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AN m-VS.-n-BULLETS SILENT DUEL
WITH ARBITRARY MOTION
AND ARBITRARY ACCURACY FUNCTIONS

A silent duel is considered in which Player I has m bullets, Player IT has
n bullets, the accuracy functions are arbitrary and the players can move
as they like. Player I has greater speed than Player II and fires his bullets
simultaneously. For this duel the optimal strategies are determined and the
value of the game is found. The duel is solved under general assumptions on
the payoff function.

1. Introduction. Consider a game which will be called the game
G(m,n). Two Players I and II fight a duel. They can move as they want.
The maximal speed of Player I is v, the maximal speed of Player II is v
and it is assumed that v; > vz > 0. Player I has m bullets which he fires
simultaneously, Player II has n bullets which he can fire as he wants. These
facts are known to both players. It is also known that the duel is silent: at
a given moment neither player knows how many bullets his opponent has
fired (obviously, for Player I this number can be only 0 or m).

At the beginning of the duel the players are at distance 1 from each
other. Let Pi(s) (Pz(s)) be the probability of succeeding (destroying the
opponent) by Player I (II) by one bullet when the distance between them
is 1 — s. The functions P;(s), Pa(s) will be called accuracy functions. It is
assumed that they are increasing and continuous in [0, 1], have continuous
second derivatives in (0,1) and that P;(s) =0for s <0, P(1) <1,7=1,2.

Player I gains k > 0 if only he succeeds, gains —[ < 0 if only Player II
succeeds, gains w if both players succeed, and gains 0 if none of them does,
with — < w < k. The duel is a zero-sum game.

As will be seen from the sequel, we can suppose without loss of generality
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that v; = 1 and that Player II is motionless. It is also assumed that at the
beginning of the duel Player I is at the point 0 and Player I is at the point 1.
The duel is a generalization of the game considered in [10] where the
case k=1=1,w=0, Pi(1) = P,(1) = 1 was solved.
For definitions and results in the theory of games of timing see [3], [4],
(11].

2. Auxiliary duel. To solve the game G(m, n) presented in the previous
section, it is necessary to determine the optimal strategies in the following
auxiliary game Go(m,n). Consider the m-versus-n-bullets duel with accu-
racy functions P;(s), P(s) in which Player I approaches Player II with con-
stant velocity v = 1, all the time, even after firing his bullets. Player I fires
his m bullets simultaneously and gains k if only he succeeds etc., similarly
to the duel defined in the previous section.

Denote by Ko(s;t1,...,tn) the expected gain of Player I if he fires his
m bullets at time s and Player II fires his n bullets at times £; < ... < ¢,.
Let Q;(s) =1 — P;(s), i = 1,2. It is assumed that

1
. k(1 - QT'(s)) if s < 14,

=I(1 - Q2(t1) - -- Q2(tx)) N -
Ko(s;t1,-.-,tn)= +EkQ2(t1) - Q2(tk)(1 — QT (s))  if tx <5 < gy,

k=1,...,n—1,
—1(1 — Q2(t1) ... Q2(tn))
+ kQa(t1)...Qa(tn)(1 — QT (s)) if s>ty

As is easy to see Ky(s;t1,...,t,) is the expected payoff in the duel in
which Player II is not allowed to fire after the salvo of Player I.

Following this idea it is easy to define Ko(s;t1,...,t,) when some t; are
equal to s.

Denote by £ the strategy of Player I in the game Go(m,n), in which he
fires m bullets at a random moment s distributed according to a density
f(s) in the interval [a1,1], 0 < a1 < 1, and according to a probability E,
0 < E < 1, at the point 1.

Suppose that we have defined numbers a;, 0 < a; < 1, a; < @441, 1 =
1,...,n, aps1 = 1, and that

(2) f(s) = fi(s) whena; <s<ajt1,
where

e Ps) -
(3) ft( )_CtPéZ(S)(%—Q;n(S))’ i=1,...,n,

C; being constants.
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Let K_D(E;tl,...,tn) be the expected gain of Player I if he applies the
strategy £ and Player II fires at times ¢1,...,t,. When a; < t; < aiy1, ¢ =
1,...,n, we obtain

t
Ko(Eitryoostn) = f k(L - QT'(s))fi(s) ds
+ f (=1 + Qa(ta)(k +1 ~ kQT(5)))f1(s) ds
+ f (—1+ Qa(ta)(k +1 — kQT(s))) fa(s) ds

b [ (-1 Qu(t)@s(ta)(k + 1 — KQT(s)) fals) ds + ...

t2

b [ (1+ Qalt) . Qaltar)(k +1— KQP(5))fa(s) ds

1
+ [ (<14 Qa(tr) ... Qalta)(k +1— kQT(5))) fu(s) ds
tn

+ (=l + Q2(t1) ... Qatn)(k + 1 — kQT(1)))E.

Since
@ flf(s)ds+E=1,
(5) f (k+1— kQ1"(s)) fi(s) ds = kC; (P (a) P:(b))
for (a,b) € (ai,ait+1), we obtain
Ko(Eit1y...otn) = — 14 kcl(_&(lal) - 'Pit;))
+Q2(t1)k01(1322t1) B Pz(laz))
+Q2(t1)‘“02(p2:@) - pim)

+Qz(t1)c22(tz)k02(p;t2) - Pz(las)) '
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+Qz(tl)---Qz(tn-ﬂ’“"“(&(lan) } Ps(ltn))

1 1
+ Qz(fl)-"Q2(t")kcn(P2(tn) B Pz(l))

+ Q2(t1) ... Qa2(tn)(k + 1 — kQT*(1))E
_ —£+k01( 1 1 Q2(tl))

Py(a,1) Ps(az)
@k =1 - 5 +
+Q2(t1) ... Q2(tn-1)kChr (P2(1%) == g%((;“:%)
+Q2(t1) ... Q2(ta) (K + 1 — kQT* (1)) E
We obtain
(6) Ko(&tr, .- tn) = -1+ kCy %2(( ))

and this is independent of ¢; if the terms by Qa2(t1), @Q2(t1)Q2(t2),...
.., Q2(t1) ... Q2(tn) vanish, i.e. when

(7) C; = Q2(ai41)Ciy1, t=1,...,n~1,
®) 6 = ) (4 - QP () .

Inserting (7) and (8) into (6) we obtain

Q2(a1) ... Q2(an)
Pz(al)

Let 7 be the strategy of Player II in the game Go(m,n) in which he
chooses at random stochastically independent moments t;,...,%, for his
shots according to the densities g1(¢1),...,g2(tn), where
(10)

d(5 - QT'(¢;))

D' k 1 J -f <t < as 1 .=1,.-.’ ;

e { R EE-Qre)y T "
0

(9) Ko(Eti,--- ta) = —1+ Py(1)(k+1-kQT*(1))E.

otherwise,

an+1 = 0, and D; are normalizing constants.
For s € (aj,a541), j =1,...,n, we obtain

Ko(s;7) = f f{f( ~1+Qa(t1) - Qa(t;)

aj—1 a;

x(k +1—kQT'()))g;(t;) dt;
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Qj+1

£ [ (14 Q@altr) - @alt-1)(k+1 - KQP(N)s(t) dt;
X g1(t1)...9j-1(tj—1) dt1...dt;_,

= [ J (-1 Q). Qaltion) e+ 1- kPG

a aj—1
1 1
(1= . )
( T\ - Qr(e;) EH-QP(s)
Xgl(tl)...gj_l(tj_l)dtl...d.tj_l.
Let
k+1 o
(11) D¢=T QT (a:) -
We obtain
T @atwyatwran =1-Di gr—sm— - g )
£ b B -QP(a) & - QT(aita)
and

- j—1 1 1
(12) Ko(s;m) =1 + kD; ; (1 —D; ( &i-.ﬁ - Q7 (a;) - 5-}';-1 = Q’in(aeﬂ)))
= k(1 - Q7' (a1))-

Then for D; given by (11) the function K(s;7) is independent of s when
4 sl
From the definition of the strategy £ we obtain

e P,(s)ds
= >0 st arey o=

a;

Integrating by parts and taking into account that
A% - Qr(s) 1 1

Py(s)(BH —Qp(s))?  Di B —Qp(a)

we come, to the equation

(14)

@

Q2(a;) 1
Ci - —
Z (Pz(ae)(—}c"—t - QM (ai)) Palaip1) (B - Q'i“(am))) =

i=1

with a,4+1 = 1. Taking into account (7) and comparing neighbouring terms
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in (14) we obtain
Qg(al) S Qg(an) _ 1 AL
= (Pz(al)(*—,,ﬂ —Qr(a)  ROEE- Q‘i“(l))) —ioE
Then by (8) we get

Py(a1) (B — QT (a1))
Q2(a1) - .. Q2(axn)
On the other hand, from (10) and (11) we get
ko O\ dEE Q)
a (3 -are) I piste = grs =

t=1,...,M Gpyi = 1.

(15) Cp=

a;

Suppose that the system of equations (16) has a solution (ay,...,a,)
with0 < @; < 1, i = 1,...,n. Then the constant Cy, is determined from (15),
and from (7) and (8) we determine the remaining C; and E. Moreover,
from (4) it follows that 0 < E < 1. Then the system of equations (7), (8),
(11), (14), (16) has a solution (ay,...,an;C1,...,CnjD1,...,Dp; E) with
0<a <1,C; >0, D; >0,0 < E < 1 provided (16) has a solution
(a1,...,an) with 0 < @; < 1,% =1,...,n. Moreover, from (8), (9), (12) and
(15) we obtain

(A7) KofEits, .. tn) = =1+ k2380 b1y 1 kgpaay
= k(1 — QT(a1)) = Ko(s;7)
ifa1 <s<l,a;<t; §a¢+1,z’=1,...,n—1, an <t, <1l
Consider the functions
(R T dEE - QT ()
wilt) = ( A )) ] motE—arap

for0<t<ajy1, t=1,...,n, any1 = 1. We obtain

doi(t) _ d(&H - QT'(2)) [“‘“ d(5H — Qr(2)
d dt Py(t) (B - Qr(1))?

(18)

_ 1
 Py(t) (B - Qi“(t))]
WL IO 1
dt Pz(a,:+1)(£°-ﬂ = Qm(ai-i-l))

Iy S (0L
J FrE - Q”‘(t))]<0
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for 0 < t < a;4;. From the above it follows that there exists at most one
solution (a1,...,a,) of (16) with0<a; <1, ¢=1,...,n.

Notice that the system (16) has a solution (ay,...,0,) with 0 < a; < 1
for any k > 0, I > 0, m, n when P;(s) = Pa(s).

EXAMPLE 1. Let m = n = 1, Pi(t) =t, P2(t) = t%, a > 0. We obtain

! P P@wdt (L, N\ dt
(E*Pl(‘”)) J PROE+PE)? (k+ 1) J to(t + ¢)?

ai ai

] k/(kay+1) " a
=(E+a1) f (1_%3:) dx

k/(k+1)

k/(kay+1) ' 2

l dx k

5(?“1) | e o A-adgm <t
k/ (k+1) B

for each 0 < a; < 1. Then for these Pi(s), P:(s), m, n the equation (16)
has no solution a; with 0 < a; < 1 when « is small.

LEMMA. If there exists a solution (a,...,a,) of (16) with 0 <a; <1,
i =1,...,n, then for these a; the strategy £ is mazimin and the strategy i
is minimaz in the game Go(m,n). The value of the game is v3,, = k(1 —

Q1 (a1)).

The proof is similar to one given in [10] and is omitted.

3. Main result. Let us return to the duel G(m,n) defined at the begin-
ning of the paper. Assume that there exists a solution (ay,...,a,) of (16)
with 0 < a; < 1, ¢ = 1,...,n. For a given natural N, let constants ¢; be
defined as follows:

Ci 1 )
(19) Co = a1, ff(s)dszﬁa 3=1,...,Ng, CNQ+1=1}
C,‘_—l
where N is defined from the inequalities
i
(20) 1—§gcj f(s)ds+E < 1.
0

Define the strategy £° of Player I in the game G(m, n) as follows: If there
exists a solution (dy,...,a,) of (16) with0 <a; <1, i=1,...,n (case 1),
Player I moves back and forth with maximal speed in the following manner:
at first between 0 and ¢;, then between 0 and c¢s,. .., and finally between 0
and Cn,+1. At the ith step, i = 1,..., No+1, he can fire his salvo at random
only if he is between the points ¢;_; and ¢; and goes forward, and he fires it
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with probability density f(s). If he has fired at the ith step, he reaches the
point ¢;, escapes to 0 and never approaches Player II. If Player I has not
fired his salvo between the points a; and 1 and survives, he fires it when he
is at 1, as soon as possible.

If no solution (ai,...,a,) of (16) with 0 < a; < 1, i = 1,...,n, exists
(case 2), Player I, following £, does not approach Player II.

The strategy n° of Player II is defined in case 1 as follows: If Player I
reaches the point ¢ the first time and his velocity is v(7), 7 being the time,
a; < t < a;4+1, then Player II fires at random his ¢th bullet with probability
density v(7)gi(t(7)). Otherwise he does not fire.

In case 2, when the system (16) has no solution (ay,...,a,) with 0 <
ai <1, i=1,...,n, the strategy n° is defined similarly, but if @] < t < aj,,
the firing has probability density v(7)g?(¢(7)) for

o_ 45 —QT(1)

D} ifa<t<aly, t=1,....m,
@) g®Wdt=1{ T ReEE - Qre)r W

0 otherwise,
where

k+1
(22) D¢ =MD, ¥ M (T+ - Q;n(a;)) ;
The constants a; and the constant M > 1 are chosen in such a way that
a:'+1

(23) [ Wydt=1, i=1,...,n, ap=0, apy, =1.

r
a;

For any strategy & of Player I it is assumed that the function v(7) is
piecewise continuous.
We obtain

THEOREM. The strategy £° is e-mazimin and the strategy n° is minimaz
in the game G(m,n). The value of the game is Vimn = k(1— Q7' (a1)) if there
exists a solution (ay,...,a,) of (16) with0 < a; < 1, i = 1,...,n, and
Umn = 0 otherwise.

The long proof of the Theorem is similar to one in [10] and is omitted.

4. Examples. When m = 1, Py(s) = Pa(s) % p(s), from (16) we obtain

l k2 L4+ Pa;) k2. L+ Plaiyr)
(24) (E +P(a,')) (l—zlogi’c P(a; - I—zlog LBl it e P(a:l-;l

k k
&+ P(ait1) l
§ = Eyros oy Plangi)=1.
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This system has a solution (aj,...,a,) for any n.

EXAMPLE 2. Let m=n =1,k =1=1, [w| <1, Pi(s) = Pa(s) = P(s),
P(1) = 1. From (24) we obtain

i1 = P(a1) & 0.177655.
Then from (15), (11) and (8) we get
Cp =0.254414, D, =1.177655, FE =0.127207.

EXAMPLE 3. Let m = 1, n =2, k=1 =1, |w| < 1, Pi(s) = Pas)
= P(s), P(1) = 1. In this case we have

v12 = P(a;) 0.056044, P(ay) = 0.177655,
C1 =£0.062698, Dy = 1.056044,

Cs =2 0.076243, D, = 1.177655,
E =0.038122.

EXAMPLE 4. Let m=n=1k=2,1=1, -1 <w < 2, Pi(s) = P(s)
= P(s), P(1) = 1. We obtain

P(ay) 22 0.271598, vy; = 0.543196,
Cy = 0.431556, D; =0.771598, E = 0.287704.

Duels under arbitrary motion, as far as the author knows, have never
been considered before, except in the papers of the author (see [9], [10]).
For other results in the theory of games of timing see [1], [2], [4-8].
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