, 4 and 5 an acute form of disease is shown: in Fig. 3 depending
on the initial concentration, in Fig. 4 depending on the coefficient 3, in
Fig. 5 depending on the coefficient o.

For greater values of the coefficient 3 (i.e. for greater reproduction rate
of the antigen) we have a greater maximal concentration of the antigen,
also for greater values of o (i.e. for greater antigen-damage possibilities) we
observe a longer duration of the disease processes.

V/Vinax
10—3 *
1074 -
1075 1
106 +
1077 ¢
1078

60 120 days
Fig. 6

In Fig. 6 a chronic form of disease is shown. Vg, is the chronic level of
antigen concentration. From the shape of these curves we deduce that the
increase of the antigen concentration in the organism may be one of the
treatment methods.
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