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Abstract. In the first part of the paper we study some properties of eigenelements of linear
selfadjoint pencils Lu = λBu. In the second part we apply these results to the investigation of
some boundary value problems for mixed type second order operator-differential equations.

In this paper we consider linear pencils of the form

(1) Lu = λBu

where B, L are selfadjoint operators in a complex separable Hilbert space E.
We suppose that L is a positive operator, though almost the same results can
be obtained in the case when the maximal nonpositive L-invariant subspace is
finite-dimensional. Let D(L) ⊂ E be the domain of L and let H1 be the com-
pletion of D(L) with respect to the norm ‖u‖H1 = (Lu, u)1/2. We suppose that
D(L) ⊂ D(B) and that there are dense injections of H1 in E and D(|B|1/2). We
define F1 = (H1 ∩ kerB)⊥ (the orthogonal complement in H1) and we let F0 be
the completion of F1 with respect to the norm ‖u‖F0 = ‖ |B|1/2u‖E . The problem
is whether or not the eigenfunctions of the problem (1) constitute a Riesz (un-
conditional) basis in F0. The definition and some properties of Riesz bases can
be found in [2]. This problem arises in consideration of boundary value problems
for mixed type equations [9] and in the theory of selfadjoint operator pencils [11].
Apparently, the first papers devoted to this problem were [6, 1]. We also mention
the papers [7, 8, 10].

The aim of the first part of this paper is to generalize some of the sufficient
conditions from [1,10]. In the second part, we shall apply these results to some
boundary value problems for mixed type second order operator-differential equa-

[373]



374 S. G. PYATKOV

tions. There are numerous papers devoted to such equations. In connection with
our results we refer to [3, 4] where the existence and uniqueness of generalized
solutions of a boundary value problem was proved. In this paper we shall prove
the existence and uniqueness of solutions for two boundary value problems (the
second is actually dual to the first). One of these problems was considered in
[3, 4]. We shall also investigate the question of the smoothness of solutions in
dependence on that of the data. This problem is not so simple as in the case of
hyperbolic or elliptic equations.

1. Preliminary results. Let E+, E−, E0 be the spectral projectors of B
corresponding to the positive and negative parts of the spectrum of B and to
kerB. Thus if U = E+ − E− then UB = |B| = BU . The operator U is an
isomorphism of F0 onto F0 and U2 = I. We define F−1 to be the completion of
F0 with respect to the norm

‖u‖F = ‖L−1Bu‖F = ‖Bu‖H′

where H ′ is the completion of E with respect to the norm

‖ϕ‖H′ = sup
ψ∈H1

|(ϕ,ψ)|
‖ψ‖H1

.

Throughout this paper ( , ) denotes the inner product in E. An element u ∈ F1

is an eigenfunction of the problem (1) if the equality (1) holds in H ′ for some
λ 6= 0. Under our hypotheses the operator L−1B is bounded from F1 to F1 and
we assume that it is completely continuous. Let {ϕ±i } be the eigenfunctions of
the problem (1) corresponding to the positive (λ+

i ) and negative (λ−i ) eigenvalues.
We assume that {λ+

i }, {−λ
−
i } are nondecreasing sequences.

R e m a r k 1. We note that if kerB ∩H1 = {0} then F1 coincides with H1.
Moreover, the case F1 6= H1 can be reduced to the case F1 = H1. In fact, we take
the orthogonal projector P in H1 on F1 and define B1 = BP +(I−P ∗)B1(I−P ),
where B1 is any selfadjoint operator such that H1 ⊂ D(|B1|1/2) and the condition
B1v = 0 (v ∈ kerB ∩ H1) implies that v = 0; P ∗ is the E-adjoint to P . Then
B1v = Bv for any v ∈ F1, F1 is an invariant subspace of L−1B1 : H1 → H1 and
kerB ∩H1 = {0}.

For convenience of the reader we now present some results from [10]. The
next four theorems can be found there. Let L(H,H) be the set of bounded linear
operators from H to H.

Theorem 1. The eigenfunctions of the problem (1) normalized by ‖ϕ±i ‖F0 = 1
constitute a Riesz basis in F0 if and only if [F1, F−1]1/2 = F0 (here [F1, F−1]1/2
is defined by the complex interpolation method [5, 12]).

Theorem 2. Let Fs = [F1, F0]1−s. Suppose that there exists s > 0 such that
U ∈ L(Fs, Fs). Then [F1, F−1]1/2 = F0.
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Let M = E+F , N = E−F .

Theorem 3. Suppose that in F0 there exists a projector P on M or N such
that for some s > 0, P, P ∗ ∈ L(Fs, Fs) ∩ L(F0, F0) (P ∗ is the F0-adjoint). Then
there exists s0 > 0 such that U,E+, E− ∈ L(Fs0 , Fs0).

Theorem 3 was formulated in [10] as Lemma 2.3 for s = 1. It is easy to see
that for s < 1 the proof is the same.

In the sequel we assume that (Bϕ±i , ϕ
±
j ) = ±δij . We define

P±f = ±
∑

(Bf, ϕ±i )ϕ±i .

If [F1, F−1]1/2 = F0 then any f ∈ F0 can be represented in the form f =∑∞
i=1[(Bf, ϕ+

i )ϕ+
i − (Bf, ϕ−i )ϕ−i ] = (P+ + P−)f . This series converges in F0,

and we can introduce an equivalent norm in F0 by setting (see [10])

‖f‖20 =
∞∑
i=1

[ |(Bf, ϕ+
i )|2 + |(Bf, ϕ−i )2| ].

Define F±0 = {u ∈ F0 : P±u = u}.

Theorem 4. If [F1, F−1]1/2 = F0 then there exist P±0 ∈ L(F0, F
±
0 ) such that

E±(v − P±0 v) = 0 (∀v ∈ F0), P±0 v = v, P±0 E
±v = v (∀v ∈ F±0 ).

Now we shall give some new sufficient conditions which imply that [F1, F−1]1/2
= F0. They extend the conditions used in [1]. First we list some hypotheses.

1. There exists a space H1 ⊂ D(|B|1/2) and linear operators X ∈ L(H1, H1),
Y ∈ L(H1, H1) such that for some c > 0

(a) ‖E+ϕ‖F0 ≤ c‖Xϕ‖F0 (∀ϕ ∈ H1),
(b) (|B|Xϕ,ψ) = (Bϕ, Y ψ) (∀ϕ ∈ H1, ∀ψ ∈ H1).

2. There exists a spaceH1 ⊂ D(|B|1/2) and linear operatorsX,Y ∈ L(H1, H1)
such that

(a) ‖E+ϕ‖ ≤ c‖Xϕ‖ (∀ϕ ∈ H1),
(b) (|B|Xϕ,ψ) = (Bϕ, Y ψ) (∀ϕ,ψ ∈ H1),
(c) if F 1 = (H1 ∩ kerB)⊥ then for some s > 0

F s = (F 1, F0)1−s = (F1, F0)1−s.

3. There exist a space H1 ⊂ D(|B|1/2), H1 ⊂ H1 and linear operators
P,X, Y ∈ L(H1, H1) such that P + Y X ∈ L(H1, H1), ∆P ⊂ H1 ∩ kerB (∆P
being the range of P ) and

(a) ‖E+ϕ‖F0 ≤ c‖Xϕ‖F0 (∀ϕ ∈ H1),
(b) (|B|Xϕ,ψ) = (Bϕ, Y ψ) (∀ϕ,ψ ∈ H1).

Theorem 5. Under any of these hypotheses [F1, F−1]1/2 = F0.
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P r o o f. The proof in all cases is almost the same. For example, assume hy-
pothesis 3. We define

W = {u ∈ L2(0,∞;F1) : du/dt ∈ L2(0,∞;F−1)}.
Then a ∈ [F1, F−1]1/2 if and only if there exists u ∈ W such that u(0) = a (see
[5]) and we can set

‖a‖[F1,F−1]1/2
= inf
u(0)=a

‖u‖W = inf
(
‖u‖2L2(0,∞;F1)

+
∥∥∥∥dudt

∥∥∥∥2

L2(0,∞;F−1)

)1/2

.

Let us prove the injection [F1, F−1]1/2 ⊂ F0. From this it already follows
that [F1, F−1]1/2 = F0 (see the proof of Theorem 2.2 in [10], or [1]). Let
a ∈ [F1, F−1]1/2. There exists u ∈ W such that u(0) = a. There also exists a se-
quence un ∈ C∞([0,∞];F1) [5] such that suppun is compact and ‖un−u‖W → 0
as n→∞. Let an = un(0) ∈ F1. We have (with B+ = E+B)

(B+an, an) = ‖E+an‖2F0
≤ c2‖Xun(0)‖2 = −2c2

∞∫
0

Re(BXu′n(t), Xun(t)) dt

= −2c2
∞∫
0

Re(Bu′n, (Y X + P )un) dt ≤ c1‖u′n‖F−1‖(Y X + P )un‖F1 ≤ c2‖un‖2W .

On the other hand,

−(Ban, an) = 2
∞∫
0

Re(Bu′n(t), u′n(t)) dt ≤ c3‖un‖2W .

Using these inequalities we get

(B−an, an) ≤ c4‖un‖2W , B− = E−B.

Thus, we obtain
‖an‖2F0

≤ (|B|an, an) ≤ c‖un‖2W .
Hence we deduce that a = u(0) ∈ F0, i.e. [F1, F−1]1/2 = F0.

R e m a r k 2. We can use E− instead of E+ in hypotheses 1–3. From now
on, we assume that [F1, F−1]1/2 = F0. Let C([0, 1];H) (H a Hilbert space) be the
space of continuous functions from [0, 1] to H. Let

‖ϕ‖2s =
∞∑
n=1

(|(Bϕ,ϕ+
n )|2|λ+

n |s + |(Bϕ,ϕ−n )|2|λ−n |s).

If s > 0 we set Fs = {v ∈ F0 : ‖v‖s < ∞} and if s < 0 we define Fs as the
completion of F0 with respect to the norm ‖ ‖s. As already noted, the norms
‖ ‖F0 , ‖ ‖0 are equivalent. We consider B−1L as an operator from F0 to F0. It is
defined at least on Lin{ϕ±i } by means of the equality

B−1L
(∑

(c+i ϕ
+
i + c−i ϕ

−
i )
)

=
∑

(c+i λ
+
i ϕ

+
i + c−i λ

−
i ϕ
−
i ).
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It is easy to see that it is closable. So we can assume that S = B−1L is closed
and in this case it is an isomorphism of F2 and F0. Thus, by induction we can
introduce in Fs (s an integer, s > 0) equivalent norms

‖ϕ‖2Fk
=

[k/2]∑
p=0

‖Spϕ‖2Fk−2p
.

Also, S is an isomorphism of Fs and Fs−2 with S−1 = L−1B.

2. Boundary value problems for mixed type operator-differential
equations. On the interval (0, 1) we consider the equation

(2) Butt − Lu = Bf

with one of the following boundary conditions:

(3)
(4)

u(0) = u0,

ut(0) = v0,

E−(ut(0)− v0) = 0,
E−(u(0)− u0) = 0,

E+(ut(1)− v1) = 0,
E+(u(1)− u1) = 0.

As mentioned above we assume that [F1, F−1]1/2 = F0.

Theorem 6. Let f ∈ C([0, 1];F0), u0 ∈ F1, v0, v1 ∈ F0. Then there exists a
unique solution of the problem (2), (3) such that

dku

dtk
= u(k)(t) ∈ C([0, 1];F1−k), k = 0, 1, 2.

P r o o f. We look for a solution of the problem (2), (3) in the form

u =
∞∑
k=1

u+
k (t)ϕ+

k +
∞∑
k=1

u−k (t)ϕ−k = P+u+ P−u.

Then u satisfies the boundary conditions

(5) P+u(0) = u0, P+ut(1) = u1, P−u(0) = v0, P−ut(0) = v1.

Each u±k satisfies the equation

(6) u±ktt − λ
±
k u
±
k = f±k (t) = ±(Bf, ϕ±k )

and the boundary conditions

(7)
u+
k (0) = u0

k = (Bu0, ϕ+
k ),

u−k (0) = v0
k = −(Bv0, ϕ−k ),

u+
kt(1) = u1

k = (Bu1, ϕ+
k ),

u−kt(0) = −(Bv1, ϕ−k ) = v1
k.

From (6), (7) we get

(8) u+
k (0) = c1k exp(

√
λ+
k (t− 1)) + c2k exp(−

√
λ+
k t)

−
t∫

0

exp(−
√
λ+
k (t− ξ))

2
√
λ+
k

f+
k (ξ) dξ −

1∫
t

exp(
√
λ+
k (t− ξ))

2
√
λ+
k

f+
k (ξ) dξ,
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c1k =
u0
k

2 ch(
√
λ+
k )

+
u1
k exp(

√
λ+
k )

2
√
λ+
k ch(

√
λ+
k )
−

1∫
0

sh(
√
λ+
k ξ)

2
√
λ+
k ch(

√
λ+
k )
f+
k (ξ) dξ,

c2k =
u0
k exp(

√
λ+
k )

2 ch(
√
λ+
k )
− u1

k

2
√
λ+
k ch(

√
λ+
k )

+
1∫

0

ch(
√
λ+
k (1− ξ))

2
√
λ+
k ch(

√
λ+
k )
f+
k (ξ) dξ,

(9) u−k (t) = v0
k cos(

√
|λ−k |t) + v1

k sin(
√
|λ−k |t) +

t∫
0

sin(
√
|λ−k |(t− ξ))√
|λ−k |

f−k (ξ) dξ.

From (3), (8), (9) it follows that u0 = P+u0, v0 = P−u0, and

(10) E−(v1 +B1u
1) = E−(v0 + g1), E+(u1 +B2v

1) = E+(v1 + g2),

where

B1u
1 =

∞∑
k=1

ϕ+
k u

1
k/ ch(

√
λ+
k ), B2v

1 =
∞∑
k=1

ϕ−k v
1
k cos(

√
|λ−k |),

(Bg1, ϕ−k ) = 0, (Bg1, ϕ+
k ) =

u0
k sh(

√
λ+
k )

ch(
√
λ+
k )

+
1∫

0

ch(
√
λ+
k (ξ − 1))

ch(
√
λ+
k )

f+
k (ξ) dξ,

(Bg2, ϕ+
k ) = 0, (Bg2, ϕ−k ) = v0

k

√
|λ−k | sin(

√
|λ−k |)

−
1∫

0

cos(
√
|λ−k |(1− ξ))f

−
k (ξ) dξ.

By the definition of the norm in F0 we find that g1, g2 ∈ F0.
We now show that there is at most one solution of the system (10) in F0.

There exist α, β ∈ F0 such that E−α = 0, E+β = 0 and

v1 +B1u
1 = α, u1 +B2v

1 = β.

Then v1 = P−α, u1 = P+β and P+α = B1P
+β, P−β = B2P

−α. Hence

(11) ‖P+α‖20 + ‖P−β‖20 ≤ ‖B1P
+β‖20 + ‖B2P

−α‖20 ≤ ‖P+β‖20 + ‖P−α‖20.
On the other hand, (Bα,α) = ‖P+α‖20+‖P−α‖20, −(Bβ, β) = ‖P−β‖20−‖P+β‖20.
Thus from (11) it follows that (Bα,α) − (Bβ, β) ≤ 0, i.e. α = β = 0. From the
second equation in (10) we get

u1 + P+
0 E

+B2v
1 = P+

0 E
+(v1 + g2).

The first equation in (10) yields

(12) E−(v1 −B1P
+
0 E

+B2P
−
0 E

−v1) = E−(v0 + g1)− E−B1P
+
0 (E+(v1 + g2)).

The second equation in (10) can be rewritten in the form

E+u1 + E+B2P
−
0 E

−v1 = E+(v1 + g2).
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So setting α = E−v1, β = E+u1 we obtain an equivalent system

(13) α−B−α = g−, β +B+α = g+.

By uniqueness of solutions for (10), ker(I − B−) = {0} (B− : F0 → F0). On the
other hand, λ+

i → ∞ as i → ∞ (L−1B is completely continuous). This implies
that B1 and also B− are completely continuous as operators from F0 in F0. Thus,
a solution of systems (13) and (10) exists and v1, u1∈F0. Using the representation
(8), (9) of the solution u(t) we can easily check that u(k)(t)∈C([0, 1];F1−k).

Theorem 7. Let f ∈ C([0, 1];F−1), v0∈F−1, u0, u1∈F0. Then there exists a
unique solution of the problem (2), (4) such that u(k) ∈ C([0, 1];F−k), k = 0, 1, 2.

The proof is analogous to that of Theorem 6. We get here for P−u(0), P+u(1)
a system analogous to (10).

The question arises of the smoothness of the solutions in dependence on the
smoothness of the data. Generally speaking, the smoothness of the solutions does
not increase with the increase of the smoothness of the data. We need some
orthogonality conditions if we want to say something about the smoothness of
the solutions. These can be formulated in terms of the eigenfunctions of the
problem (1) [8]. However, it seems simpler to formulate them in terms of some
special solutions of the adjoint problem. We define

J3(u0, v0, v1, f, g) = − (Sku0, S
−1gt(1))F1 + (BSkv1, g(0))

− (BSkv0, g(1))−
1∫

0

(BSkf(t), g(1− t)) dt,

J4(v0, u0, u1, f, g) = (BSku1, gt(1))− (BSku0, gt(0))

− (Sk−1v0, g(1))F1 −
1∫

0

(Sk−1f(t), g(1− t))F1 dt,

Ak = {(g0, g1) : g0, g1 ∈ D(Sk), E+Skg1 = 0, E−Skg0 = 0}.

Theorem 8. Let u0 ∈ F2k+1 and f ∈ C([0, 1];F2k) (k = 0, 1, 2, . . .). Then
there exists a solution u of the problem (2), (3) with u(n) ∈ C([0, 1];F2k+1−n)
(n = 0, 1, 2) if and only if for some v0, v1 ∈ F2k such that E−(v0 − v0) = 0,
E+(v1 − v0) = 0 we have

(14) J3(u0, v0, v1, f, g) = 0

for any solution g of the problem (2), (4) with data v0 = 0, f ≡ 0, (u0, u1) ∈
Ak. If such a solution exists and in addition dnf/dtn ∈ C([0, 1];F2k+1−n) (n =
1, . . . , 2k + 1) then u(n) ∈ C([0, 1];F2k+1−n) (n = 1, . . . , 2k + 1).

R e m a r k 3. If gi (i = 1, 2) are the solutions of the problem (2), (4) with
data vi0 = 0, f i ≡ 0, ui0, ui1 and E−(u1

0 − u2
0) = 0, E+(u1

1 − u2
1) = 0 then g1 ≡ g2.

This is a consequence of Theorem 7.
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R e m a r k 4. Suppose that the operator L has the property that if E±g = 0
and g ∈ D(S) then E±Sg = 0. In this case if (14) is valid for some v0, v1 then it
holds for any v0, v1 ∈ D(Sk) such that E−(v0 − v0) = 0, E+(v1 − v1) = 0. This
means that the orthogonality conditions (14) do not depend on E+v0, E−v1.

P r o o f. Suppose that (14) holds for some v0, v1. Let v be a solution of the prob-
lem (2), (3) with v(0) = u0 = Sku0, E−(vt(0)−Skv0) = 0, E+(vt(1)− Skv1) = 0,
f = Skf . We set u = S−kv. Then u(n) ∈ C([0, 1];F2k+1−n) (n = 0, 1, 2). Let

uj(t) =
j∑

k=1

[(Bu(t), ϕ+
k )ϕ+

k − (Bu(t), ϕ−k )ϕ−k ].

Then uj ∈ C2([0, 1];F2k+2) and

‖u(n)
j − u(n)‖C([0,1];F2k+1−n) + ‖Sk(f − fj)‖C([0,1];F0) → 0 as j →∞,

where fj = ujtt − Suj . Integrating by parts in
1∫

0

(B(Skujtt − Sk+1uj), g(1− t)) dt =
1∫

0

(Skfj , g(1− t)) dt,

where g is a solution of the problem (2), (4) with the data indicated earlier, we
get

J3(u0j , v0, v1, fj , g) + (BSk(ujt(1)− v1), g(0))− (BSk(ujt(0)− v0), g(1)) = 0

(u0j = uj(0)). Letting j →∞ gives

(15) J3(u0, v0, v1, f, g) + (BSk(ut(1)− v1), g(0))− (BSk(ut(0)− v0), g(1)) = 0.

From (14) and from E+Sk(ut(1)− v1) = 0, E−Sk(ut(0)− v0) = 0 it follows that

(16) (B(ut(1)− v1), Skg0)− (B(ut(0)− v0), Skg1) = 0.

From the definition of Ak and (16) we obtain E+(ut(1)−v1) = 0, E−(ut(0)−v0) =
0. So u is a smooth solution of the problem (2), (3).

Suppose now that u is a solution of the problem (2), (3) of class mentioned in
the theorem. Then repeating the previous arguments we get (15) where v0 =ut(0),
v1 = ut(1) and hence (14) holds. The last assertion of the theorem follows directly
from (2).

Analogous arguments are used in the proof of the next theorem.

Theorem 9. Let f ∈ C([0, 1];F2k−1), v1 ∈ F2k−1. Then a solution u of the
problem (2), (4) with u(n) ∈ C([0, 1];F2k−n) (n = 0, 1, 2) exists if and only if for
some u0, u1 ∈ F2k such that E−(u0 − u0) = 0, E+(u1 − u1) = 0 we have

(17) J4(v0, u0, u1, f, g) = 0

for any solution g of the problem (2), (3) with data f ≡ 0, u0 = 0, v0 = g0,
v1 = g1, (g0, g1) ∈ Ak. If we have (17) and in addition f (n) ∈ C([0, 1];F2k−n−2)
(n = 1, . . . , 2k) then u(n) ∈ C([0, 1];F2k−n) (n = 0, 1, . . . , 2k + 2).
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3. Examples. Here we do not give examples of application of Theorems 1–3
and 5. These theorems are applicable to a wide class of differential operators L
if B is the operator of multiplication by some function g changing sign in the
domain where L is defined. Numerous examples can be found in [1, 7, 8, 10].
Tricomi’s equation is a well-known example. In the rectangle D = [0, 1]× [−1, 1]
we consider the equation

(18) xuyy + uxx = f

with boundary conditions

(19)
u(x, 0) = 0 (x ∈ (−1, 1)), uy(x, 0) = v0(x) (x < 0),
uy(x, 1) = v1(x) (x > 0), u(−1, y) = u(1, y) = 0 (y ∈ (−1, 1)).

We consider the boundary value problem (2), (3). Here L = d2/dx2 and D(L) =
W 2

2 (−1, 1) ∩W
◦

1
2(−1, 1) (the definitions of the function spaces used here can be

found in [12]). The space E coincides with L2(−1, 1), F1 =W
◦

1
2(−1, 1), and F0

is the space of measurable functions with finite norm ‖u‖2F0
=
∫ 1

−1
|x||u|2 dx.

Theorems 1–3 and 5 are applicable here [10, 1] and the eigenfunctions of the
problem (1) constitute a Riesz basis in F0. Fk is the set of all u ∈ F0 with

1∫
−1

[k/2]∑
m=0

∣∣∣∣( 1
x

∂2

∂x2

)m
u

∣∣∣∣2 dx+
∥∥∥∥( 1

x

∂2

∂x2

)[k/2]

u

∥∥∥∥
Fk−[k/2]

<∞.

In our case A2k = {(g0, g1) ∈ F2k :
(

1
x
∂2

∂x2

)k
g0 = 0 almost everywhere on (−1, 0),(

1
x
∂2

∂x2

)k
g1 =0 almost everywhere on (0, 1)}. There are only k functions g0 linearly

independent on (−1, 0) and k functions g1 linearly independent on (0, 1) such that
(g0, g1) ∈ A2k. On these intervals g0, g1 are some polynomials. By Remarks 3, 4
we can reformulate Theorem 8 as follows.

Theorem 10. Let f(x, y) ∈ C([0, 1];F2k+1), u0 ∈ F2k+1, and suppose v0, v1
coincide on (−1, 0), (0, 1) respectively with some v0, v1 ∈ F2k. Then a solution u
of the problem (18), (19) with

∂n

∂yn
u(x, y) ∈ C([0, 1];F2k+1−n) (n = 0, 1, 2)

exists if and only if the data of the problem satisfy the 2k orthogonality conditions
(here (f, g) =

∫ 1

−1
f(x)g(x) dx)

−
(
x

(
1
x

∂2

∂x2

)k
u0, gt(1)

)
+
(
x

(
1
x

∂2

∂x2

)k
v1, g(0)

)
−
(
x

(
1
x

∂2

∂x2

)k
v0, g(1)

)
−

1∫
0

(
x

(
1
x

∂2

∂x2

)k
f(x, y), g(1− y, x)

)
dy = 0

for any solution g(x, y) of the equation (18) with data gy(x, 0) = 0, f = 0,
g(−1, y) = g(1, y) = 0 ((x, y) ∈ D), g(0, x) = g0(x) (x < 0), g(1, x) = g1(x)
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(x > 0), where g0, g1 belong to the above-mentioned function classes. If in ad-
dition ∂nf/∂yn ∈ C([0, 1];F2k−n+1) (n = 1, 2, . . . , 2k − 1) then ∂nu/∂yn ∈
C([0, 1];F2k−n+1) (n = 1, 2, . . . , 2k + 1).

R e m a r k 5. As shown by a number of examples, the spaces Fs introduced
here are most suitable for investigation of various boundary value problems where
the spectral problem (1) arises.
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