S. TRYBULA (Wrocław)

MINIMAX ESTIMATION OF A CUMULATIVE DISTRIBUTION FUNCTION FOR A SPECIAL LOSS FUNCTION

A minimax estimator of a cumulative distribution function is determined for the loss function (1). The problem of minimax prediction of a sample distribution function is also solved for a similar loss function.

1. Minimax estimation of a cumulative distribution function. Suppose that a random variable X is distributed according to an unknown cumulative distribution function F(t). Let $\hat{X} = (X_1, \ldots, X_n)$ be a random sample from F, X_1, \ldots, X_n being independent. Let $\varphi(t) = \varphi(t, \hat{X})$ be an estimator of F(t). We suppose that the loss function associated with the estimator $\varphi(t)$ is

(1)
$$L(F,\varphi) = \int_{-\infty}^{\infty} \frac{(\varphi(t) - F(t))^2}{F(t)(1 - F(t)) + c^2} w(dt),$$

where w is a non-zero finite measure on $(\mathbb{R}, \mathcal{B})$, \mathcal{B} being the σ -field of Borel subsets of $\mathbb{R} = (-\infty, \infty)$.

The problem is to determine a minimax estimator of F(t) for this loss function.

Set

$$\hat{F}(t) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}(t),$$

where, for a random variable Z,

$$\delta_Z(t) = \begin{cases} 1 & \text{if } Z \leq t, \\ 0 & \text{if } Z > t \end{cases}$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 62F15.

Key words and phrases: minimax estimation, minimax prediction, cumulative distribution function, sample distribution function.

Let us study an estimator of the form

$$\varphi(t) = a\hat{F}(t) + b.$$

The risk function for this estimator is

$$\begin{split} R(F,\varphi) &= E[L(F,\varphi(t,\hat{X}))] \\ &= \int\limits_{-\infty}^{\infty} \frac{E[a\hat{F}(t) + b - F(t)]^2}{F(t)(1 - F(t)) + c^2} \, w(dt) \\ &= \int\limits_{-\infty}^{\infty} \frac{\frac{a^2}{n} F(t)(1 - F(t)) + (b - (1 - a)F(t))^2}{F(t)(1 - F(t)) + c^2} \, w(dt) \, . \end{split}$$

Let b = (1-a)/2. Then

(2)
$$R(F,\varphi) = \int_{-\infty}^{\infty} \frac{\left(\frac{a^2}{n} - (1-a)^2\right) F(t)(1-F(t)) + \frac{(1-a)^2}{4}}{F(t)(1-F(t)) + c^2} w(dt)$$
$$= \frac{(1-a)^2}{4c^2} \int_{-\infty}^{\infty} w(dt) \stackrel{\text{df}}{=} K$$

if

(3)
$$a = \frac{1}{1 + \frac{2c}{\sqrt{1 + 4c^2}} \frac{1}{\sqrt{n}}},$$

i.e. if

(4)
$$\varphi(t) = \frac{\hat{F}(t) + \frac{c}{\sqrt{1 + 4c^2}} \frac{1}{\sqrt{n}}}{1 + \frac{2c}{\sqrt{1 + 4c^2}} \frac{1}{\sqrt{n}}} \stackrel{\text{df}}{=} \varphi_0(t).$$

We shall prove that the estimator $\varphi_0(t)$ is minimax.

The considered problem of determining a minimax estimator of F(t) can be viewed as the problem of finding the optimal strategy in a game against nature. The nature chooses a cumulative distribution function F(t), the statistician chooses an estimator $\varphi(t)$ and the payoff function is given by the risk

(5)
$$R(F,\varphi) = \int_{-\infty}^{\infty} \frac{E(\varphi(t) - F(t))^2}{F(t)(1 - F(t)) + c^2} w(dt).$$

Let us define a sequence τ_k of mixed strategies of nature which will be used in the proof of the optimality of the strategy of $\varphi_0(t)$.

Choose the parameter p according to the density

(6)
$$g(p) = \begin{cases} C[p(1-p) + c^2][p(1-p)]^{\alpha-1} & \text{if } 0$$

where C is a normalizing constant, and then, for given p, choose the distribution F(t) of the form

(7)
$$F(t) = \begin{cases} 0 & \text{if } t < -k, \\ p & \text{if } -k \le t < k, \\ 1 & \text{if } t \ge k. \end{cases}$$

Let F(t) be given by (7), where p has distribution (6). For the strategy τ_k the expected risk is

$$r(au_k,arphi) = \int\limits_{-\infty}^{\infty} E_{ au_k} \left[rac{E(arphi(t) - F(t))^2}{F(t)(1 - F(t)) + c^2}
ight] w(dt)\,,$$

where $E_{\tau_k}(\cdot)$ is the expectation with respect to the density g(p).

In order to minimize the expected risk $r(\tau_k, \varphi)$, it is sufficient to minimize

$$E_{\tau_k} \left[\frac{E(\varphi(t) - F(t))^2}{F(t)(1 - F(t)) + c^2} \right]$$

for any fixed t. This leads to the Bayes estimator with respect to τ_k given by

$$arphi_{ au_k}(t) = \left\{ egin{array}{ll} 0 & ext{if } t < -k, \ rac{\hat{F}(t) + lpha/(2n)}{1 + lpha/n} & ext{if } -k \leq t < k, \ 1 & ext{if } t > k. \end{array}
ight.$$

Let

$$\alpha = \frac{2c}{\sqrt{1+4c^2}}\sqrt{n}.$$

In this case $\varphi_{\tau_k}(t) = \varphi_0(t)$ if $-k \le t < k$, and, by (2),

$$r(au_k, arphi_{ au_k}) = rac{(1-a)^2}{4c^2} \int\limits_{-\infty}^{\infty} I_{[-k,k)}(t) \, w(dt) \, ,$$

where $I_A(t)$ is the characteristic function of the set A and the constant a is given by (3).

From the above it follows that

(8)
$$\lim_{k\to\infty} r(\tau_k, \varphi_{\tau_k}) = K,$$

where K is defined in (2).

From (8) and the fact that the estimator $\varphi_{\tau_k}(t)$ is Bayes with respect to τ_k and $\varphi_{\tau_k}(t) = \varphi_0(t)$ for $-k \le t < k$, it follows that the estimator $\varphi_0(t)$ given by (4) is a minimax estimator of F(t).

If the measure w is concentrated at one point, say t_0 , then the problem reduces to that of determining a minimax estimator of the parameter $p = F(t_0)$ for the loss function

$$L(p,a) = \frac{(a-p)^2}{p(1-p)+c^2}$$
.

This problem was solved in [5].

2. Minimax prediction of a sample distribution function. Let $\hat{X} = (X_1, \ldots, X_n)$, $\hat{Y} = (Y_1, \ldots, Y_m)$ be two independent samples from a distribution F(t) and let

$$\hat{F}(t) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}(t), \quad \check{F}(t) = \frac{1}{m} \sum_{i=1}^{m} \delta_{Y_i}(t)$$

be the sample distribution functions from the samples \hat{X} and \hat{Y} , respectively. Let $\psi(t) = \psi(t, \hat{X})$ be a predictor of F(t) and let

(9)
$$L(\check{F}, \psi) = \int_{-\infty}^{\infty} \frac{(\psi(t) - F(t))^2}{F(t)(1 - F(t)) + c^2} w(dt)$$

be the loss function connected with the predictor ψ , where, as before, $w(\cdot)$ is a non-zero finite measure on $(\mathbb{R}, \mathcal{B})$.

The problem is to determine a minimax predictor of $\check{F}(t)$.

For the loss function (9) the risk function takes the form

$$R(F,\psi) = E(L(F,\psi(t,\hat{X})))$$

$$= \int_{-\infty}^{\infty} \frac{E(\psi(t) - F(t))^2}{F(t)(1 - F(t)) + c^2} w(dt)$$

$$= \int_{-\infty}^{\infty} \frac{E(\psi(t) - F(t))^2 + \frac{F(t)(1 - F(t))}{m}}{F(t)(1 - F(t)) + c^2} w(dt).$$

Let

(10)
$$\psi(t) = a\hat{F}(t) + (1-a)/2.$$

Then

$$R(F,\psi) = \int\limits_{-\infty}^{\infty} rac{\left(rac{a^2}{n} - (1-a)^2 + rac{1}{m}
ight)F(t)(1-F(t)) + rac{(1-a)^2}{4}}{F(t)(1-F(t)) + c^2} w(dt)$$

and it is independent of F; moreover,

(11)
$$R(F,\psi) = \frac{(1-a)^2}{4c^2} \int_{-\infty}^{\infty} w(dt) \stackrel{\text{df}}{=} R(F,\psi_0)$$

if

$$\frac{a^2}{n} - (1-a)^2 + \frac{1}{m} = \frac{(1-a)^2}{4c^2},$$

i.e. if

(12)
$$a = \frac{1}{\frac{4c^2 + 1}{4c^2} - \frac{1}{n}} \left(\frac{4c^2 + 1}{4c^2} - \sqrt{\frac{4c^2 + 1}{4c^2} \left(\frac{1}{m} + \frac{1}{n}\right) - \frac{1}{mn}} \right).$$

It is easy to see that for any m, n, c we have 0 < a < 1.

Define a mixed strategy σ_k of nature in the same way as τ_k , with α given by (13) below and α given by (12). Now the risk is

$$R(F,\psi) = \int_{-\infty}^{\infty} \frac{E(\psi(t) - F(t))^2 + \frac{F(t)(1 - F(t))}{m}}{F(t)(1 - F(t)) + c^2} w(dt)$$

and for the strategy σ_k the expected risk is

$$r(\sigma_k,\psi) = \int\limits_{-\infty}^{\infty} E_{\sigma_k} \left[rac{E(\psi(t)-F(t))^2}{F(t)(1-F(t))+c^2}
ight] w(dt) + r_0(\sigma_k) \,,$$

where $r_0(\sigma_k)$ does not depend on ψ and $E_{\sigma_k}(\cdot)$ is the expectation with respect to the density g(p) in the strategy σ_k . In the same manner as in the case of estimation, this leads to the Bayes predictor with respect to σ_k given by

$$\psi_{\sigma_k}(t) = \begin{cases} 0 & \text{if } t < -k, \\ \frac{n\hat{F}(t) + \alpha/2}{n + \alpha} & \text{if } -k \le t < k, \\ 1 & \text{if } t > k. \end{cases}$$

For

$$\frac{n}{n+\alpha}=a\,,$$

where a is now given by (12), $\psi_{\sigma_k} = \psi_0$ if $-k \le t < k$, and the Bayes risk $r(\sigma_k, \psi_{\sigma_k})$ is

$$r(\sigma_k, \psi_{\sigma_k}) = \frac{(1-a)^2}{4c^2} \int_{-\infty}^{\infty} I_{[-k,k)}(t) w(dt).$$

Then as before we prove that the predictor $\psi_0(t) = a\hat{F}(t) + (1-a)/2$, where a is given by (12), is a minimax predictor of $\hat{F}(t)$.

For problems of estimation of a cumulative distribution function see [1], [2], [4], [6]. Minimax estimators of a cumulative distribution function for 4 loss functions different from (1) were found by Phadia in [3].

References

- O. P. Aggarwal, Some minimax invariant procedures for estimating a cumulative distribution function, Ann. Math. Statist. 26 (1955), 450-463.
- [2] A. Dvoretzky, J. Kiefer and J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, ibid. 27 (1956), 642-669.
- [3] E. G. Phadia, Minimax estimation of a cumulative distribution function, Ann. Statist. 1 (1973), 1149-1157.
- [4] R. R. Read, The asymptotic inadmissibility of the sample distribution function, Ann. Math. Statist. 43 (1972), 89-95.
- [5] S. Trybuła, Two problems of minimax estimation, Zastos. Mat. 14 (1974), 41-47.
- [6] —, Estimation of the difference of cumulative distribution functions, Bull. Polish Acad. Sci. Math. 32 (1984), 243-246.

STANISŁAW TRYBUŁA INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF WROCŁAW WYBRZEŻE WYSPIAŃSKIEGO 27 50-370 WROCŁAW, POLAND

Received on 9.7.1992