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ESTIMATING NORMAL DENSITY

AND NORMAL DISTRIBUTION FUNCTION:

IS KOLMOGOROV’S ESTIMATOR ADMISSIBLE?

Abstract. The statistical estimation problem of the normal distribution
function and of the density at a point is considered. The traditional unbiased
estimators are shown to have Bayes nature and admissibility of related gen-
eralized Bayes procedures is proved. Also inadmissibility of the unbiased
density estimator is demonstrated.

1. Introduction. In this paper we study the classical statistical estima-
tion problems of the normal distribution function and of the normal density
evaluated at a given point. Our main goal is to investigate the admissibility
condition in this problem for generalized conjugate priors.

Estimation of the normal distribution function and of the normal density
is discussed in [14], Examples 3.1, 3.2, 3.8 and 3.10.

Let x1, . . . , xn be a normal random sample with an unknown mean ξ and
an unknown standard deviation σ. Clearly (X,S), where

X =

n
∑

i=1

xi/
√

n, S2 =

n
∑

j=1

(xj − X/
√

n)2 ,

is a version of the complete sufficient statistic such that X and S are inde-
pendent; the distribution of X is normal, say N(µ, σ), µ =

√
nξ and S2/σ2

has χ2-distribution with n−1 degrees of freedom. For a given x0 on the basis
of observed X and S2 one has to find a good estimator of the distribution
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function evaluated at x0,

θ(µ, σ) = P (x1 ≤ x0) = Φ

(

x0 − ξ

σ

)

,

or of the density at x0,

ϕ(µ, σ) =
1√
2πσ

exp

{

− (x0 − ξ)2

2σ2

}

.

The traditional method of estimating these functions is based on the
uniformly minimum variance unbiased estimator (UMVUE) which can be
derived from the Rao–Blackwell Theorem and the Basu Lemma (see [11]).
For θ this estimator δU has the form

δU (X,S;x0) = δU (X,S) = P (x1 ≤ x0 | X,S)

= P

(

x1 − X

S
≤ x0 − X

S

∣

∣

∣

∣

X,S

)

.

Since (X,S) and T = (x1 − X)/S are independent,

δU (X,S) = P

(

T ≤ x0 − X

S

)

.

By using the distribution of T one obtains for n ≥ 3 the expression of the
unbiased estimator in terms of incomplete beta-function:

δU (X,S) =







1, W ≤ −1 ,
∫ 1

W
(1 − u2)n/2−2 du/B(n/2 − 1, 1/2), |W | < 1 ,

0, W ≥ 1 ,

where W = (X −√
nx0)/(

√
n − 1S). First this representation was obtained

by Kolmogorov [10] in 1950 (see also [12]).
The best unbiased estimator of ϕ has the form

φU (X,S) =
d

dx0
δU (X,S;x0) =

√
n√

n − 1S
g(W )

with a beta density g,

g(w) =
(1 − w2)n/2−2

B(n/2 − 1, 1/2)
=

[(1 − w)/2]n/2−2[(1 + w)/2]n/2−2

2B(n/2 − 1, n/2 − 1)

if |w| < 1 and g(w) = 0 otherwise.
Several interesting optimality implications between the best unbiased

density estimator and unbiased estimators of other parametric functions are
given in [9]. Various forms of δU and its characteristics are discussed in [1,
2, 4, 6, 8, 13 and 15]. They are surveyed in [7]. A characteristic feature
of these estimators is that φU vanishes outside the interval |W | < 1 while
δU takes extreme values 1 and 0. In particular, neither of these estimators
is an analytic function and this fact makes their admissibility doubtful.
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Indeed, for an exponential family any admissible rule of the mean is the
generalized Bayes estimator with respect to some σ-finite measure (see [5],
Theorems 4.16, 4.23 and references there). The latter is an analytic function
of sufficient statistic. However, as we show in this paper, the fact that our
parametric functions have exponential type leads to admissibility of some
nonsmooth estimators analogous to δU and φU .

In Section 2 it is proven that δU is a pointwise limit of proper Bayes
estimators such that for the limiting generalized prior density the “marginal”
density of (X,S) is finite if and only if |W | < 1. This fact explains the
structure of δU .

The admissibility of a related family of distribution function estima-
tors within the class of all procedures depending only on W (the so-called
scale equivariant estimators) is established in Section 3 where also the in-
admissibility of φU is demonstrated. This suggests the inadmissibility of
Kolmogorov’s estimator as well.

2. Bayes estimators for conjugate priors and scale equivariant

procedures. By shifting the original sample one can assume that x0 = 0.
Under this assumption we look here at the estimation of more general par-
ametric functions

θ(µ, σ) = Φ

(

−
√

aµ

σ

)

and

κ(µ, σ) = σ−1 exp

{

− aµ2

2σ2

}

for a fixed positive constant a. The original problem corresponds to a = 1/n,
κ =

√
2πϕ. To estimate θ we use the quadratic risk (δ−θ)2; for κ estimation

the rescaled version σ2(δ − κ)2 is more convenient.

The estimators studied here are generalized Bayes rules against prior
densities with respect to reference measure dµ dσ/σ. These densities have
the form

λ(µ, σ) = σ−α exp

{

cµ2

2σ2

}

with some real α and c, c < 1. As a matter of fact all admissibility results
hold for more general conjugate prior distributions

λ(µ, σ) = σ−α exp

{

c(µ − µ0)
2

2σ2

}

.

One of the reasons these priors are of interest in our problem is the form of
the generalized Bayes estimators which is essentially that of δU and γU .
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Proposition 2.1. Under prior density λ with α > 3 − n and c < 1 the

generalized Bayes estimator γB of κ has the form

γB(X,S) =
Γ (̺ − 1/2)

SΓ (̺ − 1)

√

2(1 − c)

1 − c + a

[1 − Z2/z2
0 ]̺−1

[1 − Z2/z1]̺−1/2
, |Z| < z0 ,

with Z = X/S, ̺ = (n + α − 1)/2,

z2
0 =

1 − c

c
and z1 =

1 − c + a

c − a
.

The generalized Bayes estimator δB of θ for |Z| < z0 has the form

δB(X,S) =
1

B(̺, 1/2)

z0∫

U

(1 − u2)̺−1 du

with

U =

√
aZ

√

(1 − c)(1 − c + a)(1 − Z2/z1)
.

Under definitions δB = 1 for Z ≤ −z0, δB = 0 for Z ≥ z0 and γB = 0 if

|Z| ≥ z0, both δB and γB are pointwise limits of proper Bayes estimators.

P r o o f. Let, for m > 0,

M(X,S;m, c)

= (2π)−1/2
∞∫

−∞

∞∫

0

σ−m−2 exp

{

− (X − µ)2 + S2 − cµ2

2σ2

}

dµ dσ .

A simple calculation shows that if (1 − c)S2 > cX2 (which just means that
|Z| < z0) then

M(X,S;m, c) =
∞∫

0

σ−m−1 exp

{

− S2 − cX2/(1 − c)

2σ2

}

dσ/
√

1 − c

=

[

S2 − cX2

1 − c

]−m/2
2(m−2)/2Γ (m/2)√

1 − c

and M(X,S;m, c) = +∞ otherwise. Since

γB(X,S) =
M(X,S;n + α − 2, c − a)

M(X,S;n + α − 3, c)
,

the formula for the density estimator obtains for |Z| < z0. When |Z| ≥
z0 the posterior risk is infinite and the generalized Bayes estimator is not
defined. However, as is easy to check, any generalized Bayes estimator is a
nondecreasing function of |Z|, which leads to defining γB = 0 for |Z| ≥ z0.
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Similarly

δB(X,S) =
1

2πM(X,S;n + α − 1, c)

∞∫

0

∞∫

−∞

∞∫

0

σ−n−α−2

× exp{−[(X − µ)2 + S2 + a(u/
√

a + µ)2 − cµ2]/(2σ2)} dµ dσ du .

The multiple integral above equals
∞∫

0

∞∫

0

exp

{

− (1 − c + a)S2 − (c − a)X2 + (1 − c)u2 − 2
√

auX

2σ2(1 − c + a)

}

×
√

2π

σn+α+1(1 − c + a)1/2
dσ du

=
∞∫

0

(1 − c + a)̺2̺
√

πΓ (̺ + 1/2)

[(1 − c + a)S2 − (c − a)X2 + (1 − c)u2 − 2
√

auX]̺+1/2
du

=
2̺Γ (̺ + 1/2)

√
π√

1 − c [S2 − cX2/(1 − c)]̺

∞∫

√
aX/

√
(1−c+a)[(1−c)S2−cX2]

dv

(1 + v2)̺+1/2

=
2̺Γ (̺ + 1/2)

√
π√

1 − c [S2 − cX2/(1 − c)]̺

1∫

U

(1 − u2)̺−1 du .

This formula leads to the form of distribution function estimators for |Z| <
z0. Monotonicity in Z of generalized Bayes estimators of θ suggests the
definition of δB outside this interval. Approximation of δB and γB by proper
Bayes estimators is possible as λ is a limit of proper prior densities.

The estimators δB and γB have the simplest form when c = a. Proposi-
tion 2.1 implies that the UMVUE δU can be interpreted as the generalized
Bayes estimator with respect to λ(µ, σ) = σ exp{µ2/(2nσ2)} which corre-
sponds to ̺ = (n − 2)/2, i.e. to α = −1 and c = a = 1/n. Notice that with
η = µ/σ,

Eµ,σS−1

[

1 − aX2

(1 − a)S2

]n/2−2

+

=
e−aη2/2

√
2πdn−2

∫∫
√

a|x|<
√

1−as

s

[

1 − ax2

(1 − a)s2

]n/2−2

× exp

{

− (1 − a)s2 − ax2 + (x − (1 − a)η)2

2(1 − a)

}

dx ds

=

√
1 − aΓ (n/2 − 1)

σ
√

2Γ ((n − 1)/2)
e−aη2/2 .
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Here and further

dk =
∞∫

0

yke−y2/2 dy = 2(k−1)/2Γ

(

k + 1

2

)

.

Therefore

γU (X,S) =

√
2Γ ((n − 1)/2)

S
√

1 − aΓ (n/2 − 1)

[

1 − aX2

(1 − a)S2

]n/2−2

+

is the unbiased estimator of κ. Thus for the generalized Bayes estimator γB

of κ with c = a and α = −1 when n ≥ 5,

γB(X,S) =
(1 − a)(n − 4)

n − 3
γU (X,S) .

Since the risk of generalized Bayes estimators against prior density λ
depends only on η we look now at a class of estimators possessing this
property. Within such a class one can define the Bayes estimator as the one
whose average risk with respect to some prior Λ over η is the smallest. Scale
equivariant estimators δ of θ by definition are just measurable functions of
Z and scale equivariant estimators of κ have the form S−1γ(Z). An explicit
form of the Bayes estimator within the class of scale equivariant procedures
is easily derived.

Indeed, the Bayes scale equivariant estimator δΛ of θ has the form

δΛ(Z) =

∫

Φ(−√
aη)pn−1(Z, η) dΛ(η)

∫

pn−1(Z, η) dΛ(η)

where

pk(z, η) =

∫ ∞
0

exp{−[(zy − η)2 + y2]/2}yk dy√
2πdk−1

is the noncentral t-distribution type density.

A simple calculation shows that δΛ coincides with the generalized Bayes
estimator against the prior σ−1dΛ(η) dσ in the original θ estimation prob-
lem. The same holds for estimation of κ and rescaled quadratic loss in which
case the scale equivariant Bayes estimator has the form

γΛ(Z) =

∫

e−aη2/2pn−2(Z, η) dΛ(η)
∫

pn−3(Z, η) dΛ(η)
.

For this reason α = 1, not α = −1 as for unbiased estimators, is the right
choice for our prior. Indeed, in the next section we give some admissibility
results concerning the Bayes scale equivariant estimators which correspond
to α = 1 and

λ(η) = exp{cη2/2} .
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3. Admissibility and inadmissibility results. Our main goal is to
establish the conditions under which the estimators

δ1(X,S) =
1

B(n/2, 1/2)

1∫

U

[1 − u2]n/2−1 du

and

γ1(X,S) =
Γ ((n − 1)/2)

SΓ (n/2 − 1)

√

2(1 − c)

1 − c + a

[1 − Z2/z2
0 ]n/2−1

[1 − Z2/z1](n−1)/2
,

|Z| < z0, corresponding to α = 1 are admissible within the class of scale
equivariant estimators. The following result gives a sufficient admissibility
condition.

Theorem 3.1. The Bayes risk of δ1 is finite if and only if 2a ≥ c.
Estimator γ1 has a finite Bayes risk if and only if 2a > c.

P r o o f. Since risk functions of δ1 and γ1 depend only on η one can put
σ = 1 when calculating these functions. If f is a measurable function of
t > 0 such that f(t) = 0 for t ≤ t0 and f(t) ∼ F (t − t0)

̺−1 for t ↓ t0 then

EηS−βf(S/|X|) =
e−η2/2

√
2πdn−2

∞∫

−∞
exη−x2/2

∞∫

0

e−x2t2/2tn−2−βf(t) dt dx

=
e−η2/2

√
2πdn−2

∞∫

−∞
exη−x2/2Rf(x) dx .

Laplace’s method for asymptotics of integrals shows that for large x,

Rf(x) ∼ Fe−x2t2
0
/2tn−β−̺−2

0 Γ (̺)

x2̺

and as η → ∞,

EηS−βf(S/|X|) ∼ F exp{−t20η
2/(2(1 + t20))}ηn−β−2̺−1tn−β−̺−2

0 Γ (̺)

(1 + t20)
n−β−̺−1/2dn−2

.

Applying this formula with β = 1 and β = 2 to γ1 for which t20 = c/(1 − c)
so that t20/(1 + t20) = c, one obtains

R(γ, η) ∼ C1e
−cη2/2

η4̺+1−n
− C2e

−(a+c)η2/2

η2̺+2−n
+ e−aη2

with positive constants C1, C2. Therefore
∫

R(γ, η)ecη2/2 dη < ∞
if and only if 2a > c and ̺ > n/4 (which holds automatically). The same
conclusion holds for estimator δ whose risk function is also a symmetric
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function of η (see Appendix in [13]) except that now

R(δ, η) ∼ C3e
−cη2/2

η4̺+3−n
+

e−aη2

2πη2
,

and the Bayes risk integral converges when 2a ≥ c.

This theorem shows that estimators δ of the normal distribution function
and γ of the normal density are scale equivariant admissible when c < 2/n.
In particular, δ1 and γ1 are admissible when c = a.

Next comes an inadmissibility result in density estimation.

Theorem 3.2. Estimator γU is inadmissible.

P r o o f. We show that a shrinkage estimator bγu for some b, 0 < b < 1,
improves on γU . A simple calculation shows that such an estimator improves
on γU if

b ≥ 2 sup
η

κ2/Eηγ2
U − 1 .

Because of the information inequality (see Theorem 4.3.1 in [14]) for para-

metric function κ = exp{−αξ2

2σ2 } with α = an,

Eηγ2
U − κ2 = Eη(γU − κ)2 ≥ κ2

2n
(2a2nη2 + (aη2 − 1)2) .

Therefore if an ≥ 1 then

sup
η

κ2

Eηγ2
U

≤ 2n

2n + 1
< 1

so that one can take b = (2n− 1)/(2n + 1) to improve on γU , and if an < 1
then

sup
η

κ2

Eηγ2
U

≤ 2n

2n + an(2 − an)
< 1

and the choice b = (2−a(2−an))/(2+a(2−an)) leads to a better estimator.
Notice that this result does not imply that γ1 is better than γU (which in
fact is not true).

The risk functions of δU and δ1 are given in Figures 1–3 for n = 2, 3, 4.
Similar graphs for γU , γB with α = −1 and γ1 are shown in Figures 4–6 for
n = 5, 6, 7. Although neither γ1 nor δ1 dominates the corresponding unbi-
ased estimator they can be seriously recommended since they are admissible
and have reasonable risk functions.

To calculate the risk of density estimators the following formulas were
used. One has, for p > (n − 4)/2,
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E
1

S

[

1 − aX2

(1 − a)S2

]p

+

=

2d2p+1(1 − a)1/2a(n−2)/2e−η2/2

dn−2d2p−n+3

1∫

0

e(1−a)xη2/2x(n−3)/2(1 − x)p−(n−2)/2

[1 − (1 − a)x]p+1
dx

and for p > (n − 5)/4,

E
1

S2

[

1 − aX2

(1 − a)S2

]2p

+

=

2d4p+1(1 − a)1/2a(n−3)/2e−η2/2

dn−2d4p−n+4

1∫

0

e(1−a)xη2/2x(n−4)/2(1 − x)2p−(n−3)/2

[1 − (1 − a)x]2p+1
dx.

Inadmissibility of δU and γB with α = −1 remains an open problem. In
the particular case n = 2, a = 1/2, Kolmogorov’s estimator δU is defined by

δU (X1,X2) =







1, X1 + X2 < −|X1 − X2| ,
1
2 , |X1 + X2| ≤ |X1 − X2| ,
0, X1 + X2 > |X1 − X2| ,

and is admissible. Indeed, if there is a better estimator δ, i.e. if

Eη(δ(Z) − θ)2 ≤ Eη(δU (Z) − θ)2 =
θ(1 − θ)

2
then

lim
η→+∞

2

η2
Eηδ2 ≤ lim

η→+∞
2

η2
θ = −1 .

One can assume that δ(−Z) = 1 − δ(Z) so that its risk is a symmetric
function of η. A Tauberian theorem for functions of exponential type (see
[3, Sec. 4.12]) shows that for a nonincreasing function g,

lim sup
η→+∞

2

η2
log

∞∫

0

exp

{

xη − x2

2
− g(x)

}

dx =
1

1 + lim infx→+∞ 2g(x)/x2
.

In our application one can take

g(x) = − log
∞∫

0

e−s2/2sn−2δ2(−x/s) ds

so that

lim inf
x→−∞

2

x2
log

∞∫

0

e−s2/2sn−2δ2(x/s) ds ≤ −1 .

Now the classical Tauberian theorem implies that

δ(Z) = 0 if Z ≤ −z0 < 0

with z0 ≤ 1. (This argument concerning the structure of the potential
improvements on δB and γB is valid for any n.)
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Fig. 1. Risk functions of estimators δU (dotted line), and δ1 (solid line) for n = 2
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Fig. 2. Risk functions of estimators δU (dotted line), and δ1 (solid line) for n = 3
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Fig. 3. Risk functions of estimators δU (dotted line), and δ1 (solid line) for n = 4
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Fig. 4. Risk functions of density estimators γU (dotted line), γB (dashed line)

and γ1 (solid line) for n = 5
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Fig. 5. Risk functions of density estimators γU (dotted line), γB (dashed line)

and γ1 (solid line) for n = 6
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Fig. 6. Risk functions of density estimators γU (dotted line), γB (dashed line)

and γ1 (solid line) for n = 7
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The comparison of risk functions at η = 0 shows that δ = 1/2 for |Z| ≤ z0

and that to have equal risk at this parametric value, δ must coincide with
δU . Of course this result is based on the fact that Kolmogorov’s estimator
on the set |Z| ≤ z0 coincides with a Bayes estimator with respect to the
point mass prior at η = 0. It is conceivable that a similar phenomenon
might hold for other values of n and also for γB .
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