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Abstract. The purpose of this note is to show that a known and natural four-valued logic
co-exists with classical two-valued logic in the familiar context of truth tables. The tool required
is the power construction.

The context of this paper is that of 2-valued truth tables in n propositional
variables, say pi, p2,...,pPn. The two classical truth values are 0 and 1. The
truth value assignments (or valuations) are the 2" {0,1}-vectors of length n.
Propositional formulae are freely generated from the propositional variables by
application of the usual classical connectives ~ (not), & (and) and V (or), each of
which is defined by a given truth table. Accordingly, each propositional formula
has a truth table. Formulae with the same truth table are logically equivalent, and
we do not distinguish between them.

The valuations form a Boolean algebra Val = (2", A,V,’,0,1), where the
Boolean operations A, V and ’ are defined componentwise from their counterparts
in the 2-element Boolean algebra 2 = {0,1}, and 0 and 1 are respectively the
vectors (0,0,...,0) and (1,1,...,1) of length n. The elements of 2" are denoted
by «,y,z,... Up to equivalence, formulae may be regarded as truth functions
from 2" to 2, and the connectives are characterised by operations in the image
algebra 2. That is, if bool(A, —) : 2" — 2 is the truth function corresponding to
a propositional formula A, then

bool(~A, x) = bool(A,x)",
(1) bool (A & B, x) = bool(A,x) A bool(B,x) ,
bool(AV B, x) = bool(A,x) V bool(B,x) .
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I now proceed to define some new connectives by using operations on the
domain algebra Val.

It will be convenient to think of a formula (up to equivalence) as a subset of 2.
This is an easy variation on thinking of formulae as truth functions, since truth
functions may be thought of as characteristic functions. Thus we may define, for
any formula A,

(2) m(A) = {x € 2" | bool(A,x) = 1}.

This allows us to think of the classical connectives as the classical set-theoretic
operations, since

m(~A) =m(A)',
(3) m(A & B) =m(A) nm(B),
m(AV B) =m(A)Um(B).

But these operations on subsets of 2™ (and thus, by implication, the classical
connectives) take no account of the algebraic structure of 2™. We will use some
operations which do.

For the desired results to follow it is required to make one small but crucial
modification to 2". This can be done quite generally, as follows.

Let B=(B,V,A,’,0,1) be any Boolean algebra. Over B define partial oper-
ations A, and V,, as follows:

alNb ifaAnb#0,

(4) aApbz{o ifa=0o0rb=0,
undefined otherwise.
aVb ifavb#1,

(5) a\/pb:{l ifa=1orb=1,
undefined otherwise.

The intention here is best explained in set-theoretic terms. Think of A as inter-
section of sets. Convention has it that if two nonempty sets A and B do not
intersect then their intersection A N B is defined, and equal to the empty set ().
The variation adopted here is that if two nonempty sets A and B do not intersect
then they don’t have an intersection: AN B is undefined. Dually for Vv, via U. We
will call B, = (B, Ap, Vp, ",0,1) a partial Boolean algebra, with A, and V, called
partial meet and partial join.

Specifically, let A, and V,, be partial meet and partial join in 2".

Now consider any formulae A and B, and picture their truth tables in the
usual way, with truth value assignments (elements of 2") in a column on the left,
and column vectors of 0’s and 1’s representing .4 and B respectively. Then define
new formulae (i.e., truth tables of) =.A, A® B and A& B as follows:

(6)  Given the column representing A, to construct the column representing —.A
proceed down the rows as follows:
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(a) find the first remaining row in which 4 has value 1, and say this appears
against truth value assignment x;

(b) put a 1 in the row corresponding to x’;

(c) repeat (a) and (b) until this process terminates, then fill up the re-
maining places in the column with 0’s.

(7)  Given the columns representing .4 and B, to construct the column repre-
senting A ® B proceed down the rows as follows:

(a) find the first remaining row in which A has value 1, and say this appears
against truth value assignment x;

(b) (i) find the first remaining row in which B has value 1, and say this

appears against truth value assignment y;

(ii) put a 1 in the row corresponding to x A, y;
(iii) repeat (i) and (ii) until the process terminates;

(c) repeat (a) and (b) until this process terminates, then fill up the re-
maining places in the columns with 0’s.

(8)  Given the columns representing .4 and B, to construct the column repre-
senting A @ B proceed as in (7), only using V,, instead of Ap.

Here are some examples in the 3-valued case.

pip2ps ABC A B C AoB AoC BoC A@B AaC Bac
1 1 10101 0 0 0 0 0 1 0 1
1 1.0 0 01 1 0 0 0 0 1 0 1 1
1 0 1.1 10 O O 1 1 0 0 1 0 0
(9) 1000101 0 0 1 1 1 1 0 0
0 1 1 100 O 1 0 1 0 0 0 1 0
0O 1 0 0 01 1 1 0 0 1 1 0 1 0
0011000 0 1 1 0 0 0 0 0
0O 0 0 1 00 O 1 0 1 1 0 0 0 0

Actually, it is much cleaner to present these operations via set-theoretic re-
presentations, capitalising on the algebraic structure of 2". Namely, we take the
power operations of complementation ’, partial meet A, and partial join V,, over
2™. This notion is one of the power constructions expounded in Brink [1992].

In general, given any m-ary operation f : X™ — X, its power operation
fT:P(X)™ — X is defined by
(10)  fH(Aq,...,Ap) ={f(at,...,am) |a; € A;, 1 <i<m}

forevery A; C X, 1 <i<m.
In case f is a partial operation it may happen that the definiens is the empty set.
In 2™ adopt the notation that =X = {&’ | x € X} for any X C 2". Now con-

sider any formulae A and B, and define via their meanings (i.e. up to equivalence)
new formulae =4, A® B and A® B by
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m(-A) = —-m(A),
(11) m(A® B) = m(A) AL m(B),
m(A® B) = m(A) vV m(B).

Compare this with (3); then we see that the new connectives are defined via the
representative subsets of 2™ by utilising their algebraic structure, whereas the
classical connectives are simply defined set-theoretically.

For obvious historical reasons we may call ~, & and V Boolean connectives,
and for any formula A think of bool(A, x) as the Boolean truth value of A at x.
For reasons which will soon be clear let us call =, ® and @ Belnap connectives,
and define for any formula A its Belnap truth value as follows:

T iflem(A) and0¢&m(A),
B if1em(A)and 0 € m(A),
N if1¢m(A)and 0 € m(A),
F if1¢m(A) and 0 € m(A).
Note that whereas the Boolean truth value of a formula A is relative to some
assignment x € 2™, the Belnap truth values are not. Note further that if A is a

contradiction, both m(A® B) and m(A@® B) are empty; this fits with (7) and (8).
We now have the following Theorem (proved by cases):

(12) bel(A) =

(13) THEOREM. In the set of mon-contradictory formulae the Belnap truth
values of = A, A® B and A® B are as given in the Belnap truth tables, namely:

A|l-A o| TBNF o|TBNF

T| F T|TBNVF T|TTTT
B | B B| BBFF B |TBTB
N|N N|NFNVF N|TTNN
F | T F| FFFF F|TBNF L]

Now the reasons for the terminology are clear: these are the tables for the
four-valued relevance logic of Anderson and Belnap [1975], subsequently treated
in its own right by Belnap [1976, 1977].

But there’s more to be said: what of implication?

In classical two-valued truth-table logic “implication” is thought of in two
ways: as a connective, with A = B either primitive or defined (say by ~AV B);
or as a relation, with “A implies B” defined as “A = B is a tautology”. Following
up on (3) it is the latter case which is of interest here. Since

(14) A implies B iff m(A) Cm(B),

we may note that, like the classical connectives, this relationship does not exploit
the algebraic structure of 2", and we introduce a relation which does. Namely,
having used the power operations of the operations on 2", we now use the power
relation of the natural Boolean ordering relation < in 2™. (The notion of power
relation is as defined in Brink [1992].) So, for any formulae .4 and B we define
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(15) m(A)=m(B) iff (Vx € m(A)Fy € m(B))[x < y] and
(Vy € m(B))(Fz € m(A))[z < y].

Since we equate formulae with their set-theoretic representations we may also
write A= B iff m(A) =m(B). For an example, consider the 16 propositional for-
mulae in 2 variables (say p and ¢). Then 2" consists of the four vectors (1, 1),
(1,0), (0,1), (0,0), or equivalently the sets {p,q}, {p}, {q}, 0. The formulae are
then represented by sets of these sets, so that (e.g.) “p = ¢” corresponds to
{{p,q},{q},0}, “~p & ~q" corresponds to {{p},{q},?}, and so on. (Note: this
set representation arises from the column vector in the truth table, viewed as a
characteristic function over P({p,q}).) With this translation it is easy to check
that the 16 formulae in 2 variables are ordered by = as in Figure 1 (where
“Taut” is the tautology in two variables, and “Contrad” is the contradiction).
Note that, because of the existential quantifiers in (15), Contrad is only related

to itself.
p(ﬁ.cq

T N

q=>p- &~q- -~p&q 'p=>q

S ANRIVON

K

*
Contrad ~pt~gq

Fig. 1

We are now working with the power structure of 2": the set of n-vectors
endowed with the power operations of complementation and (partial) meet and
join, and the power ordering = of the Boolean ordering <. In 2" the ordering
< and the operations A and V are interdefinable, the latter being exactly least
upper bounds and greatest lower bounds of the former. In the power structure
this interdefinability is lost: <= is not a lattice order arising from ® and &. (In-
deed, = is not even a partial order, nor do ® and & impose a lattice structure
on 2™.) However, the ordering = does relate neatly to the four Belnap truth
values.
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Evidently, (12) partitions the set of all propositional formulae into four (equiv-
alence) classes, which by abuse of notation we may denote by T, B, N and F,
respectively. It is then easily checked that

(16)  The Belnap truth values, viewed as classes on non-contradictory formulae,
are ordered by &7, the power order of <, as in Figure 2.

T

RN

B N

F
Fig. 2

But this is precisely the order imposed on the non-contradictory formulae by (13):
the Belnap truth tables show that ® and & are lattice operations, and the lattice
order thereby defined on {T}, B, N, F'} coincides with that of <" in Figure 2.

I conclude that the power structure on truth value assignments in classical
two-valued logic leads to the truth values of Belnap logic.

[Note: The actual development of the Belnap logic, in the context of classical
propositional formulae, would have to address a problem sidestepped here: dealing
with contradictions. The alert reader will have noticed in (13) that the set of non-
contradictory formulae is not closed under ®: two non-contradictory formulae of
Belnap value IN may well yield a contradiction. The problem is real, but it is not
surprising: the role of contradiction in inference is at the heart of relevance logic.]

For the foregoing to be more than just a bag of tricks it is necessary that some
plausible interpretations attach to the technicalities. Here is a proposal.

Let there be given n atomic sentences: Py, Ps,..., P,, and think of these as
stating atomic facts. That is, in what we will call the real world each of Py, ..., P,
is true. More: we think of the real world as being entirely constituted by the given
atomic facts. (The philosophically minded may recall dictum 1.11 of Wittgen-
stein’s Tractatus Logico-Philosophicus: “The world is determined by the facts,
and by their being all the facts”.) A possible world is one in which some atomic
claims may not be true. The set of all possible worlds, which we may call the
universe, is thus modelled by the set 2™ of truth value assignments over the
propositional variables p1,po,...,pn. The real world is represented by 1, and we
think of 0 as representing the anti-world (where every atomic truth of the real
world is a falsehood). The idea that a sentence (generated from some atomic sen-
tences by application of connectives) is either true or false in any possible world is
modelled by the mapping bool(—, —). For any sentence A having the propositional
form A (simply obtained by replacing atomic sentences by variables), and for any
possible world € 2™, bool(A, x) has value 1 or 0, indicating that A is true or
false at . Thus classical truth values are relative to a possible world.
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By contrast, the Belnap truth value of a sentence A is fixed over 2™, it depends
only on the truth or falsehood of A in the real world and the anti-world. (Note
again that A can be true in either, both or neither.) As for the Belnap connectives,
what is presented above is a Kripke-type semantics, in which the Boolean truth
value of a (Belnap) compound sentence at a possible world is determined by the
truth values of its constituents at some other worlds. Thus:

bool(~A,x) =1 iff bool(A,x')=1.
bool(A® B,xz) =1 iff I worlds y and z such that bool(A,y) =1 and
(17) bool(B,z) =1and x =y A, z.
bool(A® B,x) =1 iff 3 worlds y and z such that bool(A,y) =1 and
bool(B,z) =1and x =y V, 2.

What distinguishes this from the Kripke semantics of (say) modal logic is that the
set of possible worlds is endowed with algebraic structure, not (just) relational
structure. As is common in the context of Kripke semantics we may think of the
mapping m : Sentences — P(2") as one of meaning: the meaning m(A) of a
sentence A is the set of all possible worlds in which A is true. But the set of
possible worlds has algebraic structure, and the power construction enables us to
lift some of that structure to sets of possible worlds, i.e. to meanings. The lifted
operations give precisely the Belnap connectives and the ordering =, which thus
inherit their properties from the structure of the universe.

As for =, Brink and Heidema [1987] have presented it as an ordering of
verisimilitude (or truthlikeness). Think of the real world as being entirely con-
stituted by two atomic facts: say “It is hot” and “It is windy”. There are then
16 possible propositional theories about the weather, and these appear ordered
by = in Figure 1. Evidently the best theory is the one which says it is hot and
windy, and the worst theory is the one which says it is cold and still. As for
the rest, Brink and Heidema [1987] exhibit some properties of = as “principles
of verisimilitude”; if these are acceptable then Figure 1 presents an ordering of
theories getting “closer to the truth”.

In conclusion it is worth addressing briefly the matter of motivation. The
Belnap logic originally arose from the quest for a notion of relevance between
antecedent and consequent in an entailment; in Anderson and Belnap [1975] this
is presented in terms of variable-sharing. The four-valued matrices are a later de-
velopment, attributed to T. J. Smiley. These also fit into the context of so-called
quasi-Boolean algebra, as expounded independently in Rasiowa [1974]. In his pa-
pers [1976, 1977] Belnap proposed and developed another motivation: that used
in the area of knowledge representation by Levesque [1984] and Patel-Schneider
[1989, 1997]. Other developments appear in Meyer and Martin [1986], Fitting
[1989], Fox [1990] and Sylvan [1997].

A standard line of thought in many of these developments (due originally to
Belnap and Dunn [1981]) is to equate the Belnap values with subsets of {0, 1},
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thus: T'= {1}, B ={0,1}, N =) and F = {0}. Then T means something like
“always told true”, F means “always told false”, B means “told both true and
false” and IN means “told nothing”. On this approach the Belnap values are thus
seen as arising by putting classical values together. By contrast, the foregoing
implicitly proposes to view the Belnap values as arising by taking classical values
apart. Classically, to be true means to be true in the real world. There are then
two subcases: a sentence A true in the real world may still be either true or false in
the anti-world. Thus the classical value 1 is composed of the Belnap values T and
B, and likewise the classical value 0 is composed of the Belnap values IN and F.

In thus bringing to bear on the notions of truth and falsehood not just the
circumstances of the real world but also those of the anti-world, we treat of the
two extremes of truthlikeness. Variations in between are ordered by =. So at
least one virtue that may be claimed for the present approach is that it brings
together, by application of the power construction, two hitherto separate notions:
that of somehow treating truth and falsehood together, and that of increase and
decrease in truthlikeness.
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