
PARTIAL DIFFERENTIAL EQUATIONS
BANACH CENTER PUBLICATIONS, VOLUME 27

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1992

HARMONIC MORPHISMS
AND NON-LINEAR POTENTIAL THEORY

ILPO LAINE

Department of Mathematics, University of Joensuu
P.O. Box 111, SF-80101 Joensuu, Finland

Originally, harmonic morphisms were defined as continuous mappings ϕ :
X → X ′ between harmonic spaces such that h′ ◦ ϕ remains harmonic when-
ever h′ is harmonic, see [1], p. 20. In general linear axiomatic potential theory,
one has to replace harmonic functions h′ by hyperharmonic functions u′ in this
definition, in order to obtain an interesting class of mappings, see [3], Remark 2.3.
The modified definition appears to be equivalent with the original one, provided
X ′ is a Bauer space, i.e. a harmonic space with a base consisting of regular sets,
see [3], Theorem 2.4. To extend the linear proof of this result directly into the
recent non-linear theories fails, even in the case of semi-classical non-linear con-
siderations [6]. The aim of this note is to give a modified proof which settles such
difficulties in the quasi-linear theories [4], [5].

1. Preliminaries. We assume that X, X ′ are quasi-linear harmonic spaces
in the sense of [4]. Therefore, the axioms of quasi-linearity, resolutivity, quasi-
linear positivity, completeness and Bauer convergence hold, see [4], pp. 340–342.
Moreover, we assume that the axiom of MP-sets holds; see [5], p. 123. Notations
and results from [4] and [5] will be applied, as well as standard notations from [2].
In particular, recall that an open set U ⊂ X is sufficiently small (see [4], p. 344)
if clU is contained in an open set V such that there exists a strictly positive
harmonic function h on V which belongs to the linear subsheaf V(V ), see [4],
p. 340. Finally, unless otherwise specified, we assume that X ′ is a Bauer space,
i.e. a quasi-linear harmonic space with a base consisting of regular sets. Therefore,
the Poisson modification P (u′, U ′) of a hyperharmonic function u′ on a regular,
relatively compact and sufficiently small set U ′ takes the form

(1.1) P (u′, U ′) =
{
u′ on X ′ \ U ′ ,
HU ′

u′ on U ′ .
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In fact, let {f ′α}α∈I denote the upper directed family of continuous minorants of
u′ on ∂U ′. By regularity of U ′,

lim inf
U ′3x′→y′

HU ′

u′ (x′) ≥ lim inf
U ′3x′→y′

HU ′

f ′α
(x′) = f ′α(y′)

for all y′ ∈ ∂U ′, hence

lim inf
U ′3x′→y′

HU ′

u′ (x′) ≥ sup
α∈I

f ′α(y′) = u′(y′) .

By [5], Lemma 4.2, P (u′, U ′) is hyperharmonic.
Next, we give non-linear versions of two well-known lemmas from the standard

linear theory.

Lemma 1.1. Let W ′ be a neighbourhood base of x′ ∈ X ′, consisting of suf-
ficiently small , relatively compact , regular neighbourhoods of x′, and let s′ be
hyperharmonic on a neighbourhood V ′ of x′. Then

s′(x′) = sup
W ′∈W′

HW ′

s′ (x′) .

P r o o f. See the proof of [3], Lemma 2.1. We only have to take the strictly
positive harmonic function h′ used in that proof from the corresponding linear
subsheaf.

Lemma 1.2. Let u′ be superharmonic on a sufficiently small open set in a
Bauer space X ′. Then u′ is the supremum of its finitely continuous superharmonic
minorants.

P r o o f. Clearly, u′ is the supremum of its finitely continuous minorants,
say f ′α. By [5], Lemma 4.2, and the reasoning used in the proof of [5], Propo-
sition 6.2, Rf ′α ≤ u′ is superharmonic and finitely continuous. Obviously, u′ =
supαRf ′α.

2. Harmonic morphisms

Definition 2.1. A continuous mapping ϕ : X → X ′ is called a harmonic
morphism provided u′ ◦ϕ is hyperharmonic on ϕ−1(U ′) 6= ∅ whenever U ′ ⊂ X ′ is
open and u′ is hyperharmonic on U ′.

Theorem 2.2. Let X ′ be a Bauer space. Then a continuous mapping ϕ :
X → X ′ is a harmonic morphism if and only if h′◦ϕ is harmonic on ϕ−1(U ′) 6= ∅
whenever U ′ ⊂ X ′ is open and h′ is harmonic on U ′.

P r o o f. By the sheaf property of hyperharmonic functions, we may assume
that U ′ in Definition 2.1 is sufficiently small. Let u′ be hyperharmonic on U ′.
Then

u′ = sup
n∈N

(inf(u′, nh′0)) ,

where h′0 ∈ V(V ′) for a neighbourhood V ′ of U ′. By this and Lemma 1.2, we may
assume that u′ is superharmonic and finitely continuous.
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Let U ⊂ ϕ−1(U ′) 6= ∅ be a non-empty set relatively compact in ϕ−1(U ′);
hence ϕ(clU) ⊂ U ′ is compact and non-empty. Let V′ be the collection of all
finite open covers V ′ of ϕ(clU) by regular sets which are sufficiently small and
relatively compact in U ′. Let us fix such an open cover V ′. Given V ′∈V ′, consider
the Poisson modification

(2.1) P (u′, V ′) =
{
u′ on U ′ \ V ′ ,
HV ′

u′ on V ′ ,

defined on U ′ (see (1.1)). As noted above, P (u′, V ′) is hyperharmonic on U ′. We
now define

P (u′,V ′) := inf
V ′∈V′

P (u′, V ′) .

Since V ′ is a finite collection of sets, P (u′,V ′) is hyperharmonic. By (2.1), we have

P (u′,V ′) =
{
u′ on U ′ \

⋃
V ′ ,

infV ′∈V′ HV ′

u′ on
⋃
V ′ .

Clearly, (P (u′,V ′)) ◦ ϕ is lower semicontinuous on U and

(P (u′,V ′)) ◦ ϕ = ( inf
V ′∈V′

HV ′

u′ ) ◦ ϕ = inf
V ′∈V′

(HV ′

u′ ◦ ϕ) .

Given x ∈ U , there are finitely many V ′ ∈ V ′ such that ϕ(x) ∈ V ′. Since u′ is
superharmonic, HV ′

u′ ◦ ϕ is harmonic on ϕ−1(V ′), hence (P (u′,V ′)) ◦ ϕ is hyper-
harmonic on a neighbourhood

⋂
{ϕ−1(V ′) | ϕ(x) ∈ V ′, V ′ ∈ V ′} of x. By the

sheaf property, (P (u′,V ′)) ◦ ϕ is hyperharmonic on U .
Next, we have to prove that {(P (u′,V ′)) ◦ ϕ | V ′ ∈ V′} is an upper directed

family. Let P (u′,V ′1) and P (u′,V ′2) be given, and construct a new cover W ′ ∈ V′

of ϕ(clU) as follows: Given x′ ∈ ϕ(clU), there are finitely many sets V ′ ∈ V ′1∪V ′2
such that x′ ∈ V ′. Let now W ′ := W ′x′ be a regular set such that x′ ∈ W ′ and
that clW ′ ⊂

⋂
{V ′ | x′ ∈ V ′, V ′ ∈ V ′1 ∪V ′2}. For every such V ′∈V ′1 ∪V ′2, we have

HV ′

u′ ≤ u′

on ∂W ′. By [4], Proposition 3.3,

HV ′

u′ = HW ′

HV
′

u′
≤ HW ′

u′

holds on W ′, hence

sup(P (u′,V ′1), P (u′,V ′2)) = sup( inf
V ′∈V′1

HV ′

u′ , inf
V ′∈V′2

HV ′

u′ ) ≤ HW ′

u′

on W ′. Now, we may choose a finite coverW ′∈V′ of ϕ(clU), using finitely many
of the above sets W ′x′ . Then obviously

sup((P (u′,V ′1)) ◦ ϕ, (P (u′,V ′2)) ◦ ϕ) ≤ (P (u′,W ′)) ◦ ϕ .
We still have to observe that

(2.2) u′ = sup
V′∈V′

P (u′,V ′)
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holds on ϕ(clU). In fact, if x′ ∈ ϕ(clU) and α < u′(x′), we may apply Lemma 1.1
to construct a neighbourhood W ′ of x′ such that

HW ′

u′ (x′) > α ,

W ′ being regular, sufficiently small and relatively compact in U ′. Construct now
a finite open cover V ′ ∈ V′ of ϕ(clU) such that W ′ ∈ V ′ and that x′ 6∈ clV ′ for
all other sets V ′ ∈ V ′. Then

HW ′

u′ (x′) = P (u′,V ′)(x′) ,
and (2.2) follows.

By (2.2), we now see that

u′ ◦ ϕ = ( sup
V′∈V′

P (u′,V ′)) ◦ ϕ = sup
V′∈V′

((P (u′,V ′)) ◦ ϕ)

is hyperharmonic on U , hence on ϕ−1(U ′) by the sheaf property of hyperharmonic
functions.

The following theorem may be considered as a slight non-linear improvement
of [2], Theorem 2.5.

Theorem 2.3. If ϕ : X → X ′ is a homeomorphic harmonic morphism, then
ϕ−1 : X ′ → X is a harmonic morphism. If X ′ is a Bauer space, then so is X.

P r o o f. To prove the first assertion, where it is not necessary to assume that
X ′ is a Bauer space, let h be a hyperharmonic function on an open set U ⊂ X. By
the sheaf property of hyperharmonic functions, it is no restriction to assume that
U is an MP-set. To prove that h ◦ϕ−1 is hyperharmonic on ϕ(U), let V ′ ⊂ ϕ(U)
be a resolutive set relatively compact in ϕ(U) and take v′ ∈ UV ′h◦ϕ−1 arbitrarily.
Since h ◦ ϕ−1 is lower semicontinuous, we see that

lim sup
ϕ−1(V ′)3x→y

v′ ◦ ϕ(x) = lim sup
V ′3x′→ϕ(y)

v′(x′) ≤ h ◦ ϕ−1(ϕ(y))

≤ lim inf
V ′3x′→ϕ(y)

h ◦ ϕ−1(x′) = lim inf
ϕ−1(V ′)3x→y

h(x)

holds for all y ∈ ∂ϕ−1(V ′). The comparison principle now results in v′ ◦ ϕ ≤ h
and therefore v′ ≤ h ◦ ϕ−1. Since v′ ∈ UV ′h◦ϕ−1 was arbitrary, we obtain

HV ′

h◦ϕ−1 ≤ h ◦ ϕ−1 ,

hence the assertion follows by the axiom of completeness.
Let now X ′ be a Bauer space, and let U ′ ⊂ X ′ be a regular set such that

ϕ−1(U ′) is a relatively compact MP-set. This may be assumed by the axioms
of resolutivity and MP-sets. It now suffices to prove that ϕ−1(U ′) is regular.
To this end, take f ∈ C(∂ϕ−1(U ′)). Then f ◦ ϕ−1 ∈ C(∂U ′); hence it has a
unique continuous extension h′ into clU ′, harmonic in U ′. Therefore h := h′ ◦ ϕ
is continuous on clϕ−1(U ′), equal to f on ∂ϕ−1(U ′) and harmonic on ϕ−1(U ′).
The extension h of f into clϕ−1(U ′) is unique, since ϕ−1(U ′) is an MP-set.
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