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A. POKRZYWA (Warszawa)

PERTURBATION OF THE SPECTRUM
OF AN ESSENTIALLY SELFADJOINT OPERATOR

Abstract. The aim of this paper is to find estimates of the Hausdorff
distance between the spectra of two nonselfadjoint operators. The opera-
tors considered are assumed to have their imaginary parts in some normed
ideal of compact operators. In the case of the classical Schatten ideals the
estimates are given explicitly.

It is well known that %(σ(A), σ(B)), the Hausdorff distance between the
spectra of two selfadjoint operators A, B, is bounded by ‖A−B‖. The same
estimate also holds for normal operators. This is related to the fact that the
norm of the resolvent of such an operator is equal to 1/d(λ, σ(A)).

For nonselfadjoint operators A, B acting in an n-dimensional space an
estimate for the distance between their spectra has been obtained by R.
Bhatia and K. K. Mukherjea in [1], and L. Elsner [2] improved it to

%(σ(A), σ(B)) ≤ (‖A‖+ ‖B‖)1−1/n‖A−B‖1/n .

The dependence of the bound on the nth root of ‖A− B‖ is related to the
fact that the resolvent norm of an operator can behave in the neighborhood
of an eigenvalue as (1/d(λ, σ(A)))n.

Looking at the form of this estimate one sees that it cannot be general-
ized to compact operators acting in infinite-dimensional Hilbert space. The
class of compact operators is too large. The situation changes if we restrict
ourselves to normed ideals of compact operators. In [7, Theorem 3] it was
shown that for each normed ideal (with norm not equivalent to the operator
norm) there exists an estimate of this kind. In the case of the Schatten ideal
Sp, 1 ≤ p <∞, there exists a constant Cp such that
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%(σ(A), σ(B)) ≤ mCp

(
log

(
3m

‖A−B‖

))−1/p

,

where m = max( A p, B p).
In this paper we try to find such an estimate for operators which are sums

of a selfadjoint operator and a compact one. A result in this direction has
been obtained in [6], where an estimate of the distance between the spectra
of a selfadjoint operator and its antihermitian perturbation has been found.
Moreover, it has been shown that such an estimate is only possible in the
case when the antihermitian perturbation is an operator from the Matsaev
ideal of compact operators.

In the course of our study we will see how much sensitive to perturbation
is the spectrum of an operator from the specified class.

Notations. Let H denote a complex separable Hilbert space with scalar
product (·, ·) and norm ‖ · ‖, and L(H) the algebra of all bounded linear
operators acting in H. A stands for the set of all selfadjoint operators
acting in H, not necessarily bounded. We say that an ideal S of L(H) is
a (symmetrically) normed ideal if there exists a norm · on S satisfying
the following conditions:

(i) S with norm · is a Banach space,
(ii) ABC ≤ A ‖B‖ C , for any A,C ∈ L(H), B ∈ S,
(iii) F = ‖F‖ for any operator F of rank one,
(iv) limn→∞ PnAPn = A , for any A ∈ S and every sequence {Pn}

of orthogonal projections converging strongly to the identity operator.

The norm · is called a crossnorm. The crossnorm of an operator A only
depends on its singular values sj(A) (j = 1, 2, . . .). The sequence {sj(A)}
is the sequence of eigenvalues of the operator

√
AA∗ counted according to

multiplicity and arranged in decreasing order of magnitude.
An important role in further considerations is played by the Matsaev

ideal Sω with crossnorm defined by

A ω =
∞∑

j=1

sj(A)
2j − 1

.

This ideal contains the classical Schatten ideals Sp (1 ≤ p <∞), where

A p =
( ∑

sp
j (A)

)1/p

.

The ideal (SΩ , · Ω) with crossnorm

A Ω = sup
n

( ∑n
j=1 sj(A)∑n

j=1(2j − 1)−1

)
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is adjoint to the Matsaev ideal and S1 ⊂ SΩ ⊂ Sp (1 < p < ∞) (cf. [3,
Chapter III]).

Resolvent norm estimates. It is well known that the norm of the
resolvent of a selfadjoint operator A at a point λ only depends on the dis-
tance of λ to the spectrum of A. We consider a class of operators which
differ from selfadjoint operators by an operator belonging to some normed
ideal and ask for which ideal norms there exists an estimate of the resolvent
(A−λ)−1 of operators A from this class which only depends on the distance
of λ to the spectrum of A and on the crossnorm of the imaginary part of A.

It was shown in [7] that there exists a function α such that

‖(A− λ)−1‖ ≤ α( A , d(λ, σ(A)))

if and only if the crossnorm · is not equivalent to the operator norm ‖ · ‖.
In this paper a similar problem is studied for the class A + S. We say that
S has the resolvent estimate property if for any positive numbers m, d,

(1) f(m, d) = sup{‖(A− λ)−1‖ : A ∈ A + S,

ImA = m, d(λ, σ(A)) = d} <∞ .

If S has this property then a similar function for quasinilpotent opera-
tors

(2) fν(m, d) = sup{‖(A− λ)−1‖ : A ∈ A + S,

ImA = m, σ(A) = {0}, d = |λ|}
is also well defined.

Lemma 1. If a normed ideal S has the resolvent estimate property then:

(i) there exist functions β, βν : [0,∞) → [1,∞) such that

(3) f(m, d) =
1
d
β

(
m

d

)
, fν(m, d) =

1
d
βν

(
m

d

)
,

where f , fν are defined by (1) and (2),
(ii) the functions β, βν are nonincreasing ,
(iii) the function ln(βν(et)) is convex.

P r o o f. (i) Suppose that A ∈ A + S, d = d(λ, σ(A)) > 0 and m =
ImA > 0. Then for any t > 0 we have d(tλ, σ(tA)) = dt, Im(tA) = tm

and ‖(A− λ)−1‖ = t‖(tA− tλ)−1‖ ≤ tf(tm, td). Let t = x/d. Then

‖(A− λ)−1‖ ≤ 1
d
xf

(
m

d
x, x

)
.

Defining β(s) = infx>0 xf(sx, x) we have

‖(A− λ)−1‖ ≤ 1
d
β

(
m

d

)
≤ f(m, d) .
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This norm estimate holds for every A ∈ A+S with ImA = m and any λ
such that d = d(λ, σ(A)), therefore (1) implies that (1/d)β(m/d) = f(m, d).

(ii) Let again A ∈ A + S, and V 6= 0 be any finite rank nilpotent
operator. Then V ∈ S and for any m′ > m = ImA there exists t >
0 such that ImA ⊕ Im(tV ) = m′. Since ImA is a compact operator
there exists a real number µ ∈ σ(A). Let B = A ⊕ (tV + µ). Note that
σ(B) = σ(A) ∪ σ(tV + µ) = σ(A), ImB = ImA⊕ Im(V t) = m′ and for
any λ ∈ σ(A), we have ‖(B − λ)−1‖ = max{‖(A − λ)−1‖, ‖(tV − λ)−1‖};
therefore

‖(A− λ)−1‖ ≤ ‖(B − λ)−1‖ ≤ 1
d(λ, σ(A))

β

(
m′

d(λ, σ(A))

)
.

Since this holds for any A ∈ A + S, we see from the definition of f and
β that β is a nonincreasing function. In the same way we may define βν and
show that it satisfies (3) and is also nonincreasing.

(iii) Let V be a quasinilpotent operator with ImA ∈ S, ImA = m.
For any k > 0 the operator-valued function (V − λ)−1(V ∗ − k2/λ)−1 is
holomorphic in C\{0}. Let d2

1 ≤ k2 = d1d2 ≤ d2
2, d1, d2 > 0. It follows from

the maximum principle and the definition of fν that for any λ with |λ| = k,∥∥∥∥(V − λ)−1

(
V ∗ − k2

λ

)−1∥∥∥∥
≤ max

{∥∥∥∥(V − µ)−1

(
V ∗ − k2

µ

)−1∥∥∥∥ : |µ| = d1 or |µ| = d2

}
.

For any µ with |µ| = di we have∥∥∥∥(V − µ)−1

(
V ∗ − k2

µ

)−1∥∥∥∥ ≤ ‖(V − µ)−1‖
∥∥∥∥(
V ∗ − k2

µ

)−1∥∥∥∥
≤ 1
di
βν

(
m

di

)
di

k2
βν

(
dim

k2

)
.

If |λ| = k then the above inequality implies that

‖(V − λ)−1‖2 = ‖(V − λ)−1(V ∗ − λ̄)−1‖ ≤ k−2βν

(
m

d1

)
βν

(
m

d2

)
.

Since this estimate holds for any quasinilpotent V it follows from the
definition of fν and (i) that (βν(m/k))2 ≤ βν(m/d1)βν(m/d2), and this is
equivalent to (iii).

Lemma 2. Suppose that the ideal S has the resolvent estimate property.
Then:

(i) S ⊂ Sω and there exists a positive number c such that A ω ≤ c A
for any A ∈ S,
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(ii) Pn ω/ Pn → 0 as n → ∞, where Pn denotes an n-dimensional
orthogonal projection.

P r o o f. Suppose (i) is false. Then there exist a sequence {An} of finite
rank selfadjoint operators such that π/2 = An ω > n An . It follows
from the Matsaev theorem [4, Theorem III.4.2] that there exist compact
selfadjoint operators Bn such that ‖Bn‖= 1 and the operators Vn = Bn+iAn

are quasinilpotent. This implies that there exist unit vectors en such that
for λn = 1 or λn = −1, (Bn − λn)en = 0. Then (Vn − λn)en = iAnen and

‖(Vn − λn)en‖ ≤ ‖An‖‖en‖ ≤ An ‖(Vn − λn)−1(Vn − λn)en‖

≤ π

2n
‖(Vn − λn)−1‖‖(Vn − λn)en‖ .

Thus ‖(Vn − λn)−1‖ ≤ 2n/π. Since ImVn = An we obtain 2n/π ≤
fν( An ) ≤ βν( An ) ≤ βν(π) with βν defined in Lemma 1. This contradicts
the fact that βν is well defined.

(ii) It follows from the Matsaev theorem that there exists a compact
quasinilpotent operator Vn such that ImVn = Pn, ‖ReVn‖ = (2/π)‖Pn‖ω

and λn = ‖ReVn‖ is an eigenvalue of ReVn. Thus for some nonzero vector
en, (ReVn − λn)en = 0. This implies further that (Vn − λn)en = iPnen and

‖en‖ = ‖(Vn − λn)−1(Vn − λn)en‖ ≤ ‖(Vn − λn)−1‖‖(Vn − λn)en‖
= ‖(Vn − λn)−1‖‖Pnen‖ ≤ ‖(Vn − λn)−1‖‖en‖ .

Thus 1 ≤ ‖(Vn − λn)−1‖ ≤ βν( ImVn λn)/λn, or equivalently

2
π
Pn ω ≤ βν

(
π Pn

2 Pn ω

)
.

If (ii) were false then for some c > 0 we would have Pn / Pn ω < c for
infinitely many n. Since, by Lemma 1, βν is an increasing function the
previous inequality implies that (2/π) Pn ω ≤ βν(2c/π) for infinitely many
n; and that is impossible since Pn ω →∞ as n→∞.

Lemma 3. Suppose that there exists a nondecreasing function f : [0,∞)
→ [0,∞) such that for any operator A acting in a finite-dimensional Hilbert
space H,

‖(A− λ)−1‖ ≤ 1
d
f

(
ImA

d

)
,

where d = d(λ, σ(A)). Then S has the resolvent estimate property.

P r o o f. Let A ∈ A+S. It follows from the Weyl–von Neumann theorem
[5] that there exists a compact selfadjoint operator K such that ReA −K
is diagonalizable, i.e. there exists an orthonormal basis {ej} of H such
that each ej is an eigenvector of ReA −K. Now we define the orthogonal
projections Pn =

∑
j≤n(·, ej)ej and the operators Cn = PnAPn, Rn =
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(I − Pn)A(I − Pn), B = K + i ImA. We show that

(4) ‖A− (Cn +Rn)‖ → 0 .

Indeed, the identity A − Cn − Rn = (APn − PnA)Pn − Pn(APn − PnA)
implies that

(5) ‖A− Cn −Rn‖ ≤ 2‖APn − PnA‖ .
Since A = (ReA−K) +B and Pn commutes with ReA−K we see that

APn − PnA = BPn − PnB = (B − PnBPn)Pn − Pn(B − PnBPn) .

This identity and (5) imply that ‖A− (Cn +Rn)‖ ≤ 4‖B − PnBPn‖. Now
(4) follows from the compactness of B and the fact that {Pn} is a sequence
of orthogonal projections converging strongly to the identity operator.

Suppose now that λ 6∈ σ(A) and 0 < d′ < d(λ, σ(A)). The disc K(λ, d′)
is contained in the resolvent set of A. Let m = maxµ∈K(λ,d′) ‖(A − µ)−1‖.
It follows from perturbation theory that for sufficiently large n, K(λ, d′) is
contained in the resolvent set of Cn +Rn and that

(6) ‖(Cn +Rn − λ)−1‖ → ‖(A− λ)−1‖ .
The identity Cn +Rn = Cn|ran Pn

⊕Rn|ker Pn
implies that

σ(Cn +Rn) = σ(Cn|ran Pn) ∪ σ(Rn|ker Pn)

and

(7) ‖(Cn +Rn − λ)−1‖
= max{‖((Cn − λ)|ran Pn)−1‖, ‖((Rn − λ)|ker Pn)−1‖} .

Therefore d(λ, σ(Cn))>d′ for sufficiently large n. Also, ‖Pn(A−λ)−1Pn‖
→ ‖(A− λ)−1‖ as n→∞. Together with (6) and (7) this implies that

(8) ‖((Cn − λ)|ran Pn)−1‖ → ‖(A− λ)−1‖ .
The operator ((Cn−λ)|ran Pn)−1 acts in a finite-dimensional space, thus

we have the estimate

‖((Cn − λ)|ran Pn)−1‖ ≤ 1
d′
f

(
1
d′

ImCn

)
≤ 1
d′
f

(
1
d′

ImA

)
,

and it follows from (8) that also

‖(A− λ)−1‖ ≤ 1
d′
f

(
1
d′

ImA

)
.

This estimate holds for any positive d′ < d(λ, σ(A)), thus defining β(s) =
inft>s f(t) we have for any A ∈ A + S,

‖(A− λ)−1‖ ≤ 1
d(λ, σ(A))

β

(
ImA

d(λ, σ(A))

)
,

and this ends the proof.



Perturbation of spectrum 81

Lemma 4. If
∑

n≥1(n Pn )−1 <∞, where Pn denotes an n-dimensional
orthogonal projection, then S has the resolvent estimate property.

P r o o f. For any r > 0, let k(r) be the smallest natural number k such
that ∑

j≥1

1
(2j − 1) Pj+k

≤ r ,

and let l(r) =
∑

j≤k(r) Pj
−1.

Suppose that C ∈ S is a selfadjoint operator acting in the n-dimensional
Hilbert space Hn and let C =

∑
j≥1 λj(·, fj)fj be its Schmidt expansion

such that |λj | = sj(C). Note that sj(C)Pj ≤ C , and hence sj(C) ≤
Pj

−1
C .

This implies that for any r > 0 there exists a selfadjoint operator Cr

such that Cr ω ≤ r C and C − Cr 1 ≤ l(r) C : it suffices to put Cr =∑
j≥k(r) λj(·, fj)fj .
Now let A be any operator acting in an n-dimensional complex space

and let m = ImA . Let e1, . . . , en be an orthonormal basis in which A
has triangular matrix form, i.e. A =

∑
j≥k EjAEk, where Ej = (·, ej)ej .

Let D =
∑

j EjAEj and L = A − D; then ImD =
∑

j Ej(ImA)Ej , and
[3, Theorem III.4.2] implies that ImD ≤ m = ImA , hence ImL =
ImA− ImD ≤ 2m.

Let Kr be a selfadjoint operator such that Kr ω ≤ r ImL ≤ 2rm and

ImL−Kr 1 ≤ l(r) ImL ≤ 2l(r)m.

We have the identity L = 2i
∑

j>k Ej(ImL)Ek and we set

Lr = 2i
∑
j≥k

EjKrEk .

Then
L− Lr = 2i

∑
j>k

Ej(ImL−Kr)Ek

and it follows from [4, Theorems III.4.1 and III.2.2] that ‖Lr‖ ≤ 2 Kr ω ≤
4mr and

(9) L− Lr Ω ≤ 2 ImL−Kr 1 ≤ 4l(r)m.

Suppose now that λ is not an eigenvalue of A and that d = d(λ, σ(A)).
Then since σ(D) = σ(A) and D is a normal operator,

A− λ = D − λ− L = (D − λ)(I + (D − λ)−1L)

and

(10) ‖(D − λ)−1‖ = 1/d .
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Setting r = d/m we have ‖(D − λ)−1Lr‖ ≤ 1/2 and hence

‖(I + (D − λ)−1Lr)−1‖ ≤ 2 .

We set further Nr = (I + (D − λ)−1Lr)−1(D − λ)−1(L− Lr). Then

(11) A− λ = (D − λ)(I + (D − λ)−1Lr)(I +Nr)

and

(12) Nr Ω ≤ 2
d
L− Lr Ω < 8ml(m/d)/d .

In the basis e1, . . . , en, the operators Lr, L have triangular matrix form,
and (D − λ)−1 is represented in this basis by a diagonal matrix. Therefore
the operator Nr is nilpotent. It follows from [7, Lemma 2] that there exists
a nondecreasing function ψ such that for any finite rank operator B,

‖(B − λ)−1‖ ≤ 1
d(λ, σ(B))

ψ

(
B

d(λ, σ(B))

)
,

and ψ does not depend on the dimension of the space. Applying this estimate
to Nr we obtain from (9)–(12) the estimate

‖(A− λ)−1‖ = ‖(I +Nr)−1(I + (D − λ)−1Lr)−1(D − λ)−1‖

≤ 2
d
ψ

(
8m
d
l

(
m

d

))
.

The estimate obtained is independent of A ∈ L(Hn) and of the dimension
of the space Hn. Now the assertion of the lemma follows from Lemma 3.

It follows from Lemma 4 that the Schatten ideals Sp (1 ≤ p <∞) have
the resolvent estimate property, while Lemma 2 implies that the Matsaev
ideal does not have this property.

R e m a r k. If A ∈ Sω then there exists a normed ideal (S, · ) which
satisfies the assumption of Lemma 4 and A ∈ S.

P r o o f. Let s1 ≥ s2 ≥ . . . be the singular values of A. We define the
ideal S with crossnorm · to be the set of all compact operators B such
that

B
df= s1 sup

n

∑n
j=1 sj(B)∑n

j=1 sj
<∞.

It follows from [3, §14] that (S, · ) is in fact a normed ideal. It is obvious
that A ∈ S and A = s1. If Pn is an n-dimensional projection then



Perturbation of spectrum 83

Pn = s1n(
∑n

j=1 sj)−1 and therefore
∞∑

j=1

1
(n+ 1) Pn

= s−1
1

∞∑
j=1

1
n(n+ 1)

∑
j≤n

sj

= s−1
1

∞∑
j=1

sj

∑
n≥j

1
n(n+ 1)

= s−1
1

∞∑
j=1

sj

j
<∞ .

This is equivalent to the assumption of Lemma 4.

The theorem stated below shows that the resolvent estimate property is
equivalent to some inequalities for crossnorms of the hermitian components
of quasinilpotent operators.

Theorem 1. An ideal S has the resolvent estimate property if and only
if there exists a normed ideal Sν with crossnorm · ν not equivalent to
the operator norm and a constant c such that ReV ν ≤ c ImV for every
quasinilpotent operator V ∈ S.

We precede the proof of this theorem with a simple lemma.

Lemma 5. Suppose that (S, · ), (Sν , · ν) are symmetrically normed
ideals with norms not equivalent to the operator norm and such that there
exists a constant c such that ReV ν ≤ c ImV for any quasinilpotent
operator with ImV ∈ S. Then S ⊂ Sν and A ν ≤ 2c A for any A ∈ S.

P r o o f. Since the crossnorms are unitarily equivalent it suffices to show
the lemma for selfadjoint operators only. Thus assume that A ∈ S is
selfadjoint. Consider the operator W =

(
0 A
0 0

)
; since it is nilpotent, we have

ReW ν ≤ c ImW . To end the proof it suffices to note that ImW ≤ A
and 2 ReW ν ≥ A ν .

Proof of Theorem 1. (“if” part) Let A be any operator acting in
an n-dimensional complex space and let m = ImA . Let e1, . . . , en be
an orthonormal basis in which A has triangular matrix form, i.e. A =∑

j≥k EjAEk, where Ej = (·, ej)ej . Let D =
∑

j EjAEj and L = A − D;
then σ(D) = σ(A). The operator L(D − λ)−1 is represented in the basis
e1, . . . , en by a triangular matrix with vanishing diagonal, and therefore it
is nilpotent. It follows from the identity

A− λ = D − λ+ L = (I + L(D − λ)−1)(D − λ)

and the equality

(13) ‖(D − λ)−1‖ = (d(λ, σ(D)))−1 = (d(λ, σ(A)))−1

that

‖(A− λ)−1‖ ≤ ‖(I + L(D − λ)−1)−1‖
d(λ, σ(A))

.
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The equality ImD =
∑n

j=1Ej(ImA)Ej and [3, Theorem III.4.2] imply that
ImD ≤ ImA and since ImL = ImA− ImD we have ImL ≤ 2 ImA .

Now if the suitable ideal Sν and constant c exist then

L ν ≤ ReL ν + ImL ν ≤ c ImL + 2c ImL ≤ 6c ImA .

This inequality and (13) imply that for the nilpotent operator L(D − λ)−1

we have the estimate

L(D − λ)−1
ν ≤ ‖(D − λ)−1‖ L ν ≤ 6c

ImA

d(λ, σ(A))
.

It is shown in [7, Lemma 2] that there exists an increasing function ψ :
(0,∞) → (0,∞) such that ‖(I + N)−1‖ ≤ ψ( N ν) for any finite rank
nilpotent operator N . This implies that

‖(I + L(D − λ)−1)−1‖ ≤ ψ( L(D − λ)−1 ) ≤ ψ

(
6c

ImA

d(λ, σ(A))

)
.

Thus setting β(t) = ψ(6ct) we have the estimate

‖(A− λ)−1‖ ≤ 1
d(λ, σ(A))

β

(
ImA

d(λ, σ(A))

)
for any finite rank operator. The “if” part now follows from Lemma 3.

(“only if” part) It follows from Lemma 2 and [4, Theorem III.4.2] that
there exists a positive number s such that ‖ReV ‖ ≤ 2 ImV ω ≤ s ImV
for any quasinilpotent operator V with ImV ∈ S. Assume that ImV = 1
and that ReV =

∑
λj(·, fj)fj is the eigenvalue expansion of ReV . Let Γr

be the positively oriented closed polynomial path connecting the points r−i,
r + i, s+ 1 + i, s+ 1− i.

Note that:∑
λj>r

(λj − r)(·, fj)fj =
−1
2πi

∫
Γr

(λ− r)(ReV − λ)−1dλ(i)

=
−1
2πi

∫
Γr

((ReV − λ)−1 − (V − λ)−1) dλ .

(ii) If Reλ = r then

|λ− r| = |Imλ| ≤ d(λ, σ(ReV )) = ‖(ReV − λ)−1‖−1 ,

and it follows from the identity

(ReV − λ)−1 − (V − λ)−1 = i(ReV − λ)−1(ImV )(V − λ)−1

and Lemma 1 that

(λ− r)((ReV − λ)−1 − (V − λ)−1) ≤ 1
r
βν

(
1
r

)
.
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(iii) If λ ∈ Γr and Reλ > r then |λ| > r, d(λ, σ(V )) ≥ 1 and hence

(λ− r)((ReV − λ)−1 − (V − λ)−1) ≤ |λ− r|1
r
βν

(
1
r

)
.

These facts imply that there exists c > 0 such that for all r ∈ (0, s+ 1),∑
λj>r

(λj − r)(·, fj)fj ≤ c

r
βν

(
1
r

)
.

If λj ≥ r then λj ≤ 2(λj − r/2) and therefore∑
λj≥r

λj(·, fj)fj ≤ 2
∑
λj≥r

(
λj −

r

2

)
(·, fj)fj

≤ 2
∑

λj≥r/2

(
λj −

r

2

)
(·, fj)fj ≤ 2

2c
r
βν

(
2
r

)
.

In a similar way we obtain the estimate∑
λj≤−r

λj(·, fj)fj ≤ 4c
r
βν

(
2
r

)
.

The last two estimates imply that

(14)
∑
|λj |≥r

λj(·, fj)fj ≤ 8c
r
βν

(
2
r

)
.

It follows from Lemma 1 that the function ψ(r) = (8c/r)βν(2/r) is decreas-
ing and continuous, ψ(r) → ∞ as r → 0 and ψ(r) → 0 as r → ∞. Let Pn

denote an n-dimensional orthogonal projection and τn be a positive num-
ber such that Pn = ψ(τn). The sequence τ1, τ2, . . . is nonincreasing and
τn → 0 as n→∞. Note also that Pn ≤ ψ(τ) if and only if τ ≤ τn.

Now we define the ideal Sν to be the set of all those compact operators
A for which

A ν = τ1 sup
n

∑n
j=1 sj(A)∑n

j=1 τj
<∞ .

It follows from [3, Lemma III.4.1 and Theorem III.4.2] that Sν is a sym-
metrically normed ideal with crossnorm · ν not equivalent to the operator
norm.

Now let sk = sk(ReV ) and suppose that for some l ≤ k, sl = sk > sk+1.
Then it follows from (14) that

sk Pk ≤
∑

|λj |≥sk

λj(·, fj)fj ≤ skψ(sk)
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and therefore sl = sk ≤ τk ≤ τl. This shows that if V is a quasinilpotent
operator such that ImV ∈ S then ReV ∈ Sν and ReV ν ≤ τ1 ImV .

Effective resolvent norm estimates. In order to find effective resol-
vent norm estimate for operators A with ImA ∈ Sp we have to check the
hypothesis of Theorem 1. The Matsaev theorem [4, Theorem III.6.2] states
that if N is a quasinilpotent operator with ImN ∈ Sp (1 < p <∞) then

ReN p ≤ cp N p, where cp =


1

e3/2 ln 2
p, 2 ≤ p <∞,

1
e3/2 ln 2

· p

p− 1
, 1 < p ≤ 2,

while for p = 1 [4, Theorem III.2.1] we have

N Ω ≤ 4
π
N 1 .

Following the proof of Theorem 1 we have to estimate ‖(I −N)−1‖; the
method of obtaining such an estimate is given in [7, Lemma 2], and gives

‖(I −N)−1‖ ≤ 3
2

exp
(

19.5 N τ

(
1

3 N

))
,

where
τ(r) = Pn(r) ∗, n(r) = max{n : r Pn ≤ 1} ,

Pn stands for an n-dimensional orthogonal projection, and · ∗ for the
adjoint crossnorm. It is easy to see that in the case of the crossnorms · p

(1 < p <∞) we have

n(r) = np(r) ≤ r−p, τ(r) = τp(r) = Pn(r) p/(p−1) ≤ r1−p .

The respective estimation of nΩ , τΩ is a little harder. The crossnorm · ω

is adjoint to · Ω and

Pn Ω =
n∑n

j=1
1

2j−1

, Pn ω =
n∑

j=1

1
2j − 1

.

Using the elementary inequality
∑n

j=1
1

2j−1 < ln(e
√
n) we see that

nΩ(r) ≤ 1
r

ln
1
r
, τΩ(r) ≤ ln

(
e

√
1
r

ln
1
r

)
for r < 0.0430156 . . .

Now inspecting the proof of Theorem 1 we find that if ImA ∈ Sp then
with d = d(λ, σ(A)) and a = ImA p,

‖(A− λI)−1‖ ≤ 3
2d

exp
(

6.5
(

18cp
a

d

)p)
, 1 < p <∞ ,(15)
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‖(A− λI)−1‖ ≤ 3
2d

exp
(

156
π

a

d
ln

(
e

√
24a
πd

ln
(

24a
πd

)))
, p = 1 .(16)

The last inequality holds if a > d · 3.043 . . . The constant 3.043 . . . has
been evaluated with the help of Mathematica [8].

Perturbation of spectra

Theorem 2. If S is an ideal with the resolvent estimate property then
there exists an increasing function α : [0,∞) → [0,∞) such that α(t) →∞
as t→ 0 and for any two operators A, B with ImA, ImB ∈ S,

dist(σ(A), σ(B)) ≤ mα

(
‖A−B‖

m

)
,

where m = max{ ImA , ImB }.
P r o o f. Since the spectrum of A is an approximate spectrum, for any

λ ∈ σ(A) and any ε > 0 there exists a unit vector x such that ‖(A−λ)x‖ ≤ ε.
Then ‖(B − λ)x‖ ≤ ‖B − A‖ + ε and since 1 = ‖(B − λ)−1(B − λ)x‖ ≤
‖(B − λ)−1‖‖(B − λ)x‖ we see that

‖(B − λ)−1‖ ≥ 1
‖(B − λ)x‖

≥ 1
‖B −A‖+ ε

.

Hence it follows from Lemma 1 that with the appropriate function β we
have

1
‖B −A‖

≤ 1
d(λ, σ(B))

β

(
ImB

d(λ, σ(B))

)
.

This inequality holds for any λ ∈ σ(A) and therefore we have

1
‖B −A‖

≤ 1
%̂
β

(
ImB

%̂

)
where %̂ = sup

λ∈σ(A)

d(λ, σ(B)) .

Interchanging A and B we see that
m

‖A−B‖
≤ m

d
β

(
m

d

)
,

where m = max{ ImA , B }, d = dist(σ(A), σ(B)). The function g(t) =
tβ(t) is decreasing and g(t) → ∞ as t → ∞, while g(t) → 0 as t → 0,
therefore there exists an increasing function α : [0,∞) → [0,∞) such that
g(t) > 1/r implies t ≤ α(r) and α(s) → 0 as s → 0. This function is as
desired.

Effective estimates of distances between spectra. The effec-
tive estimates of the distance between the spectra of operators A, B with
ImA, ImB ∈ Sp may be given in terms of the inverse functions to those
appearing on the right-hand sides of (15) and (16). These functions cannot
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be expressed by elementary functions, therefore we content ourselves with a
little worse estimates but given in a simple form. We set

m = max{ ImA p, ImB p}, t =
m

dist(σ(A), σ(B))
, s =

m

‖A−B‖
.

It follows from the proof of Theorem 2 and (15) that s ≤ c1te
c2tp ≤ c1e

c3tp

for t ≥ 1 and appropriate constants c1, c2, c3. This implies that

t ≥
(

1
c3

ln
s

c1

)1/p

and hence

dist(σ(A), σ(B)) ≤ c0m

(
ln

m

c1‖A−B‖

)−1/p

provided that ‖A−B‖/m is sufficiently small.
Similarly, for p = 1 it follows from (16) that

s ≤ a1t exp(a2t ln(e
√
a3t ln(a3t)))

≤ a1 exp(t(1 + a2 ln(e
√
a3)) + a2t ln t)

= a1 exp(a4t+ a5t ln t) ≤ a1 exp(a0t ln t)

with some constants a0, a2, . . . if ln t > a4/a5, hence
1
a0

ln
s

a1
≤ t ln t .

Using the inequality

u ≥ u

lnu
ln

u

lnu
(valid for u ≥ e) with u = 1

a0
ln s

a1
we see that for s sufficiently large we

have u lnu ≥ t ln t, and since the function t ln t is increasing we have further
1
a0

ln
s

a1
= u ≥ t .

This implies that

dist(σ(A), σ(B)) ≤ a0m

(
ln

m

a1‖A−B‖

)−1

if ‖A−B‖/m is sufficiently small.
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