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A SILENT VERSUS PARTIALLY NOISY
ONE-BULLET DUEL
UNDER ARBITRARY MOTION

A duel is considered in which Player I has one silent bullet, Player II
has one partially noisy bullet, the accuracy functions are the same and the
players can move as they like. It is assumed that the maximal speed of
Player I is greater than that of Player II

1. Introduction. We consider the following-game (1,1). Two players,
say I and II, fight a duel. They can move as they want. The maximal speed
of Player I is v;, the maximal speed of Player II is vo and it is assumed that
v1 > vy > 0. Players I and II have one bullet each and this fact is known to
both players. Player II does not hear the shot of Player I, Player I hears the
shot of Player II with probability p, 0 <p < 1.

At the beginning of the duel the players are at distance 1 from each
other. Let P(s) be the probability of succeeding (destroying the opponent)
by Player I (II) when the distance between them is 1—s, s < 1. The function
P(s) is called the accuracy function. It is assumed that

(i) P is increasing and has a continuous second derivative in [0, 1],
(ii) P(s) =0for s <0, P(1) = 1.

The duel starts at time ¢ = 0 and ends when at least one player is
destroyed or both bullets are shot; otherwise it continues infinitely long.

Player I gains 1 if only he achieves success, gains —1 if only Player II
achieves success, and gains 0 in the remaining cases. The duel is a zero-sum
game.

Suppose that Player II has fired his shot and missed and that Player I
has heard that shot. In this case the best what Player I can do, if he has his
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bullet yet, is to reach Player II in pursuit and achieve success surely. This
behaviour of Player I is assumed in the paper.

Without loss of generality we can suppose that v; = 1 and that Player IT
is motionless. It is also assumed that at the beginning of the duel Player I
is at the point 0 and Player II is at the point 1.

For definitions and results in the theory of games of timing see [3]-[6],
(8], 9], [15], [16].

2. Auxiliary duel. To solve the game (1,1) presented in the previous
section we have to determine optimal strategies in the following auxiliary
game (1,1)*. Consider a one-bullet silent versus partially noisy duel with
accuracy function P(t), the same for both players. It is assumed that Player I
approaches Player IT with constant velocity v = 1 all the time, even after
firing his bullet. Player I gains 1 if only he achieves success etc., as in the
duel defined in the previous section.

Denote by Ko(s,t) the expected gain of Player I if he fires at time s €
[0,1] and Player II fires at times ¢t € [0, 1]. It is assumed that

P(s) ifg <l
Ko(s,t) =< 0 if s =t,
—P(t) +p(1 - P(t)) + (1 — p)(1 — P(t))P(s) ifs>t.

As is easy to see, Ko(s,t) is the expected payoff in the duel in which
Player II is not allowed to fire after Player I has. Player I is allowed to fire
after Player II has, but if he has heard the shot of his opponent he has to
act just as in the duel (1,1).

Denote by £§ the strategy of Player I in the game (1,1)* in which he
fires at a random moment s distributed according to a density f;(s) in the
interval [a,1], 0 < a < 1, and according to a probability a, 0 < a < 1,
at the point 1. This distribution is chosen in such a way that if ¢ € [a, 1)
then

t
Ko(&5,t)= [ P(s)fi(s)ds

* f P(t) +p(1 - P(t)) + (1 - p)(1 = P(£))P(s)) f1(s) ds
+ (1 — 2P(t))a = const .

Here K(£§,t) is the expected gain of Player I if he applies the strategy £§
and Player II fires at time ¢.



Silent versus partially noisy duel 563

We have
(1) 2D _ (ap(y) - p(1 - (1) - (1-P)(1 - PE)PE)A(D)

1
—P'(t) [ (1+p+ (1~ p)P(s)) fa(s) ds — 2P'(t)a = 0,

02Ko(£5,1)

G = (2P(t) —p(1 - P(t)) - (1-p)(1 = P(t)P(t)f1(t)

+ P'(t)(3+2p — (1 -p)(1 = 3P(t)))f1(t)

()

—P"(t) [ (1+p+ (1 -p)P(s))fi(s)ds — 2P"(t)a = 0.

Eliminating the integral from (1) and (2) we obtain the equation
fie) P"(#) . 3+2p—(1-p)(1-3P(t)
A@®) P QA-p)P2t)+(1+2p)P(t) —p

whose solution is

P'it)=0

_ CP'(1)
) 1O = e —rEEH - P)F
where
0 — s (1~ 2 VIR =
Lo — 1+2p+/1+8p’

1
By gl A= p = VI+8p),

2(1 - p)
1 1
E=§-|— 2 " F=§— 2 .
2" /T+8 2 Ji+sp

From (4) it follows that 0 < P, < 1.
Obviously, the constant C' in (3) satisfies the equation
P'(t) dt
5 C
®) ] o —rrEn -

+a=1.
Let n§ be the strategy of Player IT in the game (1,1)* in which Player II
chooses at random the moment ¢ at the shot according to a density f2(t) in

[a,1] to obtain

(6) Ko(s,n5) = f (—P(t) +p(1 = P(t)) + (1 — p)(1 — P(2))P(s)) f2(t) dt

1
-+ fP (8)f2(t) dt = const



564 S. Trybuta

if s € [a,1], where Ky(s,n§) is the expected gain of Player I if Player II
applies the strategy 7§ and Player I fires at s.
Acting in the same way as before, we obtain

DP'(t)
) L0 = BH Ry -FE
. DP'(t) dt
®) > ] mo—ryrean-rE= "
From (1) and (3) it follows that
OKo(E,t) 1 ci1-p)

- 2a=0.

9 =
o ot P, (= P)E-I(1- Fp)F
From (6) and (7) it follows that
0Ko(s,mg) 1 _ D(1-p) LT
Os P'(s) |,y (P(a) — P)F-1(P(a) — P2)E1
From (5), (8), (9) and (10) we determine the unknown parameters C, D,
a,a 0<a<l P <a< 1l We prove that such a solution exists and is
unique for any P(t) satisfying our conditions.
Inserting the constant D from (10) to the equation (8) we obtain
P'(s)ds s
—P)F (P -P)E

(10) 0.

1

(11) (P(a)=P)F~(P(a)-P2)"~! ! ()

Denote by ¢(a) the left side of the above equation. We have
(@) = {IF = D(P(@) - P *(Pla) ~ PP

+(E - 1)(P(a) - A1) (P(a) — P2)"7%
» j- P'(s)ds

v (P(s) - P)F(P(s) - P)P
- 1 }P@

(P(a) — P1)(P(a) — P,)

__(-pP@+p-1
(P(a) - P1)(P(a) - P)
for any a satisfying (11) and any p, 0 < p < 1. Moreover,

P'(a) <0

1
o(Prt) = ——>1-p, o(1)=0.
P(P1)+1Tp

Thus there always exists a unique solution e, P; < a < 1, of (11) if
0<p<l1.
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Moreover, from (5) and (9) we obtain

2(1 — P)B-Y(1 - P)F-1 ¢ P'(t) dt 3
0 ( —p | eo-rrre—mr* o=t

From the above and (9) it follows that if 0 < p < 1 there always exists a
unique solution C, « of (5) and (9) such that 0 < o < 1.

We now prove that Ko(é5,t) = Ko(s,n§) fora <s<1l,a<t< 1. We
get

(13)  Ko(&,a) = (=P(a) +p(1 - P(a)))(1 — @) + (1 — 2P(a))a

+(1-p)(1 - P(a) [ P(s)fr(s)ds

= fP(s)fl(s)ds—cI:Ko(ﬁS,l—)s

(14)  Ko(1-,n8) = [ (1-2P(t))fa(t) dt = P(a) = Ko(a,5).

a

From (13) it follows that

(15) [1-(1-p)A—P(a)] [ P(s)fi(s)ds

= —P(a) +p(1 — P(a)) + (2 — p(1 — P(a)) — P(a))e

and
Ko(5,1-) = [ P(s)fi(s)ds — a = P(a) = Ko(a, )
if
_ (P(a) - P1)(P(a) — P»)
2(1 - P(a))
On the other hand,
9Ko(£5,t) 1 C(1-p)

o P, (P@-P)E(P(a)= B

- [ +p+(1-p)P(s)fi(s)ds —2a =0

and by (15) we get

C(1-p)
(P(a) — P)E-1(P(a) — P)F-1

~(+p)(1-a)
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p—(1+p)P(a)+2-p—(1-p)P(a)l

—(1-p) P+ (1-p)P@) ~-2=0.
Using (9) we obtain
1-P)E1(1 - p)F1
17 By = B)ET(Pa) - ByF-12x~ (1 +p)(1-a)
_(1—p)B= (1+p)P(a) +[2—p— (1 -p)P(a)]a _ 9% = 0.

p+(1-p)P(a)
Moreover, from (6) and (7) we have

0Ko(s,m5) 1
ot Pi{a)

_ D(1-p)
(1—=PfF1{1 ~ Fg)F1

(18)

=1-— .
+(1-p) [ (1-P@t)f(t)dt=0,

and by (14),

1+ P(a) '

(19) J - Py =

Then from (10), (18) and (19),

4) = F-1 i E-1
(20) (P((z = E;F_lg(_ 3,32)31331 = %(1 —p)(1+ P(a)).

But

1+2p P
P—-P - _P2| -
( LeF = E) l—pp L=

and

2
(1-P)1-P)=gy—, E+F-2=1.

Dividing (17) by (20) and taking into account the above equations we obtain

1+2p P
P!Z e i _——_——

(@) + T2 P() - 72—

2(1 — P(a)) !
which is the same as (16). Thus Ko(£§,t) = Ko(s,n§) for a < s < 1,
agsis 1l

O =

LEMMA. For a being the solution of equation (11) the strategy £§ is maz-
imin and the strategy m§ is minimaz in the game (1,1)*. The value of the
game is v9; = P(a).
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Proof. We have proved that Ko(£§,t) = P(e) for a <t < 1. Moreover,
1

1
Ko(68,1) = [ P(s)fu(s)ds> [ P(s)fi(s)ds+ (1—2P(1))a

a

= lim Ko(¢5,t) = P(o).
If t < a we have
Ko(€8,t) = fl (=P(t) +p(1 - P(t))
:r (1 —p)(1 = P(t))P(s)) f1(s) ds + (1 — 2P(t))a
> | (P(@)+ 51~ P(@) + (1 - P@)P(e)) a(s)ds

+ (1 —-2P(a))c
= KO(‘SS!G‘) = P(a‘) .

Thus Ko(£§,m) > P(a) for any strategy n of Player II.

On the other hand, Ko(s,n§) = P(a) for a < s < 1, and if s < a then
Ko(s,n8) = P(s) < P(a). Therefore Ko(€,n§) < P(a) for any strategy £ of
Player I, which ends the proof of the lemma.

3. Solution of the duel (1,1). We now consider the duel (1, 1) defined
at the beginning of the paper. For given natural n such that 1/n <1 -«
let the constants a; be defined as follows:

a
1
ap =a, ffl(S)dS:;, k:]-:"-anﬂr ano+1=1:

Qp—1

where ng is defined from the inequalities 1 —a — 1/n < ngp/n < 1 — a.

Define the strategy £, of Player I in the game (1, 1) as follows: Player 1
moves back and forth with maximal speed in the following manner: at first
between 0 and a;, then between 0 and as, ..., finally between 0 and apnq+1.
At the kth step, k = 1,...,n0 + 1, he can fire his shot at random only if
he is between the points a;_; and a; and goes forward, and he fires it with
probability density f;(s). If he has fired at the kth step, he reaches the point
ay, escapes and never approaches Player I1. If Player I has not fired between
the points 0 and 1 and survives, he fires when he is at 1, as soon as possible.

The strategy 7o of Player II is defined as follows: If Player I reaches
the point ¢ the first time and his velocity is v1(7), 7 being the time, fire at
random with density v;(7)f2(¢(7)). Otherwise do not fire.

It is assumed that the function v;(7) is piecewise continuous.
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THEOREM. The strategy &: is e-maztmin and the strategy 1o is minimaz
in the game (1,1). The value of the game is v11 = P(a).

Proof. Assume that Player I applies the strategy £.. We say that
Player II fires at (k,a’), k = 1,...,n0 + 1, if he fires when Player I is
at the point o’ and if this happens during the first player’s approach to aj
or his escape from aj_1.

Denote by K(&.;k,a’) the expected gain of Player I if he applies the
strategy &, and Player II fires at (k,a’). We obtain

Bp—1

1
K(&;k,a) > [ P(s)fi(s)+ [ (—P(a)+p(1 - P(a))

+ (1= p)(1 - P(a'))P(s)) fr(s) ds + (1 — 2P(a"))a — 1/n

> [ P(s)fi(s)ds+ [ (—P(a)+p(1— P(ax))

+ (1 = p)(1 — P(ax))P(s))f1(s)ds + (1 — 2P(ax))a — 1/n

[ P()fi(s)ds+ [ (~P(ax)+p(1 ~ P(ax))

>
+ (1= p)(1 - P(ax))P(s))fa(s) ds + (1 — 2P(ax))er — ¢
= P(a) — ¢,

wheree=2/n, k=1,...,n0+ L.
If Player II fires only when Player I reaches 1, the best for him is to fire
as soon as possible. For such a strategy (call it n) we obtain

1

K(&em) 2 IP(s)fL(s) ds

a

> [ P(s)fi(s)ds + (1—2P(1))a = P(a).

From the above it follows that K (£.;n) > P(a) — € for any strategy n of
Player 1I.
On the other hand, define
@ = the farthest point reached by Player I before he fires,
a’ = the point from which he fires,
@' = the farthest point reached by Player I after he fires,
@ = max(a,d’).
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We have
a<a, d<d.
For such a strategy, say &, if a < @, we have

K(Em) = [ (=P(2)+p(1 - P(t)) + (1 p)(1 - P()P(a")) fa(t)

+ | (P(a') — (1 - P(a))P(2)) f2(t) d¢

& t--}ﬂu

< [ (=P@)+ (1 - P®) + (1 - p)(1 - P(e)P(a)) falt) dt

1
+ [ P(a)fa(t) dt

a
= P(a)
by (6) and (12), and if @ < a < &’ then

K(&m0) = P(a') - (1 - P(a))) [ P(t)fa(t) dt

< P(a) — (1- P(a)) [ P(t)fa(t)dt < P(a).

Finally, if @ < a then

K(&mo) = P(a’) < P(a).
Thus K(&;m0) < P(a) for any strategy £ of Player I. The theorem is
proved.

Duels under arbitrary motion, as far as the author knows, have never
been considered before, except in the papers of the author (see [12]-[14]).
For other results in the theory of duels see [1], [2], [7], [10], [11].
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