P. F. KÖRNER (Schwenningen)

A NOTE ON OPTIMALITY CONDITIONS FOR DUAL PROBLEMS TO THE TRAVELING SALESMAN PROBLEM

Abstract. Different duals for the traveling salesman problem are considered. A simple example shows that it is in general difficult to check the optimality.

1. Introduction. The traveling salesman problem (TSP) is a well-known combinatorial optimization problem. The interested reader is referred to the excellent bibliography [3]. The problem can be described as follows:

(1)
$$\sum_{i,j} c_{ij} x_{ij} \to \min \quad \text{subject to}$$

(2)
$$\sum_{i} x_{ij} = 1 \quad \text{for all } j, \quad \sum_{j} x_{ij} = 1 \quad \text{for all } i,$$

(3)
$$x_{ij} \in \{0,1\} \quad \text{for all } i,j$$

and

(4)
$$\sum_{i \in S, j \in \overline{S}} x_{ij} \ge 1 \quad \text{ for all } S \subset N, \ 1 \le |S| \le n - 1,$$

where $N := \{1, ..., n\}.$

The problem stated by (1)-(3) is called the assignment problem and the inequalities (4) subtour elimination constraints. In connection with the dual

¹⁹⁹¹ Mathematics Subject Classification: Primary 05C45; Secondary 90C27. Key words and phrases: traveling salesman problem, duality.

problems we substitute (3) by

(5)
$$0 \le x_{ij} \quad \text{for all } i, j.$$

DEFINITION. Let G(x) be a graph with n vertices such that the arc (i, j) exists iff $x_{ij} > 0$.

2. The dual problems. First we consider the duality concept of Balas & Christofides (cf. [1]). For the constraints of type (4) we introduce Lagrangean multipliers w_k , $k \in K := \{1, \ldots, 2^n - 2\}$. The Lagrange function takes the form

$$L(x,w) := \sum_{i,j} c_{ij} x_{ij} + \sum_{k \in K} w_k \left(1 - \sum_{i \in S_k, j \in \overline{S}_k} x_{ij} \right).$$

The dual function becomes

$$\varphi(w) = \min\{L(x, w) : x \text{ satisfies (2) and (5)}\}\$$

and we can define the dual problem:

$$\varphi(w) \to \max, \quad w \ge 0.$$

Let $w^* \geq 0$ with

$$\varphi(w^*) \ge \varphi(w)$$
 for all $w \ge 0$.

Now we consider the duality approach of Held & Karp (cf. [2]) in the continuous form. They introduce Lagrangean multipliers for the constraints (2). We obtain:

$$\psi(u,v):=\min\Big\{\sum_{i,j}(c_{ij}-u_i-v_j)x_{ij}:x \text{ satisfies (4) and (5)}\Big\}$$

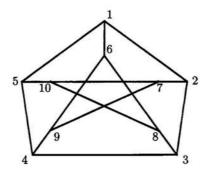
$$+\sum_i u_i+\sum_j v_j.$$

Let $\psi(u^*, v^*) \ge \psi(u, v)$ for all u, v.

Then from the classical Lagrangean theory we obtain the following statement:

COROLLARY. The optimal objective function value of the problem (1), (2), (4) and (5) is equal to $\varphi(w^*) = \psi(u^*, v^*)$.

Now we inspect the Peterson graph (cf. [3]):



We set $x'_{ij} := 1/3$ if the arc (i, j) exists, else $x'_{ij} := 0$. Obviously, the vector x' satisfies (2), (4) and (5). But the graph G(x') does not contain a tour.

Example. Let C' be a distance matrix with: if $x'_{ij} = 0$ then $c'_{ij} > 0$ else $c'_{ij} = 0$.

From the Corollary we obtain $0 = \varphi(0) = \psi(0,0)$ as the optimal objective function value for this example. The weighted optimal assignment problem solutions and the weighted optimal 1-trees do not contain a tour.

In the section "Find a tour and improving the bound" in [1] the authors suggest that the optimal assignment problem solutions contain a tour. Our example contradicts the effort to construct a tour with the constraints of type (4), in general.

References

- [1] E. Balas and N. Christofides, A restricted Lagrangean approach to the traveling salesman problem, Math. Programming 21 (1981), 19-46.
- [2] M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees, Oper. Res. 18 (1970), 1138-1162.
- [3] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, The Traveling Salesman Problem, Wiley, Chichester 1985.

P. FRANK KÖRNER MAUTHESTR. 13 D-W-7730 VS-SCHWENNINGEN GERMANY

Received on 2.9.1992