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1. This paper is devoted to the study of wave fronts of solutions of first order
symmetric systems of non-linear partial differential equations. A short commu-
nication was published in [4]. The microlocal point of view enables us to obtain
more precise information concerning the smoothness of solutions of symmetric
hyperbolic systems. Our main result is a generalization to the non-linear case of
Theorem 1.1 of Tvrii [3]. The machinery of paradifferential operators introduced
by Bony [1] together with an idea coming from [3], [2] are used.

2. The definition and main properties of paradifferential operators are assumed
to be known to the reader [1]. We will use here the same notations as in [1]. We
recall the definition of the microlocalized Sobolev space H;

DEFINITION. A distribution u € D’(X) belongs to the class H: (o), o° €
T*(X)\ 0, o° = (2°,£9), if there exists a classical properly supported pseudodif-
ferential operator a of order 0 such that a(e") # 0, au € H .(X), where H{ . is
the local Sobolev space.

We denote by W € T%(X) \ 0 an (open) closed set conical with respect to &
and having a compact base in X. Assume that Fi(z,u1,...,un,u11,. .., Uij, - ..,
Unn), 1 < j<mn,1<ik<N, are real-valued C*°-functions of their arguments
r€X,ue€RY, (uy1,...,un,) € RV and X is a domain in R™. Define a matrix

Aj = [|0Fy/Ouij(z, i(z), 0u(z))|1<i k<N -

We now formulate the main result of this paper.
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THEOREM 1. Consider the non-linear system of partial differential operators
(1) Fy(z,t(x),0u(x)) =0, 1<k<N,

i(x) = (u1,...,un), and suppose that (1) possesses a real-valued solution U €
Hio(X), s >24+n/2, such that

(i) OF)/0u;j(z, u(x), 0u(x)) = OF;/Ouk;(z, u(x),0u(x)), Vo e X,
(ii) the matriz Aj,(z) = [|0F/0usj, (x, U(x), 0u(x))|1<ik<n, * € X, is (pos-
itive) negative definite.

Suppose, moreover, that for each characteristic point o° € Charp, N OW N
{z, > 6} we have u € H (0°) for some t < 2s —2—n/2. Then u € H! ("),

mcl mcl

Vo' € Charp; N W N {x;, > &}, § = const.

We point out that conditions (i), (i) imply that the linearized system Pv =
E?:l Aj(x)Djv — iB(z)v is symmetric and positive, B, A;(z) € C1*¢(X), 1 >
g > 0. As usual,

Charp;, = {Q =(z,§) e T*(X)\O0: detZAj(:L‘)ﬁj = 0}.

2s—1—e—n/2
mcl

It is interesting to note that u € H (0"), € > 0, for each " ¢ Char p;

(see Th. 5.4 of [1]).

_ Standard considerations from the theory of paradifferential operators P €
O,(XL), o > 1, o not an integer, reduce the proof of Theorem 1 to the proof of
the following assertion.

THEOREM 2. Consider the first order paradifferential system
(2)  P(x,Du=>) Aj@)Dju—iBu=f (~P(x,Du=—f)
j=1

where P € 61,(2;), o > 1, o not an integer, Aj(x) = Aj(z), Vo € X, the Aj(z)
are real-valued N x N matrices and (Aj,(x) > 0) Aj,(z) <0, Vo € X. Assume

that u € Hiomi (X), Pu € H: (W N {zj, > 6}), and u € H! (") for each

mcl mcl

¢* € Charpy NOW N {x;, > 6}. Then
u € Ha(e), Vo € Charpi nW N {zj, >d}.

In the special case when o° € Charp; the solution u € Hf:c%(go).

3. Supposing Theorem 2 is proved and s < t we will verify Theorem 1. To
do this we apply Theorem 5.3 b) of [1] with the corresponding notations d = 1,
o=s—¢e—n/2,e>0,0=p—1 to conclude that there exists a paradifferential
operator P € 5P(Z§), o > 1, satisfying Pu € Hfjng&n/z = Pu € Hi, for
g > 0 sufficiently small, u € H

s
loc*
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The next remark will be useful later:

Letu € Hi, (X), Pue H: (W {x;, >6}), uecH > (Wn{z,, >6}) and

mcl mcl

u € H: (OW N {xz;, > 6}). Then u € HL (W N{x,, >6}).

mcl mcl

In fact, consider a classical pseudodifferential operator T € S?yo, T=1ina

small conic neighbourhood (ngbhd) of W N {z;, > ¢}, T" = 0 outside a larger

conic ngbhd of W N {z;, > 6}. Then Tu € Hiono (X), Tu € HE (OW N {z;, >

mcl

6}) and P(Tu) € H: (W n{zj, > 6}) as P(Tu) = Pu+ P((T — I)u) and

mcl

P((I —T)u) € H: 17 c HE (W N {x;, > §}) according to Corollary 3.5 of [1].

mcl mcl

Thus Tu € H: (W {zj, >6}) = weH (Wn{zj, >d}). To complete the

mcl mcl
proof of Theorem 1 we observe that there exists a uniquely determined integer

k > 1 for which (k—1)/2 <t —s < k/2 and therefore
t—k/2<s<t—(k—1)/2<t—(k—2)/2<...<t—1/2<t

Setting #' =t — (k — 1)/2 we get u € H_ C HL/? = H 12 pue M C

Hig ™" = Moy u € M (OW N {a, 2 0}). S0 w € Hi (W 0 {a;, > 6) as
s <t Putnow t" =t— (k—2)/2 =t +1/2. Obviously u € H'.  *(W{x;, >
0}), Pu € Hip, u € HE(OW N {zj, > 6}).

The remark above and s < ' <t give us u € H% (W N {x;, > §}). Thus we
conclude that u € HE (W N {z;, > §}).

mcl

4. Proof of Theorem 2. To simplify the proof we will assume that W =
AxTe, A=la1,01] X ... X [an,by], It is a closed cone in T*(R™) and A (z) < 0.
Choose r; € Cg°(R) so that k; = 1 on [a;, b;], &) (z;) = Iij_(l'j)—lij(l'j), 0< /ﬁ:;—,
0 <kj,zj <ajinsuppk;, z; > b; in supp /{j and 6 = a7 but no information

on the H! -smoothness of u at {z1 = a1} x I is given. For A, d; > 0 put

Q = Qxs, =" k(x)(1+ [6:£) R (€),
orde h = t and conesupp @y, is concentrated in a small conic ngbhd of W.
Obviously, Qx5 € Sf’_OQ and the factor s(z)(1 + (61£])?) ™" is bounded in X9,
S%O, Vo > 0, o not an integer, uniformly with respect to ¢; € (0,1] and k(z) =
k1(x) ... kn(z). Thus for each fixed A > 0 and arbitrary 61 € (0,1], Qx5, € ST .
Consider now the identity

(QP’LL, QU)L2 = (PQanu)Lz + ([Q,P]u, QU)LQ‘
It is legitimate as Pu € H! (W) = QPu € H2,,,,(X), Qu € Hz’é?np(X) (in our

mcl comp

notations W =W n{z; > d}). So

(3) Im(QPu7 Qu)LQ = Im(PQua QU)LQ =+ Im([Qv P]’LL, QU)LQ .
We first estimate

(4) I'=Im(PQu, Qu)L,,
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i.e. we have to consider the terms (A;(z)D;Qu, Qu), (B(z)Qu,Qu) ((-, - )r, =
(-, -)). It can easily be seen that
|(B(2)Qu, Qu)| < C1[|Qull§ + Cuallull?_, /2
where C is an absolute constant and C7) depends on A > 0 but does not depend
on 1 € (0,1]. Now,
(4;(2)D;Qu, Qu) = (D; A;Qu, Qu) + ([A;, D;j]Qu, Qu)
= (Qu, A;D;Qu) + ([4;, Dj]Qu, Qu),
ie. 2[Im(A;D;Qu,Qu)| < |([4;,D;]Qu,Qu)|. The principal symbol of the
commutator [A;, D;] is —i{A;,&} = i0A;(x)/0¢; € X0 |, o0 —1 > 0, ie.
Im |(A4;D;Qu, Qu)| < C3]|Qul|3. In other words,
() 1] < C3]|Qullg + Caxllullf_, -
To estimate I/ = Im([Q, Plu, Qu) we use Theorem 3.2 of [1]. Since the principal
symbol of [@, P] is (1/i){Q, p1} we have
1T = —Re({Q, p1}u, Qu) + Cay[[ull?, 10y /o

Obviously

n

—{Q.pi} == 3 (0Q/06)(94;(x)/dx)g; + 3_(0Q/0w;)A;(x)

G k=1
and therefore
Q)01 = A\Q + e 1 (dk/0x1) (1 + |6:£)%) ~Lh(£).

The inequality 0x/0x1 > —k] (71)ka ... Kk, = —k1(x) will enable us to apply the
sharp Garding estimate. In fact,

Re((8Q/0x1)Aru, Qu) = ARe(QAu, Qu) + Re(Qt Ayu, Qu),

where QF = e 1 (9k/0x1)(1 + |0:1€|2)"th(€). Tt is clear that (QAju,Qu) =
(AlQua QU) + ([Qa Al]uv Qu)7 thus

(6) Re(QAru, Qu) < —Cu||Qulld + Canllullf_1 )z, Cu>0.
On the other hand,
(7) Re(@+A1u, Qu) < Re(A1(x)k(0k/0x1)v,v) + C’5>\||th2_1/2

where v = 1 h(D)(1 + |6, D|?)~u. The commutator
(A1, ke ™1 (0k/Ox1)h(D)(1 + |6, D*) 7]

is bounded in Ef;ll uniformly with respect to §; > 0. We apply the sharp Garding
inequality to the symmetric non-positive matrix Ax(9x/0x1) + kT A1 and we
get

(8) Re(k(0k/0x1)A1v,v) < —Re(kr™ Ajv,v) + C’6,\Hu||f_u/2,
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with p < o0/2if 1 <o <2and p=11if ¢ > 2 (see [1]). Then
9) (ot Avo, )] < (Avso, 5 0)] + [([As, Ko, 5+0)

< Cr(|lwvll - lsToll + vl -1 - T o])

< C7|1Qull - 1Q ull + Coallulle—1 - |Q T ull
and Qt = Qidl is defined as @y 5, with x replaced by x*. Note that ||Q"u|| < oo
as Q1 (z,&) concentrates in a ngbhd of {z1 = b1} x I't and u € H! ,(OW N{xy >
5}), 6= aj.

By the identity 0Q/0x; = e 1 (dr/dx;)(1 + |6:1€]%) 7 (), § > 2, 0Q/0x;
concentrates in a ngbhd of {z; = a;} xI¢, {z; = b;} xIr and simple computations
show that
(10)  [(8Q/0z;(x, D)A;(x)u, Qu)l

< [(4;(0Q/0z;)u, Qu)| + [([4;5, 0Q/0x5]u, Qu)|

< Osallullae, owngz>sp [Qullo + Coxllulle-1(|Qullg
< 1Qull§ + Crox(llulli—y + lullze_ owngar>a)-

Now we will estimate ((0A;/0xy)D;(0Q/0¢)(x, D)u, Qu). To do this two
terms will be considered, namely
(0A;/0zy)e " k(x) D (Oh)0EL) (D) (1 + |61D*) " u, Qu),
(0A;/0zy)e ™ k(x)h(D)D;63 Dy, (1 + |61 D|*) "%u, Qu).

11T = (
11T, = (
Obviously, §2&x(1 + 67|€]?)72 is uniformly bounded in Sié’o, Eg_l, 0> 0, o not
an integer, V6; € (0,1]. The observations that 67¢;&,(1 + [61£]?)~! is uniformly
bounded in S{ ; with respect to §; > 0 and

e k(2)h(D)03D; Dy(1 + |81 D*)"%u = Q(61D; Dy (1 + |6, D|?) " u)
enable us to conclude that

(11) [I115] < Cu|Qulfg + Cruallullf_y o

The cut-off symbol h(€) can be written as h(§) = |£|*¢(§), ordec =10, 0 < ¢ <1,
¢ =1 in a conic ngbhd of I and ¢ = 0 outside a larger conic ngbhd of I¢. The
inequality

(12) |0h/0&1> < 2t%(h?/|€%) + 2(¢[**0c/ 0k |
will be useful later. Thus

I 5.D;(0h/9€k) (D)(1 + 61D[*) " ullo
< |1D;(0h/0gk)(D)(1 + 181 D*) ™ (e k(z)u) o + Craa[ulle-1-
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On the other hand, according to (12),
1D;(0h/0€k)(D) (1 + |8: D)~ (e il )u) |1

= [ €0n/06)2(1 + 662X w(x)u) [P (€) de
< 28%(|A(D)(1 + 8, D%) " (& w3

+2 [ €2 (e/08k)? (X ki (x)u) 2 (€) dE
< 26| Qul[3 + Chaallull?—y + 2| D" (/D) (e k) |5

< 2t2HQuH3 + C13AHUHf,1 + CMAHu”%fml(avvm{mlzm)-

We remind the reader that ordg |£|'T(0c/0&) = t and k(z)(Dc/OE)) concentrates
in a conic ngbhd of A x 0I;. In other words,

(13) 11111 < Cis]|Qull§ + Crex(llullf-y + llullie  owngay=s1))-

Combining the identity (3) and the corresponding estimates (5) for I, (6)—(11),
(13) for I1 and

Im(QPu, Qu) > —2||QPullg — 2| Qull3

we come to the conclusion that
(14) (A= O)|Qullf < 2|QPullj + CllQ* ull3
+K>\(||U||§—1/2 + HuH?—u/Q + ||“”§+(1—a)/2 + ”uH?-{thl(BWﬁ{xlzé}))'

The constant C' does not depend on A > 0 and §; > 0, and K depends on A > 0
only. Taking A sufficiently large and letting §; — 0 we prove Theorem 2 for o > 2.

To consider the case 1 < 0 < 2 we have to modify the proof of our Theorem 2
assuming Pu € H! , u € H 4(OW) and u € HLSY (X), 0 < < 1/2, instead of
v =1/2 etc.
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