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A NOTE ON THE POISSON-BOLTZMANN EQUATION

In this note we complete our earlier results [4] concerning the integro-
differential equation

(1) —Au = opu(u) expu

considered in a bounded domain £2 C R?, where u(u) = ([, expu)~! and o

is a positive parameter. One of the possible physical interpretations of (1)

is to look at exp(—u) as the density of a gas in thermodynamical equilib-

rium, consisting of gravitationally interacting particles, and filling up 2. In

this case o should be identified with My /(kT'), where k is the Boltzmann

constant, T is the absolute temperature and My is the total mass of the gas.
One of the possible boundary conditions imposed upon u may be

(2) uan = 0;

however, only in case of radial symmetry (with {2 being a ball) (2) is phys-
ically acceptable. Assuming that (2 is the annulus 2 = {z : a < |z| < 1},
0 < a < 1, physically reasonable conditions are

(3) u(e) =0, /(1) =-o0.

The last condition means that the gravitational force acting at the exterior
boundary of {2 is proportional to o.

Although, in general, (2) has no direct physical interpretation, the prob-
lem (1), (2) is interesting from the mathematical point of view, due to the
fact that the existence of solution of (1), (2) depends on the geometry of {2.

It was shown in [4], by using the Pokhozhaev identity, that in the case
of star-shaped 2, the problem (1), (2) has no solution for sufficiently large
o. However, if {2 is an annulus, radially symmetric solutions of (1), (2) exist
for all positive o.

1991 Mathematics Subject Classification: Primary 35J60.
Key words and phrases: Poisson-Boltzmann equation, radially symmetric solutions.
The preparation of this paper was supported by the KBN grant 649/2/91.



592 A. Krzywicki and T. Nadzieja

Recently similar results, obtained by using variational methods, have
been presented in [1], together with another physical interpretation of the
problem (1), (2).

In [1], [4] the problem of uniqueness has not been considered. In this note
it will be shown, by applying the contraction principle, that the uniqueness
of radially symmetric solutions in spherical shells holds.

We will consider here radially symmetric solutions, defined on [a, 1], of
an equation slightly more general than (1), namely

(4) ~(r*u)' = op(u)r®f(u)

with f being a continuous positive function on R, and

u(w) = ( IO

a

together with the boundary conditions (3).

Other types of boundary conditions may be treated similarly, so we re-
strict ourselves to (3) only.

First, note that integrating (4) over [a, 1] we get u'(a) = 0, therefore

(5) u'(r) = —ou(u)r=2 f s f(u(s)) ds.

Hence for any f > 0, —or~2 < u/(r) < 0, and consequently
(6) —A<ufr) <0,
where A =o(1/a —1).

THEOREM 1. If f is Lipschitz continuous and positive on R, then for
any positive o the problem (4), (3) has a unique solution.

Proof. Let X denote the Banach space of continuous functions defined
on [a,1] with the norm

lely = sup r*~Mo(r)], veX,

refa,l

where N > 1 will be chosen later.
Integrating (5), we get the integral equation equivalent to (4), (3)

u=T;(u)
with the nonlinear operator 77 defined by

(T ()(r) = —on(w) [ he(s)f(u(s))ds,

where h,(s) = s?(1/s - 1/r).
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Assume for a moment that
(7) m< f<M

for some positive constants m, M. We will show that the operator 7, f 5
X — X is a contraction if N is sufficiently large.
Let v,w € X, and consider the difference

(T(v) = Tp(w))(r) = =0 [ he(s)((v)£(v(5)) — p(w) f(w(s))) ds.

We can write

p()f(v) — pw)f(w) = u)(F () - f(w)) + fw)(u(v) - pw)).

Due to the assumptions imposed upon f we have

| J B () 0(6)) ~ Fle)) ds| < Cllo — wll [ 5%~ ds

<CN7Yw- w]]N'rN .

For notational convenience here, as well as in the sequel, the constants
depending only on o, a, m, M, and the Lipschitz constant of f are denoted
by the same letter C.

We also have the inequality

lu(v) — p(w)| < CN7 v —w|n,

which gives the estimate

[ hef @)((v) - p(w))| < CN o= win [ b

< CN7?|lv — w|wlhallnr™ .

Therefore, whenever N > 1,

|75 (v) = Tz(w)| < Cr¥N 7w — wllw,
so we have

173 (v) = T (w)llv < N v — wlln,
and, for N sufficiently large, 7y becomes a contraction in the norm || - || n-.

We have proved our theorem under the additional assumption (7). Now,

let f be an arbitrary Lipschitz continuous and positive function. We define
a new function g such that g(z) = f(z) for —A < z <0, g(z) = f(—A) for
r < —A and g(z) = f(0) for z > 0. For the function g the corresponding

operator 7, has a unique fixed point which is also a fixed point of 7 (cf.
(6)). Moreover, it follows from (6) that 7; has no other fixed points.

Remark 1. Theorem 1 is valid for arbitrary dimensions with obvious
modifications in the proof.
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Remark 2. In the two-dimensional case with f(u) = exp u our problem
is integrable, and the existence and uniqueness may be proved using the
methods of [5].

Remark 3. The methods used in this note may be applied to obtain
the existence and uniqueness of a radially symmetric solution of the problem
considered in [5], [6].

The following version of the well known Pokhozhaev identity has been
proved in [3]: If {2 is a bounded domain in R™, and u is a solution of the
problem

—Au = g(z,u), wupe =0,
then ;
0
J (53'-) (@,v) = [ (2(V2G, 1)+ 2nG — (n — 2)ug) dz,
EYo; Q

where
u

G(z,u)= f g(z,s)ds
0
and v is the exterior unit normal vector.
Using this identity we will prove

THEOREM 2. The problem
(8) —Au=opexpu, upe=0, o>0,

where (2 is a bounded simply connected domain in the plane with C? bound-
ary, has no solution for large o.

This result generalizes and improves Theorem 3 of [4].

Proof. Using a conformal mapping T" we can map the unit disk B onto
2. If u is a solution of (8), then the function v = u o T satisfies

. oJ expv
= Jg T expv’
where J denotes the Jacobian of T.

Applying the Pokhozhaev identity to (9) we get

(10) a£ (%)2
oJ

= f (zfﬁjg&-ﬁ;(expv - 1)(VJ,z) + 4———(expv — 1)) ;
B B

(9) ~A v =0,

fBJexpu

Because the boundary of £2 is C? we have V.J € C*(R) (cf. [7]). Therefore
the right hand side of (10) can be estimated by a linear function of o.
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Since [, 8v/8v = —0, we have 0% < 2m [,5(8v/0v)?, which implies that a
solution of (9) cannot exist for sufficiently large o.
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