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QUANTILE INEQUALITIES FOR LINEAR COMBINATIONS
OF ORDER STATISTICS
FROM ORDERED FAMILIES OF DISTRIBUTIONS

Abstract. The paper develops some ideas of Barlow and Proschan [5].
Inequalities and bounds for quantiles of linear combinations of order statis-
tics and spacings are given when considered distributions are convex and
starshaped ordered. A characterization of the star-ordering is also given.

1. Introduction and preliminaries. Barlow and Proschan [5] have
established inequalities for moments of linear combinations of order statis-
tics from restricted classes of distributions defined by convex and starshaped
orderings. These results have been widely applied to construction of bounds
and tolerance limits for life distributions (see [5]-[7]) as well as to study-
ing robustness and stability of estimates and tests for scale parameter (see
[9]-[11] and [15]). In this paper some inequalities and bounds for quantiles
of linear combinations of order statistics and spacings are given. A char-
acterization of the star-ordering of distributions is established in the last
section.

Throughout the paper we identify probability distributions with their
distribution functions and assume that all considered distributions are con-
tinuous and strictly increasing on their supports which are intervals. We use
the term “increasing (decreasing)” for “nondecreasing (nonincreasing)”.

Let random variables X and Y have the distributions F and G on the
supports Sp and Sg respectively, where F(0) = G(0) = 0. Denote by
X1y ooy Xnn and by Yi.,,...,Y,., order statistics of samples of size n
from the distributions F' and G respectively and by F;.,, (G;.,) the distribu-
tion of X;., (Yi:n), 2 =1,...,n. The random variables U;., = X;:n — Xi—1:n
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and Vi = Yiip — Yictin, ¢ = 1,...,n, Xo.n = Yo.n = 0, are called spacings
from the distributions F and G respectively. Their respective distributions
are denoted by F;.,, and G,.,. We shall consider linear combinations of order
statistics

k(] "
(1) Xa = ZaiXi:nw Ya = Za’i}/ﬁ,:n
i=1 i=1
(analogously Xy, Yy etc.) and linear combinations of spacings
k(3 n
(2) Urn=)Y AlUin, Va=) AiVin
i=1 i=1

(analogously Ug, Vg etc.). T}ieir respective distributions are denoted by
Fo,Ga (Fp,Gp etc.) and Fa,Ga (Fp,Gy etc.).

t
We say that F is stochastically less than G (F 55 G) if and only if F(z) >
t t
G(z) for every x. We shall also use the notation X 85 Y if and only if F sg G.

It is well known that if X Sgt Y, then X;., s_<t Yin, i =1,...,n. The notation
X 2Y means F =G.

Denote by F~1! the inverse of F. Thus F~(p) is the p-quantile of the dis-
tribution F (and analogously for G=, F,;}, G;.k Frt, G Ft, GRl etc.).
It is well known that

(3) Wi o) B 1@ PR 6@ 2R s

We say that F is convez with respect to G (F <¢ Q) if and only if G™1F
is convex on Sp. F is starshaped with respect to G (F <* G) if and only if
G~'F is starshaped on Sr (i.e. G"1F(z)/z is increasing on Sp). It is easy
to see that F <® G implies F' <* G. Since

(4) G WP =G Fim; f=lann>l

(see [T]), we see that F <° G implies Fj., <® Gi., and also F <* G implies
F; n <* Gi:n-

If G(z) =1—e7%, = > 0, then F <G is equivalent to F having an
increasing failure rate (i.e. F is IFR), and G <°F is equivalent to F' having a
decreasing failure rate (F is DFR). Similarly F'<*G is equivalent to F having
an increasing failure rate average (F is IFRA) and G <* F is equivalent to
F having a decreasing failure rate average (F is DFRA) (see {7]).

In the sequel we shall use results of Barlow and Proschan [5] (Theorems
3.2, 3.4, 4.2 and 4.4) concerning linear combinations of order statistics and
spacings of the form (1) and (2). We formulate the lemmas for X, and Y,
only, but they may also be stated for Ux and Va, when their coefficients
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A;, i =1,...,n, satisfy the relation
(5) Ai=ai+aip1+...+a,, i=1,...,n.
It is easy to see that in this case X, = Up and Y = Vj.

LEMMA 1. Let F <® G. If the a; satisfy (5) and 0 < A; <1,i=1,...,n,
then F(X,) 2 G(Ya), i.e. GI1Fy(x) > G™1F(z) for every z.

LEMMA 2. Let F <°G. If the a;, i = 1,...,n, satisfy (5) and A; > 1,
i=1,...,k, for somek (1 <k <n)whileA; <0,i=k+1,...,n, then
F(Xa) gG(Ya), i.e. G;1Fa(z) < G71F(z) for every .

LEMMA 3. Let F <* G. If the a;, i = 1,...,n, satisfy (5) and if there
exists k (1 < k < n) such that 0 < A; < ... < Ay <1 and when k < n,

st
Apy1=...= A, =0, then F(Xa) < G(Ya), i.e. G3'Fa(z) > G~1F(z) for
every .
LEMMA 4. Let F<*G. Ifa; >20,i=1,...,k—1, ax 2 1 and a; = 0,
st
i=k+1,...,n (1 <k < n), then F(Xa)>G(Ya), i.e. G5 ' Fa(z) < G~1F(x)
for every z.

The next well known lemma (Barlow and Proschan [5]) gives important
properties of monotone failure rate distributions.

LEMMA 5. If F is IFR (DFR), then (n — i+ 1)Uj., is

(a) stochastically decreasing (increasing) ini=1,...,n for fized n,
(b) stochastically increasing (decreasing) in n > 1 for fixed i; moreover,
(¢) Un—1.n is stochastically decreasing (increasing) in n > 1 for fized i.

From Lemmas 1 and 2 we obtain the following results.

LEMMA 6. Let F <° G and the a;, i = 1,...,n, satisfy (5).

(a) IfA; >20,i=1,...,n, and A > 0 for some k, then
(6) AG'F(z/A) < G;'Fa(z) = G3'Fa(z), z>0,
where .Z = maxi<i<n Ai.

(b) IfA; >0 fori=1,...,k,and A; =0 fori = k+1,...,n (1 < k <n),
then
(7) AG 'F(z/A) < G 'Fa(z) = G;'Fa(z) < AG™'F(z/A), z>0,
where A = minlS;Sﬂ.Ag-
_ Proof. (a) Let B; = A;/A, i =1,...,n. It is obvious At_ha.tHﬁB(a:) =
Fa(Az) and also Gg(z) = Ga(Az) and hence Gg' Fg(z) = G Fa(Az)/A
= G;'F,(Az)/A. Since the assumptions of Lemma 1 are satisfied for B;
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and b; = a;/A, we have g‘ﬁlf‘g(m) = Gp'Fyp(z) > G~'F(z), z > 0, which
is equivalent to (6).

(b) Let now C; = A;/A, ¢; = ai/A,i=1,...,n. We have also G_'F.(z)
= Gg'Fc(z) = G5 Fa(Az) = G5 Fa(Az). The assumptions of Lemma 2
are satisfied for C; and ¢; (C; > 1, i = 1,...,k), hence G 'Fa(z) =
é;lﬁA(:c) < AG~'F(z/A), z > 0. Combining this with (6) we obtain (7).

- LEMMA 7. Let F<°G. Ifa; > 0,1 =1,...,k—1,ar >0 and a; =0,
i=k+1,...,n (1 <k <n), then

a*GF(z/a*) < G ' Fa(z) < axG 'F(z/ax), z>0,
where a* = Ele a;.

Proof. The result follows directly from Lemma 6(b). We have A = ay
and A = a*.

Notice that the function G 1F, (or ézlﬁA) lies between two convex
functions and if A = A, ie. Us = cXk.n and Va = cYj:p for some ¢ > 0
(Xa = axXk:n, Ya = arYk:n respectively), then GleA(:B) = G7'F\(z) =
axrG1F(z/ax).

Under some additional assumptions on G~ F and using a result of Birge
and Teboulle [12] we obtain another upper bound on G;'Fj.

LEMMA 8. Let F <¢ G with G™1F differentiable, let

n(z) = =G F(a)

and
(8) O<a<n(z)<pB for some a and B and every x.
Ifa; >0,i=1,...,n, and ax > 0 for some k, then

9) G 'Fa(z) < a*G‘lF(ﬁ—x), 2> 0,

aa*
- n
where a* =} ., a;.

Proof. Birge and Teboulle [12] (Theorem 2.1) have proved that if ¢ :
S — R is a convex differentiable increasing function on the interval S,

Z is a random variable taking values in S and the expectations E[¢(Z)],
E[¢'(Z)] > 0, E[Z¢'(Z)] exist and are finite then

B2y 7))
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Under our assumptions it follows from (10) that

=1 =} (1/‘3*)22;1 a; XinM(Xi:n)
—§“= PO < 0 F (SRR g s

(BN,
<G F(aa*;aaXm).

Since G F(Xi.n) 2 ¥i.n, we have

1 t
a aa
which is equivalent to (9).

Immediately from Lemmas 3 and 4 we obtain the following results.

LEMMA 9. Let F<°G. If a;,i =1,...,n, satisfy (5) and0 < A4; <... <
Ap, Axy >0, and Apy1 =...= A, =0 (1 £ k < n), then

G 'Fu(z) > axG~'F(z/ax), z>0.

LEMMA 10. Let F <*G. Ifa; 2 0,i=1,...,k—1, ax > 0 and ag+1 =
.=a,=0(1<k<n), then

G.'F.(z) < axG~'F(z/ax), z>0.

2. Inequalities for quantiles of order statistics and spacings. The
following theorem is an analogue of Theorem 3.6 of Barlow and Proschan [5].

THEOREM 1. If F <* G, then for every p € (0,1), Fi:_nl(p)/G;; ) 18
(a) decreasing in i for fized n,

(b) mcreasmg in n >t for fized i; moreover,

(c) F; . (p)/G L. () is decreasing in n > i for fized i.

Proof. (a) From (4) it follows that

G;lFin G
(11) :.nﬁ. (3’,‘) l+1nw‘l+1‘n( ), i=1,---,ﬂ‘—'1,$>0,

which is equivalent to
G;:; (p) ‘__|_1 n H—l n (P)
Fii(p) Fin (p)
Since GihnFiy1n(z)/z = G71F(x)/z is increasing in z > 0 and F lp) <
FZ1..(p), p € (0,1), we obtain from (12)
Gilp) _ Gin(P)

F (p) ~ F;n a(P)

which completes the proof.

(12) € (0,1).

i=1...,n—1, pe(0,1),
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(b) The proof is similar to that of (a) by noticing that F m+1(P) st

S:ﬂ(p)"zzl}"'in!pe(oll)'
(c) The proof is similar to that of (a) by noticing that Fy_;.,(p) <
F+l 1n+l(p) ?’_011: 3n'—1,p6(0,1).

The next theorem concerns inequalities for quantiles of linear combina-
tions of spacings.

THEOREM 2. Let F <¢G. If A; > 0 fori = 1,...,k, and A; = 0 for
i=k+1,...,n (1 <k<n), then

AFL.(0) _ FR'() _ AF,()
AGin(0) ~ Galp) T AGi, ()’

where A = min]_s,;sk Ag‘ and A = maxi<i<k Ai.

(13) €(0,1),

Proof. From Lemma 6 and (4) it follows that
FiaGrn(z/A) _ FilGa(z) < FianGun(z/A)

z/A - z = z/A B0,
which is equwalent to
(G4 (p)/A ! n A
() FaGu@le/A) FR0)  FGum@R0/A o
Gxl(p)/A GA p) cre (p)/A
It is obvious that AYj., < Va < AYi.n, hence
(15) AGi,(0) < GZ'(p) < AGLL(p), PE(01).
Since F,, G is increasing, from (14) and (15) it follows that
(16) AF;?}LG’C“(@RI (pJ/A'—)
AGR'(p)
Pt AF G G A
T Ga (p) AGA (p )/A_

Now from the assumption F' <® G and (4) we find that F,;;ka(z:]/:c is
decreasing and hence from (15) and (16) we obtain (13).

In the same way using Lemma 9 one can obtain the following result.

THEOREM 3. Let F<*G. If 0 < A1 < ... < A, A > 0, Agy1 = ... =
A, =0(1<k<n), then
Fi'() _ Ak Fi, ()
Gal(p) = A Gy,
where A = min{4; : A; > 0}.

€(0,1),
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The next three theorems give inequalities for nonnegative linear combi-
nations of order statistics.

THEOREM 4. Let F <°G. If rand s (1 < 7 < s < n) are such that

ag=...=08-1=0,8,>0,0;.20fori=r+1,...,5—1,a;, >0 and
a3+1=...=an=0 then
1 -1

o Gsn(p) Gal(P Gr ()’
where a* =Y ;_. a;.

Proof. From Lemma 7 and (4) it follows that
FnGan(z/as) < F{'Ga(2) < FraGrn(z/a®)

0
z/as = z = z/a* 220,
which is equivalent to
F;&Gsm(Ggl(P)/‘IS)
(18) - =}
Ga (p)/as
1 F-1 2o *
<F ) FenCGrn(Ca 0)/a) gy,
Ga'(p) ~ Ga (p)/a*
Since a*Y;.n, < Ya < a*Y;.,, we have
(19) a*Gra(p) < GiM(p) <" Gon(p), p€(0,1).

The function F,Gs..(z) is increasing and the functions F,!Gs..(z)/z and
F1G,.n(z)/z are decreasing, hence from (18) and (19) we obtain (17).

THEOREM 5. Let the assumptions of Theorem 4 be satisfied and in addi-
tion G™'F be differentiable. If 0 < a < £G'F(z) < B for some o and
and every z, then

(o 0\ Fal) _ F'0) _ Fa0)
(#0) (ﬁ )m(p)" Gl(p) = Gm(p) p€ 04

Proof. Using Lemma 8 in the same way as in the proof of Theorem 4
we obtain the inequality

Fin e
a 8_1;(}7) < il(p) ) pE (011)
B Gan(p) ~ G3'(p)
Combining this with (17) we have (20).
From Lemma 10 one can easily obtain the following result.
THEOREM 6. Let F<*G. If a; 20,i=1,...,k—1,ar >0 anda; =0
fori=k+1,...,n (1 < k < n), then
~1
- EE\0) | Foao)
Ga () Gk HON

p€(0,1).
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3. Bounds on quantiles of linear combinations of spacings and
order statistics. In many situations the distribution G is known, e.g. expo-
nential. Generally we assume that F' is unknown. However, we can have some
information about F: moments, bounds on the failure rate function, even
we can know F~!(p) for some p, e.g. F~1(p) = G~1(p). Such a situation is
possible if we replace elements having exponentially distributed life time by
elements which have IFR (or IFRA) life distribution with the same mission
ttme with probability p. At the worst, having some additional information
about F' we may use bounds for F~!(p) derived from results of Barlow and
Marshall [3] and Barlow and Proschan [4], [7]. By the assumption that G
and F~(p) are known for some p, using theorems of the preceding section
we give bounds on p-quantiles of linear combinations of order statistics and
spacings from the distribution F. We start from bounds on p-quantiles of
ith order statistics. The result is an analogue of the formula (3.7) of [5].

THEOREM 7. If F <* G, then

-1 anp) -1 zn(p)
B Wty S ST e G

pe(0,1),i=1,...,n
Proof. It is obvious that

(23) Fi,(p) <F'p) < Foi(p), pe€(0,1).

Applying Theorem 1 we have
F' () < (P) E i:_nl—i+1 (p)
Gi_:il (p) - i n(p) G;'rt—i-i—l(p)

where the first inequality follows from Theorem 1(b) and the second one
from Theorem 1(c). Combining (23) with (24) we obtain immediately (22).

(24) pe(0,1),i=1,...,n

From Theorem 2 and (22) the following result follows.

COROLLARY 1. Let F<°G. If A; > 0,i=1,...,k,and Ag41 = ... =
A, =0 (1<k<n), then

AGR(D) _ 51 1()—ACA(?)
NG ST W F e o

where A = minlgggk Ai and E = ma.xlg,:sk Ag.

(25) F~'(p) r€(0,1),

Analogously, from (22) and Theorems 3-6 we obtain the respective corol-
laries.
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COROLLARY 2. Let F<*G. If 0 < A; < ... < Ag, Ak > 0 and Agyy =
..=A,=0(1<k<n), then

~_ A pa, G2 (D)
Fl S__F (p) - ) pE(U,l),
a ) A Gl:ilz—k—}-l(p)
where A = min{A4; : A; > 0}.

COROLLARY 3. Let F <°G. If rand s (1 < r < s < n) are such that

ag=...=08-_-1=0,a->0,0;,20fori=r+1,...,8—1,a, >0 and
Qg1 = ... = ap =0, then
-1 -1
As (p) -1 Ga. (p)
—F 1() <Fo) S F o) 27 2€(0,1),
* s (p) Gim—ry1(P)
where a* =Y ;__ a;.

COROLLARY 4. Let the assumptions of Corollary 3 be satisfied and in
addition G='F be differentiable. If 0 < o < £G'F(z) < B for some o
and 3 and every z, then

- -1
@) P (5%) < R0 < P0G

p€ (0,1), wherea* =Y ;__ a;.

COROLLARY 5. Let F<*G. Ifa; > 0,i=1,...,k—1,axr >0anda; =0
fori=k+1,...,n (1 <k <n), then

Gz '(p)

el Peel

F7l(p) > F~(p)

st st
Remark 1. If F <G or GLF and some assumptions on the supports Sg
and Sg are satisfied, then Corollary 1 may be modified using the results of

Bartoszewicz [8] and Oja [16]. If F <°@, Fsth and S = [0,%1], S¢ = [0, 2],
0 <t <ty <oo,then F<¥P G ie F71(6) - F~1(y) <G 1(8) -G (v)
whenever 0 < 4 < § < 1, which is equivalent to G™'F(z) — z being increas-
ing (see [17]). Since (3) holds and G~ F(X;.n) — G F(Xi—1.n) = Xiin —

t
Xi—tm = Usn, i = 1,...,n, then we have (Viun, - - - Vain) > (Utns - - -» Unin)

~ Bt ~
and hence Fp <Gj for A; > 0,7 =1,...,n (for the definition and properties
of the stochastic ordering in R™ see [14]). Therefore from (25) we obtain

AGZ(p) AGZ(p)

(p)AGk I(p) m

< F{'(p) < min (F—l(p) Yery @>) :
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st
p € (0,1). Analogously, if F <G, G < F and Sp = [t,),t >0, F(0) =0

. ~ st o~
S¢ = [0,00), then G <¥*P F' and hence G4 55 Fa. Therefore from (25) we
have

AGR(p)

—1g L2 I(P) e =
G A i _'—_1—"-_!
( (2Ga ) & (p)) <Fl) < Fi) g B

AGk k( )
p€(0,1).
It is obvious that the appropriate modification of Corollary 3 is also
possible.

t
Remark 2. If F<°G and in addition FSSG and Sr = [0,1], S¢ = [0, 2],
0 < t; <ty < 00, we have F <4%P G and hence %G_IF(:;) > 1, provided

st
that G~1F is differentiable. This also implies Fo<Gg fora; > 0,i=1,...,n.
If moreover 2G~1F(z) < f3, then the inequality (26) in Corollary 4 may
be modified as follows:

rogm3)

=1 min | F~! Ga () .
<SF7(p) < ( (p) G;;_m(p),Ga (p)),

p€ (0,1).

Remark 3. If F and G are absolutely continuous with densities f and
g respectively, then

- i (3’)
F
d:cG (=)= 9G-1F(z)
is called the generalized failure rate function (see [1], p. 242). If G(z) =
1—e™*, ¢ > 0, we have the common failure rate function

f(z)
r(z) = ——ﬁa ;

So the condition (8) means the boundedness of the failure rate function.

4. Inequalities when one distribution is exponential. If G(z) =
1—e~*, x > 0, we can obtain inequalities and bounds on quantiles of linear
combinations of spacings using a characteristic property of the exponential
distribution.

THEOREM 8. Let G(z) =1—e%, 2 > 0, and F <°G (i.e. F is IFR). If
there exist r and s (1 < r < s < n) such that A; =0 fori=1,...,r — 1,
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Ai>0fori=r+1,...,8—1, As >0and A; =0 fori=s+1,...,n, then
() _A_)M
() &) Togli-p) *
where A = max,<i<s A; and A* =Y. Ai/(n—i+1).

Proof. Considering the combinations Ua /A and Va/A we have from
Lemma 6(a)

p€01),

(27) < —(s—r+1)max (1

GAlFa(z) > AG™'F(z/A), z>0,

or equivalently

Fi'(p) _ F7'G(C3'(0)/A)
Ga'lle) = Gil(p)/A
Let now C; = A;/[(n — i + 1)A*]. The linear combinations

(28) , pe€(0,1).

8 5
Uec = ZO‘,‘(R — i+ I)Ug;;n and Vg = Zci(n_i+l)min
i=r i=r

are convex and hence

i -1 o < < — 1 .
(29) Join (n—i+1)Vim < Vo < Trgggs(n i+ 1)Viin

(and analogously for Ug). It is well known that the normalized spacings
(n—1i+1)V;., from the exponential distribution G are independent with the
same distribution G. Therefore from (29) we have

st st
Y1:3—1‘+1 S VC S Ys—r+1:s—'r+1 3

or equivalently
(30) Gy (@) SCGRP)/A" S Gliirera@), PE(0D),
since é&l(p) = é;l(p)/A*. Since F~1G(z) = F} . ,1G1s—ry1(2) is in-
creasing in « and Fy.)_, ,Gi.s—r41(2)/z is decreasing in z, from (28) and
(30) we obtain
Fi'(p) _ FitrirGrs—rt1(4°Cia_ 1 (9)/4)
GRI(P) B A*G;i—rﬂ(P)/A
AF, 1—:.-}—r+1('P)
4G, 0)
- Fl_:s—r—f—l(p) if A* S Z
] G;:—r+1(p)
which is equivalent to (27).

if A* < A,
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Remark4 Let0=4;=...=A4,_1 < A, <...< A; and A; = 0 for
i=s+1,...,n. Then (27) also holds if F is an IFRA distribution (F' <* G).
This follows from Lemma 9.

Similarly to the proof of Theorem 8, with slight modifications, one can
obtain from Lemma 6(b) the following result.

THEOREM 9. Let G(z) =1—e%, 2 > 0, and F <° G (i.e. F is IFR).

IfA; >0 fori=1,...,k, and Agy1 = ... = Ap, =0 (1 < k < n), then for
p€(0,1),
. A\ Fgl(p) ﬁxl(p) ( ‘) Fli(p)
_ < < -k 1, —
nin (‘ )10g(1 — oM = E) S T\ F ) eg(i- )

where A = minlgigk A;, A= maxij<i<k A; and A* = E:'Ll A,-/(n — i+ 1)

From Theorem 9 and (25), in the same way as in the preceding section,

one can obtain bounds on f‘; !(p) if F is an IFR distribution and F~'(p) is
known.

COROLLARY 6. Under the assumptions of Theorem 9,

(31) - F () log(%(pi)/T) max{A/4, win(1, 4/4")] < F3' (7)
_1(10)10 2(1 (p)) min|[(n — k + 1)A/A, kmax(1,A/A*)], pe€(0,1).

EXAMPLE 1. Let F' be an IFR distribution and G(z) =1 —-e~ %,z > 0.
Consider the total time on test statistic
r T
Ua = (n—i+1)(Xim — Xiztin) = ) Xitn + (0~ 1) Xrun

i=1

in the life test of the II type censoring (without replacement, until the rth
failure). It is well known that if the X; have the exponential distribution,
then 2Ua has the chi-square distribution with 2r degrees of freedom. Thus
write G (p) = x3,(p)/p- Note that A=n—r+1, A =n and A* = r.
Therefore from (31) we obtain

F~Y(p)x3,(p) n—r+l fii i 1
(32) - Siog(l — p7F) _?pm) max [—~n , max (1, = )]
~ -1 2
< Fgl(p) < —%l pe(0,1).

Barlow and Proschan [4] (Theorem 4.6) give bounds on F~(p) if F is
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an IFR distribution with the expected value u:

log(1 —
_ulog(l—p) < F-i(p) < — PIOBL=P) pe oy o1
(33) #logg—p)
pSFp) <~ >l

Thus if F~1(p) is not known but p is known one obtains from (32) and (33)
the bounds on Fjy ' (p):

(34) plog(1 —p)x3,(p)  [n-r+1 ([ m—-r+1
2log(1 — pl/7) i 4 r
~ 2
< F;l(p) S n#XQr(p) ifp S l _e—l,
2p
2
1x3,(P) n—r+1 n-r+1
= f ot
(35) 3Tog(1 — p/7) max[ - ,ma.x( y "
"'; ( ) < BA2r\E) JU’XZT(p) if_‘p >1-— e—l

Generally, if F' is IFR, then Fa need not be IFR. But if r = n, i.e.

UA—Z(n—z+1)(Xm—X, 1,;)&2).’“, ZX,,

t_

then Fa is also IFR, as a convolution of IFR distributions (see [4]). In

this case one can use the bounds (33) for f‘;l(p) with the expected value
E(Ua) = np. It is easy to see that these bounds are more exact than (34)
and (35), where r = n.

EXAMPLE 2. Let F be an IFRA distribution and G(z) =1—-e7%, 2 > 0.
Consider the (r, s)-range

UAZXS:H_XT:?‘H 1<r<s<n.

It is easy to notice that Ua = Y ., AU, where 4 = ... = A4, = 0,
Arj1=...=As =1, Ay = ... = A, = 0. Therefore from Lemma 3 we
have G, ' Fa(z) > G~'F(z), > 0, or equivalently

(36) Fil(p) < FT'G(GRl(p), pe(0,1).

It is well known that Ga = Gs_.s—r. Thus from (36) we have

FAl(p) < Fs—'rs er' —Ti8—= T(G._—'r s—--r(p)) = 3 : i s—r(p):' p € (05 1) £
Now from (22) we obtain the upper bound for the p-quantile of the (r, s)-
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range from the IFRA distribution F:

. . log(1 — pt/(e=n)
F') < F' ()8, ,

log(1 — p)

5. Characterization of the star-ordering of distributions. Lang-
berg et al. [13] have characterized the IFRA class of distributions via mono-
tonicity of E(X;.,)/ Ei:l (n—k+1)~1. Now we prove the following analogue
of their result.

THEOREM 10. Let F and G be continuous life distributions, F(0) =
G(0) = 0. Then F <* G if and only if for some p € (0,1) and infinitely
many n, F;.}(p)/G5(p) is decreasing in i < n.

Proof. The necessity part is Theorem 1(a), so we only need to prove
sufficiency. Let ¢ € (0,1) and p € (0,1) be fixed. Notice that

Fiia(p)  F7'Bry.(p)

Grga®  G'Bri.(p)’
where B[;ijm(p) is the p-quantile of the [nt]th order statistic Ry, from
the uniform distribution R(0,1), i.e.

Bintj:n(§) = P{Rpngjin < €}

It is easy to see that

; _Jo ifE<t,
nll‘ﬂgo P{R[ﬂt]:n S 6} e { 1 if £ 2 t,
which means that Rj., — t a.s. as n — oo. Therefore B[;%]m(p) — t as

n — 00. Since F~! and G~! are continuous, we have
i

Flugn(P) _ F~'(p)

(;Ejkn(p) (;_l(p)

From the assumption it follows that F[;tl]m (p)/ G[;i] . (P) is decreasing in ¢

for infinitely many n, so F~'(p)/G~*(p) is also decreasing in ¢t € (0,1),
which means that G=1F(z)/z is increasing in z > 0. Thus F <* G.

for every t € (0,1), as n — o0.
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