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A MIXED DUEL UNDER ARBITRARY MOTION
AND UNCERTAIN EXISTENCE
OF THE SHOT

Abstract. The purpose of the paper is to solve a mixed duel in which
the numbers of shots given to the players are independent 0-1-valued ran-
dom variables. The players know their distributions as well as the accuracy
function P, the same for both players. It is assumed that the players can
move as they like and that the maximal speed of the first player is greater
than that of the second player. It is shown that the game has a value, and
a pair of optimal strategies is found.

1. Definitions and assumptions. Consider the following game (1,1).
Two players, say I and II, fight a duel. They can move as they want. The
maximal speed of Player I is vy, the maximal speed of Player II is v and
it is assumed that v; > vo > 0. Players I and II have one bullet each but
they can fire the bullets with probability p and ¢, respectively, 0 < p < 1,
0 < g < 1. A player knows if he can fire the bullet when he tries to do
it. Player II does not hear the shot of Player I, Player I hears the shot of
Player II.

At the beginning of the duel the players are at distance 1 from each
other. Let P(s) be the probability of succeeding (destroying the opponent)
by Player I (II) when the distance between them is 1 — s, s < 1, and the
player can fire his bullet. The function P(s) is called the accuracy function.
It is assumed that

(i) P is increasing and has a continuous second derivative in [0, 1],
(ii) P(s) =0 for s <0, P(1) =1.

Player I gains 1 if only he succeeds, gains —1 if only Player II succeeds,
and gains 0 in the remaining cases. The duel is a zero-sum game. The game
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is over if at least one of the players succeeds or all bullets are shot. In the
other case the duel lasts infinitely long and the payoff is zero. The above
facts are known to both players.

Suppose that Player II has had a bullet and fired it. In this case the best
what Player I can do, if he has a bullet yet, is to reach Player II in pursuit
and to succeed surely provided he can fire his bullet. Since we are looking
for optimal strategies we assume this behaviour of Player I in the paper.

Without loss of generality we can suppose that v; = 1 and that Player 11
is motionless. It is also assumed that at the beginning of the duel Player I
is at the point 0 and Player 1II is at the point 1.

For definitions and results in the theory of games of timing see [3]-[8],
[10], [15].

2. Auxiliary game of timing. To solve the game (1, 1) presented in
the previous section we have to determine optimal strategies in the following
auxiliary game (1,1)*. Consider a silent versus noisy duel with uncertain
existence of (at most one) shot and accuracy function P(s), the same for
both players. It is assumed that Player I approaches Player II with constant
velocity v = 1 all the time, even after he has tried to fire his bullet. Player I
gains 1 if only he succeeds etc., just as in the duel (1,1) defined in the
previous section.

Denote by Ko(s,t) the expected gain of Player I if he tries to fire at time
s € [0,1] and Player II tries to fire at time ¢ € [0,1]. It is assumed that

pP(s) if s <t,
Ko(s,t) = { (0= @) P(s) if s =1,
“gP(t) + pa(1 — P() + p(1 — )P(s) if s> 1.

As is easy to see, Kq(s,t) is the expected payoff in the duel in which
Player II is not allowed to fire after Player I has tried to shoot. Player I
is allowed to fire after the trial of Player II but he has to act as in the
duel (1,1).

Denote by £ the strategy of Player I in the game (1,1) in which he tries
to fire at a random moment s distributed according to a density fi(s) in the
interval [a,1), 0 < a < 1, and according to a probability o, 0 < a < 1, at
the point 1. This distribution is chosen in such a way that if ¢ € [a, 1) then

(1) K(&.t)= [pP(s)fi(s)ds

+ [ (=aP(t) + pg(1 = P(t)) + p(1 — g)P(s)) f(s) ds

+ (—qP(t) + pg(1 — P(t)) + p(1 — ¢))ox = const .
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Here K (£§,t) is the expected gain of Player I if he applies the strategy &5
and Player II tries to fire at time t.

Computing the first and second derivatives of K (&, t) with respect to ¢
and eliminating the integrals from the obtained expressions we obtain

f@) P (243p)P(H)
A) Pt (1+2p)Pt)—p

the solution of which is

@) i) = —F “; _
( (t) - 1+ 2p>
where
2+ 3p
C142p]

and C' is a constant. Obviously this constant satisfies

1

) i P'(t) dt

“(Hﬂ—lf%>

Let n§ be the strategy of Player II in the game (1,1)* in which he chooses
at random a moment ¢ to try his shot, according to a density f2(t) in [a, 1],
to obtain

o=

(4)  K(s,n) = [ (—aP(t)+pa(l = P(t) + p(1 — q)P(s)) fo(t) dt

a

1
+ pr(s)fg(t) dt = const

S

if s € [a,1], where K(s,n3) is the expected gain of Player I if Player II
applies the strategy n§ and Player I tries to fire at time s.

In the same way as before we obtain

DP'(s)
5) fals) = )
(s) = —
1+2p
where D is a constant and
14+ 3p
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Obviously we have

(6) D f P'(s)ds _1

' <P(S)_ 1f2p>F

Moreover, from (1) and (2) we obtain after computing the integral

a 1+ 2p
M K@H=C|- b
<P<a) 1T 2p>
2 E—1
p 1 1+2p B
+1+p » E—1 +(1—Q)(1+2p)<1+p) }—const
(P-+25,)
1+2p
if
1+2p\”
8 =C )
a “ <1+p>
Similarly, from (4) and (5) we obtain
D(14 2p)gP
(9) K(s,m5) = (L+ 2p)g (al)p_l = const
(a) = 2
1+ 2p
if
(10) 1—gq _ 1

(P(a) 1 fQP)F_l <1 - 1f2p>F_1 |

From (3), (6), (8) and (10) we determine the unknown parameters C,
D, a,a;p/(1+2p) <a<1,0<a<1. Itiseasy tosee that if 0 <p <1
and 0 < ¢ < 1 this solution always exists and is unique.

We now prove that K(£§,t) = K(s,n§) fora < s < 1,a <t < 1.
Computing the integral in (3) and taking into account the equation (8) we
obtain

l+p p \"
(11) C:1+2p<P(a)_1+2p> ‘

Moreover, computing the integral in (6) and taking into account (10) we get

Then from (9) we obtain

(12) K(s,n5) = pP(a).
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Putting K (£§,t) = K(s,n§) given by (12) and (7) with C given by (11) we
come to the equation

)  a-o(r@- L QP)E_Q ~(1-1 fQP)E_Z.

Dividing (10) by (13) and taking into account that E+ F —3 = 0 we obtain
an identity. Thus K (&3,t) = K(s,n3) = pP(a) fora < s <1,a <t <1,
O0<p<1l,0<qg<1.

LEMMA. For a being the solution of (10) the strategy &§ is maximin and
the strategy n§ is minimaz in the game (1,1)*. The value of the game is

U?1 = pP(a).

The proof is similar to that in [14] and is omitted.

3. Solution of the duel (1,1). We now consider the duel (1,1) defined
at the beginning of the paper. For given natural n such that 1/n <1 — «
let the constants a; be defined as follows:

ak
1
ap=a, f fils)ds=—, k=1,...,n9, Gpoy1 =1,

n
ak—1
where ng is defined from the inequalities 1 —a—1/n <ng/n <1 —a.

Define the strategy &. of Player I in the game (1,1) as follows: Player I
moves back and forth with maximal speed in the following manner: at first
between 0 and a;, then between 0 and as, . .., finally between 0 and a,,+1.
At the kth step, k = 1,...,n9+1, he can try to fire his shot at random only
if he is between the points a;_1 and a; and goes forward, and he tries to
fire it with probability density fi(s). If he has tried it at the kth step, he
reaches the point ag, escapes to 0 and never approaches Player II. If Player I
has not tried to fire between points 0 and 1 and survives, he tries when he
is at 1, as soon as possible.

The strategy no of Player II is defined as follows: If Player I reaches the
point ¢ the first time and his velocity is v1(7), 7 being the time, try to fire
at random with density vy (7) f2(¢(7)). Otherwise do not try.

It is assumed that the function vy (7) is piecewise continuous.

THEOREM. The strategy & is e-maximin and the strategy ng is minimax
in the game (1,1). The value of the game is vi1 = pP(a) where a is the
solution of the equation (10).

The proof of the Theorem is similar to that in [14] and is omitted.
It is easy to see that there exist e-maximin strategies of Player I in which
he moves with not necessarily maximal speed.
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Duels under arbitrary motion, as far as the author knows, have never

been considered before except in the papers of the author (see [11]-[14]).

For other results in the theory of duels with uncertain existence of the

shots see [1], [2], [9].

[10]
[11]
[12]

[13]
[14]

[15]

References

A. Cegielski, Tactical problems involving uncertain actions, J. Optim. Theory
Appl. 49 (1986), 81-105.

—, Game of timing with uncertain number of shots, Math. Japon. 31 (1986),
503-532.

M. Foxand G. Kimeldorf, Noisy duels, STAM J. Appl. Math. 19 (1969), 353-361.
S. Karlin, Mathematical Methods and Theory in Games, Programming, and Eco-
nomics, Vol. 2, Addison-Wesley, Reading, Mass., 1959.

G. Kimeldorf, Duels: an overview, in: Mathematics of Conflict, North-Holland,
1983, 55-71.

K. Ortowski and T. Radzik, Discrete silent duels with complete counteraction,
Optimization 16 (1985), 419-429.

R. Restrepo, Tactical problems involving several actions, in: Contributions to the
Theory of Games, Vol. 111, Ann. of Math. Stud. 39, Princeton Univ. Press, 1957,
313-335.

A. Styszynski, An n-silent-vs.-noisy duel with arbitrary accuracy functions, Za-
stos. Mat. 14 (1974), 205-225.

Y. Teraoka, Noisy duels with uncertain eristence of the shot, Internat. J. Game
Theory 5 (1976), 239-250.

—, A single bullet duel with uncertain information available to the duelists, Bull.
Math. Statist. 18 (1979), 69-80.

S. Trybuta, A noisy duel under arbitrary moving. I-VI, Zastos. Mat. 20 (1990),
491-495, 497-516, 517-530; 21 (1991), 4361, 63-81, 83-98.

—, Solution of a silent duel under general assumptions, Optimization 22 (1991),
449-459.

—, A mized duel under arbitrary motion, Applicationes Math., to appear.

—, A silent versus partially noisy one-bullet duel under arbitrary motion, ibid., to
appear.

N.N. Vorob’ev, Foundations of the Theory of Games. Uncoalition Games, Nauka,
Moscow, 1984 (in Russian).

STANISLAW TRYBULA
INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
WYBRZEZE WYSPIANSKIEGO 27

50-370 WROCLAW, POLAND

Received on 5.8.1992



