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A NOTE ON OUTERPLANARITY OF PRODUCT GRAPHS

Abstract. We prove necessary and sufficient conditions for the outerpla-
narity of the Cartesian product and Kronecker product of graphs. In our
discussions, the class of almost bipartite graphs is defined and we show that
if G is an almost bipartite graph, then it is a minor of G X K3. We conjecture
that this is true for all graphs.

1. Introduction and preliminaries. A wide variety of graph products
have been studied for a long time [3, 9, 12, 15, 16] and more recently [1,
5, 6, 11, 17]. Some of these products have found applications in several
areas of mathematics and computer science [7, 8, 10, 14]. In this note, we
deal mainly with two of these products: the Cartesian product (O-product)
and Kronecker product (X-product). Occasionally, we will also mention the
strong product (B-product). For the first two products we discuss necessary
and sufficient conditions for the outerplanarity of the product graphs in
terms of the factor graphs. The more challenging part of this work is the
one dealing with the outerplanarity of the Kronecker product.

The paper has three sections. In Section 2 we discuss the outerplanarity
of the O-product and the x-product. Section 3 summarizes the results and
mentions some related issues. In the remainder of this section, we present the
necessary definitions, some notational conventions, and some known results
that are used later. At the end of this section we will outline the situation
regarding the analogous problem of the planarity of product graphs.

By a graph we mean a finite, simple and undirected graph. Let G; =
(Vi,E1) and Gy = (Va, E3) be graphs. The Cartesian product, Kronecker
product and strong product of G; and G are respectively denoted by G10G>,
G1.x Gy and G; W G4, and are defined as follows. The vertex set is the
same for the three products: V(G10G2) = V(G1 x G2) = V(G R G,) =
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V1 X Vi. The edge sets are: E(G; K G2) = E(G10G2) U E(Gy x Gg), where
E(G1 x G2) = {{(z1,22),(¥1,92)} | {z1,51} € E1 and {z2,32} € Ez},
and E(G10G2) = {{(z1,z2), (y1,y2)} | either z; = y; and {z2,y2} € E»
or o = yp and {z1,y1} € E1}. Note that E(G;0G2) N E(G; x G2) = 0.
Also observe that ‘x’ denotes Cartesian product of sets as well as Kronecker
product of graphs; we use context to resolve any ambiguity.

We say that a graph G is planar if there is an embedding of G in
the plane in which no two edges cross each other. Further, G is said to be
outerplanar if there is a planar embedding of G in which all vertices lie on
the same face. By an elementary contraction of a graph G, we mean a graph
G’ obtained from G by (i) removing an edge {u,v} of G, (ii) identifying
the vertices u and v, and (iii) discarding any multiple edges created in the
process of the foregoing identification. A graph H is said to be a minor
(or a subcontraction) of G if H is obtainable from a subgraph of G by a
sequence of elementary contractions [2, p. 89]. Obviously, planar as well as
outerplanar graphs are closed under the operation of taking minors. For a
vertex subset W of a graph G, (W) will denote the subgraph of G induced
by W. The complete graph on n vertices is denoted by K,. We say that
the one-vertex graph K is trivial and a graph on two or more vertices is
nontrivial. K,, , denotes the complete bipartite graph on m + n vertices,
where the two sets constituting a bipartition of the vertex set of K, ,, are of
cardinalities m and n respectively. A (simple) path and a (simple) cycle of
length n are respectively denoted by P, and C,,, and are defined as follows:
(i) V(P,) = {1,...,n + 1}, where {i,i + 1} € E(P,), 1 < i < n, and (ii)
V(C,) = {1,...,n}, where {1,n} and {i,i + 1} € E(C,), 1 < i < n. For
any undefined terms, we refer to [2].

It is well known that the three graph products are commutative and
associative, up to isomorphism. With respect to connectivity, G{0G5 is
connected if and only if both G; and G2 are connected [15]. For G; and
G, nontrivial, G; x G5 is connected if and only if both G; and G5 are con-
nected and either G; or G5 is non-bipartite; moreover, if G; and Gy are
both bipartite, then G; X G5 has exactly two connected components [16]. It
is easy to see that G1 ® G5 is connected if and only if both G1 and G5 are
connected. The following theorem characterizes outerplanar graphs using
graph minors [2, p. 89]; it will be useful in the sequel.

THEOREM 1.1. A graph is outerplanar if and only if neither K4 nor Ko 3
is a minor of G. m

The next theorem says that while dealing with the outerplanarity of the
O-product and X-product of graphs, it suffices to consider only those factor
graphs which are themselves outerplanar. A similar result for the x-product
will be proved later.
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THEOREM 1.2. Let Gy and G4 be nontrivial, connected graphs. If one of
G1 and Gy is non-outerplanar, then so is each of G100G2 and G; K G3. =

We now offer several remarks regarding the planarity of product graphs.
For the O-product and x—product the planarity issue is completely charac-
terized in [3] and [4]. The following theorem gives a complete characteriza-
tion of the planarity of the X-product. The proofs are left out.

THEOREM 1.3. Let G1 and G5 be nontrivial, connected (planar) graphs.
Then Gy ® Gy is planar if and only if one of the following holds:

1. One graph is a tree and the other is Ka.
2. Both graphs are Py. m

2. Main results. First, we note that for all graphs G and G3, each
containing at least one edge, G4 B G is non-outerplanar. Next, we dispose
of the easy case of O-product. The following lemma provides a basis for the
characterization of the outerplanarity of [J-product. The proof is routine
and omitted.

LEMMA 2.1. For n > 3, C,,0K> is a non-outerplanar graph. =

The characterization of the outerplanarity of the O-product of two graphs
is given in the next theorem. By Theorem 1.2, there is no loss of generality
in assuming that the factor graphs are themselves outerplanar.

THEOREM 2.2. The Cartesian product of two mnontrivial, connected
(outerplanar) graphs is outerplanar if and only if one graph is a path and
the other is Ks.

Proof. The O-product of a path and K5 is obviously outerplanar. For
the converse, let G; and G2 be nontrivial, connected graphs, and assume
that the condition of the lemma is not satisfied. If one graph is K, then
the other cannot be a path, and hence must contain a cycle C,, n > 3,
or K; 3 as a subgraph. By Lemma 2.1, C,UJK3 is non-outerplanar. Since
K33 is a minor of K; 3[0K3, by Theorem 1.1, K; 30K, is non-outerplanar.
Alternatively, if none of G; and Gy is K3, then each must contain Ps so the
product has K33 as a minor. m

To discuss the necessary and sufficient conditions for the outerplanarity
of the x-product we introduce the concept of an almost bipartite graph. Let
G = (V,E) be a connected graph. For z,y € V, an (z,y)-path is simply a
path between the vertices x and y in G. Let C,,, be a cycle of G. We say that
C)n is a minimal cycle of G if no proper vertex subset of C,, induces a smaller
cycle in G. A minimal odd cycle is a minimal cycle which is of odd length.
Note that if a graph contains an odd cycle, then it necessarily contains a min-
imal odd cycle. We say that G is an almost bipartite graph (or an a-b graph)
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if it contains a unique minimal odd cycle. Figure 1 shows an example of an
a-b graph. In the following lemma, we state a useful property of such graphs.

L U O_—O

Fig. 1. An almost bipartite graph

LEMMA 2.3. Let G be an almost bipartite graph with Car41 as its unique
minimal odd cycle, and let W C V(G). Then (W) is a bipartite graph in its
own right if and only if Copy1 € W. n

Let G and Cyg43 be as above. For i € Cogq1, let

A;={z € V(G) |z # i and for all j € Cop41,
i appears on every (z,j)-path}.

Note that the set A; may be empty for some 4, and that if A; # 0, then the in-
duced subgraph (A4;) is bipartite in its own right. Next, let v be a vertex of G
such that (i) v € A; for any i, (ii) v € Cak+1, and (iii) for some distinct 4, j €
Cok+1, there are (v,7)- and (v, j)-paths, none of which contains any other
vertex of Cor4+1. We claim that {7,7} € E(C2k+1). Assume otherwise. Let w
be a vertex which is common to a (v, i)-path and a (v, j)-path such that there
exist a (w,1)-path and a (w, j)-path which are vertex-disjoint (except for w,
of course). By Lemma 2.3, every cycle of G which does not include all vertices
of Cok+1 is even. Consequently, every cycle consisting of (i) a (w,)-path,
(i) an (%, j)-path along Cax41, and (iii) a (j, w)-path must be even, since (by
our assumption) it does not include all of Cqr4 1. However, this condition
cannot always be satisfied as there are two paths between the vertices ¢ and
j in the cycle Cag41, one of which is of even length while the other is of odd
length. This contradiction shows that {i,j} € E(G) as claimed. Based on
the foregoing argument, for every edge e = {¢,j} of Cory1, let

Be. = {z € V(G) \ Cak+1 | for every m € Coxy1 \ {¢,7}, there is an
(z,m)-path in which 7 appears but j does not, and an
(z,m)-path in which j appears but ¢ does not} .
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Note again that B. may be empty for some e and that if Be is nonempty,
then the induced subgraph (B,) is bipartite in its own right. It is clear that
the A;’s and B.’s are all mutually disjoint. It is also easy to see that each
vertex of G is in exactly one of the following sets: (i) Cax41, (ii) A; for
some %, and (iii) B for some e. We now prove an interesting result which,
we conjecture, holds for arbitrary graphs, but were only able to prove for
almost bipartite graphs. Luckily, this special case suffices for our goals.

LEMMA 2.4. If G is an almost bipartite graph, then G is a minor of
G x Kz.

Proof. Let G be an a-b graph with Ca4; as its unique minimal odd
cycle. For i € Coxy1 and e € E(Cak41), let A; and B, be the vertex subsets
of G as defined in the discussion preceding the statement of this lemma.
Obviously, the corresponding induced subgraphs (4;) and (B.) are bipar-
tite, and hence the graph G x K will contain two disjoint copies of each
of (A;) and (B,) (see also [13]). Let » and v be the two (adjacent) vertices
of K5 so that the vertex set of G' x K3 is simply V(G) x {u,v}. Note that
corresponding to the (unique, minimal) odd cycle Ca41 of G, the graph
G x K contains the even cycle Cax+2, and that {i,j} is an edge of Cax4y if
and only if {(¢,u), (j,v)} and {(%,v), (j,u)} are (antipodal) edges of Cyx2.

We now outline the construction of a subgraph of G x K, of which
G will be a minor. First include the even cycle C4x,2 whose vertices are
labeled (7,u) or (j,v) as stated above. Next, for a nonempty vertex subset
A; of G (where ¢ € Cagy1), let v1,...,vm be the vertices of 4; such that
{i,vp} € E(G), 1 < p < m. “Prepare and attach” one copy of (4;) to Cyr42
as follows: if 7 is odd (resp. even), then introduce an edge between the vertex
(i,u) (resp. (i,v)) of Cyx+2 and each of vy, ..., v, of (4;). (Note that in the
graph Gx K, there is a copy of (4;) attached to the “diametrically opposite”
vertex of Cyr42, but we do not include that in our subgraph.) Similarly, for a
nonempty vertex subset B, of G, where e = {i,j} € E(Cak41),let vy,...,vm
and wy,...,w, be the vertices of B, such that {i,v,}, {j,w,} € E(G), 1 <
p < m,1 < q < n. Prepare a copy of (B.) and attach it to Cyr2 as follows:
(i) if ¢ = 1 and j = 2, then introduce an edge between the vertex (1,u) of
Cir+2 and each of the vertices vy, ...,vm of (B.), and an edge between the
vertex (2,v) and each of wy,...,wy, (ii) if i=1and j =2k + 1, then do a
similar attachment of (B.) to the (adjacent) vertices (2k+1,u) and (1,v) of
Cik+2, and (iii) if ¢, j # 1, then assume that j = i+1 and for odd (resp. even)
i, do an analogous attachment of a copy of (B.) to the adjacent vertices (%, u)
and (j,v) (resp. (¢,v) and (j,u)) of the even cycle Cyr+2. (Note again that in
the graph G'x K3, there is an identical copy of (B.) attached to the antipodal
edge of Cy42, but we do not include that in our subgraph.) We perform the
foregoing operations for all nonempty vertex subsets A; and B, of G. It is
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clear that the graph H thus obtained is (isomorphic to) a subgraph of G x K.
Finally, we contract the following 2k + 1 edges of (the cycle Cyr42 of) H:
{(1,v),(2,%)}, {(2,u),(3,v)},..., {(2k + 1,v),(1,u)}, whence the vertices
(1,u) and (1,v) get identified. The resulting graph is isomorphic to G. =

LEMMA 2.5. If a connected graph G contains at least two distinct, min-
imal odd cycles, then G x K3 is a non-outerplanar graph.

Proof. It suffices to show that if G is a connected graph in which the
number of distinct, minimal odd cycles is exactly two, then G x K5 is non-
outerplanar. There are three cases: the two (minimal odd) cycles (i) are
vertex-disjoint, (ii) share exactly one vertex and (iii) share one or more
edges. In each case, K33 is a minor of G x K3. m

The following lemma shows that while dealing with the outerplanarity
of the x-product of graphs, it suffices to consider only those factor graphs
which are themselves outerplanar.

LEMMA 2.6. If G1 and G2 are nontrivial, connected graphs, one of which
is non-outerplanar, then the graph Gy x G2 is non-outerplanar.

Proof. It suffices to show that if G is non-outerplanar, then so is G'x K.
So assume that G is a connected, non-outerplanar graph. If G is bipartite,
then G x K, contains exactly two disjoint copies of GG, in which case we are
done. On the other hand, if G is non-bipartite, then there are two cases:
(i) G is an a-b graph, i.e., it contains exactly one minimal odd cycle, and
(ii) G contains two or more minimal odd cycles. In the former case, the
claim follows from Lemma 2.4 and Theorem 1.1 while in the latter case, it
follows from Lemma 2.5. =u

LEMMA 2.7. If G is a connected, outerplanar, almost bipartite graph,
then G x K3 is an outerplanar graph.

Proof. First, observe that if G is an odd cycle, say Cos1, then G x K»
is Cgm+2, which is trivially outerplanar. So consider the general case when
(a connected, outerplanar a-b graph) G contains exactly one minimal odd
cycle, say Caj41, as a proper subgraph. Our construction will be somewhat
similar to that in the proof of Lemma 2.4. Note that every vertex of G is a
member of one of the following sets: (i) Cax41, (ii) A;, where i € Cog41, and
(iii) Be, where e € E(Cog41). (Definitions of the sets A; and B, appear just
before the statement of Lemma 2.4.) Let u and v be the two vertices of K3
so that the vertex set of G x K3 is V(G) x {u,v}. We outline an outerplanar
embedding of G x K5 based on an outerplanar embedding of G. First embed
the even cycle Cyr42 as an outerplanar graph corresponding to the cycle
Csr41 of G. Next, for a vertex ¢ of Coryg, if the set A; is nonempty, then
prepare two copies of (the induced subgraph) (4;), and “attach and embed”
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the first copy to Cax42 through the vertex (i, u) and the second copy through
the “diametrically opposite” vertex (z,v) in exactly the same manner as (4;)
is connected to i in G. Similarly, for an edge e = {,7} of Cary1, if B, is
nonempty, then prepare two copies of (B.), and attach and embed the first
copy to Cyrio through the edge {(%,u), (j,v)} and the second copy through
(the antipodal edge) {(4,v), (j, u)}—again in exactly the same manner as
(B.) is connected to e = {7,7} in G. We perform the foregoing operations
for all nonempty sets A; and B,. Our embedding of G x K3 closely “mimics”
an outerplanar embedding of G. It follows that G x K3 is outerplanar. m

The following two lemmas are needed in our characterization of outer-
planar x-product graphs. The proofs are routine and omitted.

LEMMA 2.8. For all m,n > 1, P, X P, is outerplanar if and only if
eitherm<3orn<3. m

LEMMA 2.9. For n > 3, the graph C,, X P, is non-outerplanar. m

The characterization for the outerplanarity of the x-product of graphs
is as follows.

THEOREM 2.10. Let G1 and G2 be nontrivial, connected (outerplanar)
graphs.

(1) If G1 and Gy are paths of lengths m and n respectively, then G x G
15 outerplanar if and only if either m < 3 orn < 3.

(2) If G, and G, are both bipartite and G1 is not a path, then Gy x G2
is outerplanar if and only if G2 = K.

(3) If Gy is non-bipartite, then Gy x G2 is outerplanar if and only if G
is an a-b graph (i.e., contains exactly one minimal odd cycle) and Gy = Ks.

Proof. (1) follows from Lemma 2.8 while (3) follows from Lemmas 2.5,
2.7 and 2.9. For (2), let G; and G2 be (nontrivial, connected and) bipartite
graphs, where G is different from a path. First observe that if G & Ko,
then GG; x G5 consists of simply two disjoint copies of G1, and hence outer-
planarity of G; x Go follows from that of G;. For the converse, assume
that G3 2 K,. Then P, must be a subgraph of G5, and since G is not a
path, it must contain either K3 or an even cycle as a subgraph. The graph
K13 X P, is non-outerplanar as it contains K3 3. Further, by Lemma 2.9,
Csn X Py is non-outerplanar. It follows that G; X G5 is non-outerplanar and
(2) is established. m

3. Concluding remarks. In this paper, we have discussed necessary
and sufficient conditions for the outerplanarity of product graphs. While
dealing with the outerplanarity of the x-product, we have introduced an
interesting class of graphs called almost bipartite graphs which are connected
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graphs containing a unique minimal odd cycle. We have shown that if G is
an almost bipartite graph, then it is a minor of G x K. (For bipartite graphs,
the analogous statement is trivially true.) We conjecture that every graph
G is a minor of the graph G x K, and note that an analogous “conjecture”
for the other two products is trivially true.
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