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ERGODIC CONTROL OF PARTIALLY OBSERVED
MARKOV PROCESSES WITH EQUIVALENT

TRANSITION PROBABILITIES

Abstract. Optimal control with long run average cost functional of a
partially observed Markov process is considered. Under the assumption
that the transition probabilities are equivalent, the existence of the solution
to the Bellman equation is shown, with the use of which optimal strategies
are constructed.

1. Introduction. Let (Ω,F , P ) be a probability space and (xn) a
discrete time controlled Markov process on a compact state space E, en-
dowed with the Borel σ-field E , with transition kernel P v(x, dz) for v ∈ U ,
where (U,U) is a compact space of control parameters. Assume the only
observations of xn are Rd-valued random variables y1, . . . , yn such that for
Yn = σ{y1, . . . , yn} we have

(1) P{yn+1 ∈ A | xn+1,Yn} = P{yn+1 ∈ A | xn+1} =
∫
A

r(xn+1, y) dy

for n = 0, 1, . . . with r : E×Rd → R+ a measurable function, and A ∈ B(Rd),
the family of Borel subsets of Rd.

The Markov process (xn) is controlled by a sequence (an) of Yn-measur-
able U -valued random variables. The best mean square approximation of xn

based on the available observation is given by a filtering process πn, defined
as a measure valued process such that for A ∈ E ,
(2) πn(A) = P{xn ∈ A | Yn} for n = 1, 2, . . . ,
and

π0(A) = µ(A)
where µ is the initial law of (xn).
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The following lemma gives the most general formula for πn. Its proof,
unlike those in [5] and [8], which have more restrictive hypotheses, is not
based on the reference probability method.

Lemma 1. Under (1), for n = 0, 1, . . . and A ∈ E we have

(3) πn+1(A) =

∫
A
r(z2, yn+1)

∫
E
P an(z1, dz2)πn(dz1)∫

E
r(z2, yn+1)

∫
E
P an(z1, dz2)πn(dz1)

.

P r o o f. Denote the right hand side of (3) by Man(yn+1, πn)(A). Let
F : (Rd)n → R be a bounded measurable function, Yn = (y1, . . . , yn) and
C ∈ B(Rd).

By (1), Fubini’s theorem and properties of conditional expectations we
have∫

Ω

Man(yn+1, πn)(A)χC(yn+1)F (Yn) dP

=
∫
Ω

E[Man(yn+1, πn)(A)χC(yn+1) | xn+1,Yn]F (Yn) dP

=
∫
Ω

∫
C

Man(y, πn)(A)r(xn+1, y) dy F (Yn) dP

=
∫
Ω

∫
C

Man(y, πn)(A)E[E[r(xn+1, y) | Yn, xn] | Yn] dy F (Yn) dP

=
∫
Ω

∫
C

Man(y, πn)(A)E
[ ∫

E

r(z, y)P an(xn, dz)
∣∣∣Yn

]
dy F (Yn) dP

=
∫
Ω

∫
C

Man(y, πn)(A)
∫
E

∫
E

r(z, y)P an(z1, dz)πn(dz1) dy F (Yn) dP

=
∫
Ω

∫
C

∫
A

r(z2, y)
∫
E

P an(z1, dz2)πn(dz1) dy F (Yn) dP

=
∫
Ω

∫
E

∫
A

∫
C

r(z2, y) dy P an(z1, dz2)πn(dz1)F (Yn) dP

=
∫
Ω

E
[ ∫

A

∫
C

r(z2, y) dy P an(xn, dz2)
∣∣∣Yn

]
F (Yn) dP

=
∫
Ω

E
[
E

[ ∫
C

r(xn+1, y) dy χA(xn+1)
∣∣∣Yn, xn

] ∣∣∣Yn

]
F (Yn) dP

=
∫
Ω

∫
C

r(xn+1, y) dy χA(xn+1)F (Yn) dP
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=
∫
Ω

E[χC(yn+1) | Yn, xn+1]χA(xn+1)F (Yn) dP

=
∫
Ω

χC(yn+1)χA(xn+1)F (Yn) dP =
∫
Ω

πn+1(A)χC(yn+1)F (Yn) dP.

Therefore, by the definition of conditional expectation, (3) follows.

The class of controls an = u(πn), where u is a fixed measurable, U -valued
function, is of special interest. Namely, we have

Lemma 2. Under (1), if additionally an = u(πn) with u a fixed measur-
able function from the space P(E) of probability measures on E, endowed
with the topology of weak convergence, into (U,U), then πn is a Yn-Markov
process with transition operator

(4) Πu(ν)(ν, F ) =
∫
E

∫
Rd

F (Mu(ν)(y, ν))r(z, y) dy
∫
E

Pu(ν)(z1, dz) ν(dz1)

where

(5) Mv(y, ν)(A) =

∫
A
r(z, y)

∫
E
P v(z1, dz) ν(dz1)∫

E
r(z, y)

∫
E
P v(z1, dz) ν(dz1)

for v ∈ U , ν ∈ P(E) and F : P(E) → R bounded measurable.

P r o o f. By (1) we easily obtain

E[F (πn+1) | Yn]

= E[F (Mu(πn)(yn+1, πn)) | Yn]

= E[E[F (Mu(πn)(yn+1, πn)) | Yn, xn+1] | Yn]

= E
[ ∫

Rd

F (Mu(πn)(y, πn))r(xn+1, y) dy
∣∣∣Yn

]
= E

[ ∫
Rd

E[F (Mu(πn)(y, πn))r(xn+1, y) | Yn, xn] dy
∣∣∣Yn

]
= E

[ ∫
Rd

∫
E

F (Mu(πn)(y, πn))r(z, y)Pu(πn)(xn, dz) dy
∣∣∣Yn

]
=
∫
E

∫
Rd

F (Mu(πn)(y, πn))
∫
E

r(z, y)Pu(πn)(z1, dz)πn(dz1) dy

= Πu(πn)(πn, F ) .

Thus (πn) is Markov with transition operator of the form (4).
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In this paper we are interested in minimizing the following long run
average cost functional:

(6) Jµ((an)) = lim sup
n→∞

n−1Eµ

{ n−1∑
i=0

c(xi, ai)
}

over all U -valued, Yn-adapted processes an, with c : E × U → R+ a given
bounded measurable cost function.

By the very definition of a filtering process we have

(7) Jµ((an)) = lim sup
n→∞

n−1Eµ

{ n−1∑
i=0

∫
E

c(z, ai)πi(dz)
}
.

The optimal strategies for the cost functional Jµ are constructed with
the use of a suitable Bellman equation, the solution of which is found as
a limit of wβ(x) = ϑβ(x) − infz∈E ϑ

β(z) as β → 1, where ϑβ is the value
function of the β-discounted cost functional. Since our limit results are
based on compactness arguments, obtained via the Ascoli–Arzelà theorem,
in Section 2 we show the continuity of ϑβ . Then in Section 3 we prove the
uniform boundedness of wβ . Using the concavity of wβ , obtained from the
concavity of ϑβ , proved in Section 2, we get equicontinuity of wβ , which
allows us to use the Ascoli–Arzelà theorem.

The discrete time ergodic optimal control problem with partial observa-
tion was studied in [1], [2], [3], [6], [8], [9]. In [1] and [8] the observation
was corrupted with white noise. In addition, in [1] there was a finite state
space and a rich observation structure. In [8] the state space was general
but there were some restrictions on controls. The papers [2] and [3] con-
tain a general theory but the fundamental example used is a very simple
maintenance-replacement model.

In [6] a model with a finite state space and almost steady state transition
probabilities was studied. Finally, finite state space semi-Markov decision
processes with a completely observable state were considered in [9]. Our
paper generalizes [6] in various directions. Namely, we have a general, com-
pact state space. Although the techniques to show the boundedness and the
equicontinuity of wβ follow in some sense the arguments of [6], by a more
detailed estimation we obtain the results under the assumptions which are
much less restrictive than the corresponding ones in [6], even whenE is finite.

2. Discounted control problem. In this section we characterize the
value function ϑβ of the discounted cost functional Jβ

µ defined as follows:

(8) Jβ
µ ((an)) def= Eµ

{ ∞∑
i=0

βic(xi, ai)
}

= Eµ

{ ∞∑
i=0

βi
∫
E

c(z, ai)πi(dz)
}

with β ∈ (0, 1).
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The theorem below provides a complete solution to the discounted par-
tially observed control problem.

Theorem 1. Assume (1) and

(A1) c : E × U → R+ is continuous,
(H1) for F ∈ C(P(E)), the space of continuous functions on P(E), if

µn ⇒ µ, i.e. µn converges weakly in P(E) to µ, we have

(9) sup
a∈U

|Πa(µn, F )−Πa(µ, F )| → 0 as n→∞,

(H2) for F ∈ C(P(E)), if U 3 an → a we have

(10) Πan(µ, F ) → Πa(µ, F ).

Then

(11) ϑβ(µ) def= inf
(an)

Jβ
µ ((an))

is a continuous function of µ ∈ P(E) and is a unique solution to the Bellman
equation

(12) ϑβ(µ) = inf
a∈U

[ ∫
E

c(x, a)µ(dx) + βΠa(µ, ϑβ)
]
.

There exists a measurable selector uβ : P(E) → (U,U) for which the infimum
on the right hand side of (12) is attained. Moreover , we have

(13) ϑβ(µ) = Jβ
µ ((uβ(πn))) .

In addition, ϑβ can be uniformly approximated from below by the sequence

(14)
ϑβ

0 (µ) ≡ 0 ,

ϑβ
n+1(µ) = inf

a∈U

[ ∫
E

c(x, a)µ(dx) + βΠa(µ, ϑβ
n)

]
,

and each ϑβ
n is concave, i.e. for µ, ν ∈ P(E) and α ∈ [0, 1],

(15) ϑβ
n(αµ+ (1− α)ν) ≥ αϑβ

n(µ) + (1− α)ϑβ
n(ν).

P r o o f. We only point out the main steps since the proof is more or less
standard (for details see [4], Thm. 2.2).

Define, for ϑ ∈ C(P(E)),

Tϑ(µ) = inf
a∈U

[ ∫
E

c(x, a)µ(dx) + βΠa(µ, ϑ)
]
.

By (A1) and (H1), T is a contraction on C(P(E)). Thus, by the Banach
principle there is a unique fixed point ϑβ of T , which is a unique solution to
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the Bellman equation (12). Since by (A1) and (H2) the map

U 3 a→
∫
E

c(x, a)µ(dx) + βΠa(µ, ϑβ)

is continuous, there exists a measurable selector uβ . The identity (13) is then
almost immediate. Since T is monotonic and contractive, ϑβ

n is increasing
and converges to ϑβ . It remains to show the concavity of ϑβ

n. We prove
this by induction. Clearly, ϑβ

0 ≡ 0 is concave. Provided ϑβ
n is concave, by

Jensen’s lemma we have for α ∈ (0, 1),

Πa(αµ+ (1− α)ν, ϑβ
n) ≥ αΠa(µ, ϑβ

n) + (1− α)Πa(ν, ϑβ)

and therefore from (14),

ϑβ
n+1(αµ+ (1− α)ν) ≥ αϑβ

n+1(µ) + (1− α)ϑβ
n+1(ν) ,

i.e. ϑβ
n+1 is concave. By induction, ϑβ

n is concave for each n. The proof of
the theorem is complete.

Below we formulate sufficient conditions for (H1) and (H2).

Proposition 1. Assume

(A2) r ∈ C(E × Rd),
(A3) for fixed a ∈ U , P a(x, · ) is Feller , i.e. for any ϕ ∈ C(E), if xn ⇒ x

we have

(16) P a(xn, ϕ) → P a(x, ϕ),

(H3) if U 3 an → a, then for each ϕ ∈ C(E),

(17) sup
x∈E

|P an(x, ϕ)− P a(x, ϕ)| → 0,

(A4) for R(z, ψ) def=
∫

Rd r(z, y)ψ(y) dy where ψ ∈ C(Rd), if E 3 zn → z
we have

(18) R(zn, · ) ⇒ R(z, · ).
Then (H1) and (H2) are satisfied.

P r o o f. Notice first that from (16) and (17), if U 3 an → a and µn ⇒ µ,
we have

(19) P an(µn, ϕ) def=
∫
E

P an(x, ϕ)µn(dx) → P a(µ, ϕ)

as n→∞, for ϕ ∈ C(E) .

Since U × P(E) is compact, to prove (H1) and (H2) it is sufficient to show
that

U × P(E) 3 (a, µ) → Πa(µ, F ) is continuous for F ∈ C(P(E)).
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Therefore we shall show that

(20) Πan(µn, F ) → Πa(µ, F )

for U 3 an → a, P(E) 3 µn ⇒ µ and F ∈ C(P(E)). We have

(21) |Πan(µn, F )−Πa(µ, F )|

≤
∣∣∣ ∫

E

∫
Rd

(F (Man(y, µn))− F (Ma(y, µ)))r(z, y) dy P an(µn, dz)
∣∣∣

+
∣∣∣ ∫

E

∫
Rd

F (Ma(y, µ))r(z, y) dy (P an(µn, dz)− P a(µ, dz))
∣∣∣

= In + II n .

From (19), II n → 0, provided

(22) E 3 z →
∫

Rd

F (Ma(y, µ))r(z, y) dy ∈ C(E).

By (A4), Rd 3 y → Ma(y, µ) ∈ P(E) is continuous. Then, again by (A4),
the map (22) is continuous, and consequently II n → 0.

If

(23) sup
z∈E

∣∣∣ ∫
Rd

(F (Man(y, µn))− F (Ma(y, µ)))r(z, y) dy
∣∣∣ → 0

then clearly In → 0.
By (A4), for each ε > 0 there exists a compact set K ⊂ Rd such that for

any z ∈ E,

(24) R(z,Kc) <
ε

2‖F‖
.

Therefore∣∣∣ ∫
Rd

(F (Man(y, µn))− F (Ma(y, µ)))r(z, y) dy
∣∣∣

≤
∫

K

|F (Man(y, µn))− F (Ma(y, µ))|r(z, y) dy + ε

and to obtain (23) it remains to show that

(25) Man(y, µn)(ϕ) →Ma(y, µ)(ϕ)

for any ϕ ∈ C(E), uniformly in y ∈ K.
Using the Stone–Weierstrass approximation theorem (see [7], Thm. 9.28,

cf. also the proof of Lemma A.1.2 of [8]) and (19), we obtain
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E

r(z, y)ϕ(z)
∫
E

P an(z1, dz)µn(dz1)−
∫
E

r(z, y)ϕ(z)
∫
E

P a(z1, dz)µ(dz1)
∣∣∣

≤
∣∣∣ ∫

E

r(z, y)ϕ(z)(P an(µn, dz)− P a(µ, dz))
∣∣∣ → 0

uniformly in y ∈ K. Thus, we have uniform convergence of the numerators
and denominators in the formula defining Man , and consequently conver-
gence of the ratios from which (25) follows.

The proof of Proposition 1 is complete.

R e m a r k 1. (A4) is satisfied when supz∈E r(z, y) is integrable.
Define

(26) wβ(ν) = ϑβ(ν)− ϑβ(µβ) and wβ
n(ν) = ϑβ

n(ν)− ϑβ
n(µn

β)

where µβ = arg minϑβ and µn
β = arg minϑβ

n. Clearly, wβ is a solution to
the equation

(27) wβ(ν) + (1− β)ϑβ(µβ) = inf
a∈U

[ ∫
E

c(x, a) ν(dx) + βΠa(ν, wβ)
]

and wβ
n(ν) → wβ(ν) uniformly in ν ∈ P(E). We would like to let β ↑ 1

in (27) and thus obtain a solution w(ν) to the long run average Bellman
equation

(28) w(ν) + γ = inf
a∈U

[ ∫
E

c(x, a) ν(dx) +Πa(ν, w)
]
.

Since we wish to apply the Ascoli–Arzelà theorem, we have to show the
boundedness and the equicontinuity of wβ for β ∈ (0, 1), which are studied
successively in the next sections.

3. Boundedness of wβ. We make the following assumption:

(29) (A5) inf
z,z′∈E

inf
a,a′∈U

inf
C∈E, P a(z,C)>0

P a′
(z′, C)

P a(z, C)
def= λ > 0.

We have

Proposition 2. Under (A5) and the assumptions of Theorem 1, the
functions wβ(ν) are uniformly bounded for β ∈ (0, 1), ν ∈ P(E).

P r o o f. We improve the proof of Theorem 2 of [6]. Namely, we show
by induction the uniform boundedness of wβ

n(ν) for ν ∈ P(E), β ∈ (0, 1),
n = 0, 1, . . . For n = 0, wβ

0 (ν) ≡ 0.
Assume that for any β ∈ (0, 1), ν ∈ P(E), wβ

n(ν) ≤ L where L ≥ ‖c‖λ−2.
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Let a, a′ ∈ U be such that for fixed ν ∈ P(E),

wβ
n+1(ν) =

∫
E

c(x, a) ν(dx)−
∫
E

c(x, a′)µn+1
β (dx)(30)

+ β[Πa(ν, ϑβ
n)−Πa′

(µn+1
β , ϑβ

n)] .

For y ∈ Rd, define

m(y)(B) = Ma′
(y, µn+1

β )(B)− λ2Ma(y, ν)(B)

for any B ∈ E .
By (29) we have∫
B

r(z, y)
∫
E

P a′
(z1, dz)µn+1

β (dz1) ≥ λ
∫
B

r(z, y)
∫
E

P a(z1, dz) ν(dz1)

= λMa(y, ν)(B)
∫
E

r(z, y)
∫
E

P a(z1, dz) ν(dz1)

≥ λ2Ma(y, ν)(B)
∫
E

r(z, y)
∫
E

P a′
(z1, dz)µn+1

β (dz1)

and therefore m(y)(B) ≥ 0 for B ∈ E .
If λ = 1 we have a stationary, noncontrolled Markov chain with P a(z, C)

= η(C) for any a ∈ U , z ∈ E and some fixed η ∈ P(E), and consequently
wβ

n ≡ 0 for any n = 0, 1, . . . Therefore we restrict ourselves to the case λ < 1.
Then (1− λ2)−1m(y) ∈ P(E). Since

Ma′
(y, µn+1

β ) = λ2Ma(y, ν) + (1− λ2)[(1− λ2)−1m(y)] ,

by concavity of ϑβ
n we obtain

(31) ϑβ
n(Ma′

(y, µn+1
β )) ≥ λ2ϑβ

n(Ma(y, ν)) + (1− λ2)ϑβ
n((1− λ2)−1m(y))

and from (30) we have

wβ
n+1(ν)(32)

≤ ‖c‖+ β
∫
E

∫
Rd

ϑβ
n(Ma(y, µ))r(z, y) dy

×
( ∫

E

P a(z1, dz) ν(dz1)− λ2
∫
E

P a′
(z1, dz)µn+1

β (dz1)
)

− β(1− λ2)
∫
E

∫
Rd

ϑβ
n((1− λ2)−1m(y))r(z, y) dy

×
∫
E

P a′
(z1, dz)µn+1

β (dz1)
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= ‖c‖+ β
∫
E

∫
Rd

(ϑβ
n(Ma(y, µ))− ϑβ

n(µn
β))r(z, y) dy

×
( ∫

E

P a(z1, dz) ν(dz1)− λ2
∫
E

P a′
(z1, dz)µn+1

β (dz1)
)

− β(1− λ2)
∫
E

∫
Rd

(ϑβ
n((1− λ2)−1m(y))− ϑβ

n(µn
β))r(z, y) dy

×
∫
E

P a′
(z1, dz)µn+1

β (dz1)

≤ ‖c‖+ βL var
( ∫

E

P a(z1, · ) ν(dz1)− λ2
∫
E

P a′
(z1, · )µn+1

β (dz1)
)
.

By (A5) for any B ∈ E ,

(33)
∫
E

P a(z1, B) ν(dz1) ≥ λ2
∫
E

P a′
(z1, B)µn+1

β (dz1) .

Thus

(34) wβ
n+1(ν) ≤ ‖c‖+ βL(1− λ2) ≤ L

and the bound L is independent of ν ∈ P(E), β ∈ (0, 1). By induction
wβ

n(ν) ≤ L for any ν ∈ P(E), n = 0, 1, . . . , β ∈ (0, 1). Since by the very
definition wβ

n(ν) ≥ 0, and for each β, wβ
n(ν) → wβ(ν) as n→∞, we finally

obtain wβ(ν) ≤ L for ν ∈ P(E) and β ∈ (0, 1).

R e m a r k 2. One can easily see that in the case of a finite state space
E, the assumption

(35) (A5′) inf
z,z′∈E

inf
a,a′∈U

inf
x∈E, P a(z,x)>0

P a′
(z′, x)

P a(z, x)
> 0

also implies the boundedness of wβ . Thus Proposition 2 significantly im-
proves Theorem 2 of [6]. This was possible because of the choice of µn

β in
(32) as the argument of minimum of ϑβ

n.

R e m a r k 3. Assumption (A5) says that the transition probabilities for
different controls and initial states are mutually equivalent, with Radon–
Nikodym density bounded away from 0. In particular, in the case when
P a(z, C) =

∫
C
ga(z, x) η(dx) the assumption

(36) inf
z,z′∈E

inf
a,a′∈U

inf
x∈E, ga(z,x)>0

ga′
(z′, x)

ga(z, x)
> 0

is sufficient for (A5) to be satisfied.
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4. Main theorem. Before we formulate and prove our main result, we
show the equicontinuity of wβ for β ∈ (0, 1). For this purpose we need an
extra assumption:

(A6) If P(E) 3 µn ⇒ µ ∈ P(E) then
sup
a∈U

sup
C∈E

|P a(µn, C)− P a(µ,C)| → 0

with

P a(µ,C) def=
∫
E

P a(x,C)µ(dx) .

We have

Proposition 3. Under (A5), (A6) and the assumptions of Theorem 1,
the family of functions wβ , β ∈ (0, 1), is equicontinuous, i.e.

(37) ∀ε>0 ∃δ>0 ∀µ,µ′∈P(E) %(µ, µ′) < δ ⇒ ∀β∈(0,1) |wβ(µ)− wβ(µ′)| < ε

with % standing for a metric compatible with the weak convergence topology
of P(E).

P r o o f. For ν, µ ∈ P(E) let

(38) λ(ν, µ) def= inf
a∈U

inf
C∈E,P a(µ,C)>0

P a(ν, C)
P a(µ,C)

.

From (A5) and (A6), if ν ⇒ µ, then

(39) λ(ν, µ) → 1 and λ(µ, ν) → 1.

By (27) for ν, µ ∈ P(E) we have

(40) wβ(ν)− wβ(µ)

≤ sup
a∈U

∣∣∣ ∫
E

c(x, a)(ν(dx)− µ(dx))
∣∣∣ + β sup

a∈U
(Πa(ν, wβ)−Πa(µ,wβ)).

By analogy with the proof of Proposition 2 define

ma(y, µ, ν)(B) = Ma(y, µ)(B)− λ(µ, ν)λ(ν, µ)Ma(y, ν)(B)

for B ∈ E .
Clearly, ma(y, µ, ν)(B) ≥ 0 for B ∈ E , and λ(µ, ν)λ(ν, µ) ≤ 1.
If λ(µ, ν)λ(ν, µ) = 1, then wβ ≡ 0 for β ∈ (0, 1), and consequently the

equicontinuity property is satisfied. Therefore assume λ2 = λ(µ, ν)λ(ν, µ)
< 1. Then by the concavity of wβ ,

(41) wβ(Ma(y, µ)) ≥ λ2wβ(Ma(y, ν))+(1−λ2)wβ((1−λ2)−1ma(y, µ, ν)) .



36  L. Stettner

From (40),

(42) wβ(ν)− wβ(µ) ≤ sup
a∈U

∣∣∣ ∫
E

c(x, a)(ν(dx)− µ(dx))
∣∣∣

+ β sup
a∈U

{ ∫
E

∫
Rd

wβ(Ma(y, ν))r(z, y) dy (P a(ν, dz)− λ2P a(µ, dz))

+
∫
E

∫
Rd

(λ2wβ(Ma(y, ν))− wβ(Ma(y, µ)))r(z, y) dy P a(µ, dz)
}

= I + II + III .

Now

II ≤ 2‖wβ‖ sup
a∈U

sup
B∈E

|P a(ν,B)− λ2P a(µ,B)|(43)

= 2‖wβ‖(1− λ(µ, ν)λ(ν, µ))

and using (41) and the nonnegativity of wβ we have

(44) III

≤ sup
a∈U

∫
E

∫
Rd

(λ2 − 1)wβ((1− λ2)−1ma(y, µ, ν))r(z, y) dy P a(µ, dz) ≤ 0 .

Interchanging ν and µ in (40)–(44) we obtain the same estimates and there-
fore

|wβ(ν)− wβ(µ)| ≤ sup
a∈U

∣∣∣ ∫
E

c(x, a)(ν(dx)− µ(dx))
∣∣∣(45)

+ 2‖wβ‖(1− λ(µ, ν)λ(ν, µ)) .

Since by the Stone–Weierstrass theorem (Thm. 9.28 of [7]) c(x, a) can
be uniformly approximated on E × U by continuous functions of the form∑r

i=1 ci(x)di(a), from (39) we obtain

lim
ν⇒µ

sup
β∈(0,1)

|wβ(ν)− wβ(µ)| = 0 .

Let us comment on the assumption (A6):

R e m a r k 4. (H3) clearly follows from (A6).

R e m a r k 5. In the case of a finite state space E = {1, . . . , N}, (A6)
can be written as

(46) sup
a∈U

N∑
k=1

∣∣∣ N∑
i=1

(sn
i − si)P a(i, k)

∣∣∣ → 0
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for sn = (sn
1 , . . . , s

n
N ) → s = (s1, . . . , sN ), 0 ≤ sn

i ≤ 1, 0 ≤ si ≤ 1,
∑
sn

i = 1,∑
si = 1, and this is satisfied since

sup
a∈U

N∑
k=1

∣∣∣ N∑
i=1

(sn
i − si)P a(i, k)

∣∣∣ ≤ N∑
i=1

|sn
i − si| → 0 as sn → s .

R e m a r k 6. Assume P a(z, C) =
∫

C
ga(z, x)η(dx) for C ∈ E and that

the mapping

(47) U × E × E 3 (a, z, x) → ga(z, x) is continuous.

Then (A6) is satisfied.
In fact, by the Stone–Weierstrass theorem we can approximate ga uni-

formly on U×E×E by continuous functions of the form
∑k

i=1 bi(a)ci(z)di(x)
and

sup
a∈U

sup
C∈E

|P a(µn, C)− P a(µ,C)|

≤ sup
a∈U

∫
E

∣∣∣ ∫
E

ga(z, x)(µn(dz)− µ(dz))
∣∣∣η(dx)

≤ ε+
k∑

i=1

sup
a∈U

|bi(a)|
∫
E

|di(x)|η(dx)
∣∣∣ ∫

E

ci(z)(µn(dz)− µ(dz))
∣∣∣ → ε

as n→∞.

Now we can prove our main result:

Theorem 2. Assume (A1)–(A6). Then there exist w ∈ C(P(E)) and a
constant γ which are solutions to the Bellman equation

(48) w(µ) + γ = inf
a∈U

[ ∫
E

c(x, a)µ(dx) +Πa(µ,w)
]
.

Moreover , there exists u : P(E) → U for which the infimum on the right
hand side of (48) is attained. The strategy an = u(πn) is optimal for Jµ and

(49) Jµ((u(πn))) = γ .

P r o o f. By Theorem 1, each ϑβ
n is concave. Therefore wβ

n is concave
and wβ as limit of wβ

n is also concave. Since by Proposition 2, the wβ are
uniformly bounded, and by Proposition 3 equicontinuous, from the Ascoli–
Arzelà theorem the family wβ , β ∈ (0, 1), is relatively compact in C(P(E)).
Moreover, |(1 − β)ϑβ(µβ)| ≤ ‖c‖. Therefore one can choose a subsequence
βk → 1 such that

(1− βk)ϑβ
k(µβk

) → γ

and
wβk → w in C(P(E)) as k →∞.
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Letting βk → 1 in (27) we obtain (48).
The remaining assertion of the theorem follows easily from Theorem 3.2.2

of [4].
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