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Abstract. Lanczos method for solving a system of linear equations is well known. It is
derived from a generalization of the method of moments and one of its main interests is that it
provides the exact answer in at most n steps where n is the dimension of the system. Lanczos
method can be implemented via several recursive algorithms known as Orthodir , Orthomin,
Orthores, Biconjugate gradient , . . . In this paper, we show that all these procedures can be
explained within the framework of formal orthogonal polynomials. This theory also provides a
natural basis for curing breakdown and near-breakdown in these algorithms. The case of the
conjugate gradient squared method can be treated similarly.

1. Lanczos method. Let us consider in Cn the system of linear equations

Ax = b .

The Lanczos method [14] for solving this system consists in constructing the
sequence of vectors (xk) as follows:

• choose two arbitrary nonzero vectors x0 and y,
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• set r0 = b−Ax0,
• determine xk such that

xk − x0 ∈ Ek = span(r0, Ar0, . . . , Ak−1r0) ,

rk = b−Axk ⊥ Fk = span(y,A∗y, . . . , A∗
k−1

y)

where A∗ is the conjugate transpose of A.

These two conditions determine xk if it exists. Indeed, xk−x0 can be written
in the form

xk − x0 = −α1r0 − . . .− αkA
k−1r0

and the orthogonality conditions give

(A∗
i

y, rk) = 0 for i = 0, . . . , k − 1 ,

which is a system of k linear equations in the k unknowns α1, . . . , αk. This system
is singular if r0, Ar0, . . . , Ak−1r0 or y, A∗y, . . . , A∗

k−1
y are linearly dependent.

If we set
Pk(ξ) = 1 + α1ξ + . . .+ αkξ

k

then we have
rk = Pk(A)r0 .

Moreover, if we set
ci = (y,Air0), i = 0, 1, . . .

and if we define the linear functional c on the space of polynomials by

c(ξi) = ci, i = 0, 1, . . .

then the preceding orthogonality conditions can be written as

c(ξiPk) = 0 for i = 0, . . . , k − 1 .

These relations show that Pk is a polynomial of degree at most k belonging to
the family of formal orthogonal polynomials with respect to c [1]. This polynomial
is defined apart from a multiplying factor which is chosen, in our case, such that
Pk(0) = 1. Due to this normalization, Pk exists and is unique if and only if the
Hankel determinant

H
(1)
k =

∣∣∣∣∣∣∣∣
c1 c2 . . . ck
c2 c3 . . . ck+1

...
... . . .

...
ck ck+1 . . . c2k−1

∣∣∣∣∣∣∣∣
is different from zero.

The polynomials Pk can be recursively computed in different ways which lead
to the various Lanczos type algorithms known as Orthores, Orthodir , Orthomin,
Biores, Biodir , biconjugate gradient , and so on. A unified presentation and deriva-
tion of all these methods can be based on the theory of formal orthogonal poly-
nomials [8].
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The main property of the Lanczos method is its finite convergence, namely
that ∃k ≤ n such that rk = 0 and xk = x = A−1b.

The theory of the Lanczos method has its basis in generalizations of the
method of moments and of Galerkin’s method, as will now be explained.

2. Theory of the Lanczos method. Let E be a vector space and E∗ its
algebraic dual. Let Ek = span(u0, . . . , uk−1) where u0, . . . , uk−1 ∈ E are assumed
to be linearly independent. Let L0, L1, . . . , Lk−1 be k linearly independent linear
functionals in E∗.

Let f ∈ E and let Rk ∈ Ek be defined by

〈Li, Rk〉 = 〈Li, f〉 for i = 0, . . . , k − 1 .

Let Hk be the linear mapping on E defined by

Hkf = Rk .

Then HkRk =Rk and thus H2
k =Hk, which shows that Hk is a projection on Ek.

The method of moments, introduced by Vorobyev [16], is based on orthogonal
projections in a Hilbert space. We shall now give its generalization as presented
in [3].

It consists in constructing a linear mapping Ak on Ek such that

u1 = Aku0 ,

u2 = Aku1 = A2
ku0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

uk−1 = Akuk−2 = Ak−1
k u0 ,

Hkuk = Akuk−1 = Ak
ku0

with Hk as defined above. These relations completely determine the mapping Ak.
Since Hkuk ∈ Ek, we can write

Hkuk = −β0u0 − . . .− βk−1uk−1 ,

that is,

β0u0 + . . .+ βk−1uk−1 +Hkuk = (β0 + β1Ak + . . .+ βk−1A
k−1
k +Ak

k)u0 = 0 .

But we have
〈Li, uk −Hkuk〉 = 0 for i = 0, . . . , k − 1 ,

that is,

β0〈Li, u0〉+ . . .+ βk−1〈Li, uk−1〉+ 〈Li, uk〉 = 0 for i = 0, . . . , k − 1 .

Thus, if we set
P̃k(ξ) = β0 + . . .+ βk−1ξ

k−1 + ξk

then it can be proved that
P̃k(Ak)u0 = 0 .
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Let us assume that Ak is invertible in Ek and solve the equation

Akvk = u0

where vk ∈ Ek.
Let Pk and Vk−1 be two arbitrary polynomials of degree k and k − 1 respect-

ively, related by
1− Pk(ξ) = ξVk−1(ξ) .

Thus Pk must satisfy Pk(0) = 1 and we have

u0 − Pk(Ak)u0 = AkVk−1(Ak)u0 .

If we take
Pk(ξ) = P̃k(ξ)/P̃k(0)

then
Pk(0) = 1 and Pk(Ak)u0 = 0 .

It follows that
AkVk−1(Ak)u0 = u0 ,

which shows that
vk = Vk−1(Ak)u0 .

Let us now make the particular choice Ek = Cn and

ui = Air0, i = 0, . . . , k ,

where A is an n× n regular matrix.
Let Ak be the matrix obtained by the method of moments and let xk be the

vector defined by
Ak(xk − x0) = r0 .

The linear functional Li is uniquely represented by a vector yi and

〈Li, uj〉 = (yi, uj)

where (· , ·) denotes the usual scalar product in Cn. Hk is the oblique projection
on Ek along F⊥k where Fk = span(y0, . . . , yk−1).

The polynomial Pk defined above is the same as that of the preceding section
and

xk − x0 = Vk−1(Ak)r0 .
But, since Vk−1 has degree k − 1 and Air0 = Ai

kr0 for i = 0, . . . , k − 1, we have

xk − x0 = Vk−1(A)r0 .

That is,
Axk − b− (Ax0 − b) = AVk−1(A)r0

or
rk = r0 −AVk−1(A)r0 = Pk(A)r0 .
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Moreover, from the preceding results, we have

(yi, rk) = 0 for i = 0, . . . , k − 1 ,

which is exactly the Lanczos method if yi = A∗
i

y for i = 0, . . . , k − 1. For more
details, see [2].

Let us now look at the various possibilities for computing recursively the
orthogonal polynomials Pk.

3. Orthogonal polynomials. We shall first consider the case where ∀k, H(1)
k

6= 0.
Let us define the linear functional c(1) by

c(1)(ξi) = c(ξi+1) = ci+1, i = 0, 1, . . .

Let {P (1)
k } be the family of monic orthogonal polynomials with respect to the

linear functional c(1). P (1)
k exists under the condition thatH(1)

k 6= 0. As previously
seen, this condition also ensures the existence of Pk. {Pk} and {P (1)

k } are said to
be adjacent families of formal orthogonal polynomials.

Since the polynomials of both families are uniquely determined, it is easy to
see that

(1) Pk+1(ξ) = Pk(ξ)− λkξP
(1)
k (ξ)

with P0(ξ) = P
(1)
0 (ξ) = 1.

We now show how to obtain an expression for λk. Let {Ui} be an arbitrary
family of polynomials such that ∀i, Ui has exact degree i. Multiplying both sides
of (1) by Uk and applying the functional c, we obtain

λk = c(UkPk)/c(ξUkP
(1)
k ) .

Moreover, it is well known that a family of orthogonal polynomials satisfies a
three-term recurrence relationship. Thus we have

(2) P
(1)
k (ξ) = (ξ − ak)P (1)

k−1(ξ)− bkP (1)
k−2(ξ)

with P
(1)
0 (ξ) = 1 and P

(1)
−1 (ξ) = 0.

As proved in [4], using again the auxiliary family {Ui} we have, by a similar
argument,

bk = c(ξ2Uk−2P
(1)
k−1)/c(ξUk−2P

(1)
k−2) ,

ak = [c(ξ2Uk−1P
(1)
k−1)− bkc(ξUk−1P

(1)
k−2)]/c(ξUk−1P

(1)
k−1) .

For example, if we choose Uk = P
(1)
k , we recover the usual formula

ak = c(ξ2P (1)2

k−1 )/c(ξP (1)2

k−1 ) .
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The family {Pk} also satisfies a three-term recurrence relationship which can
be written as

(3) Pk+1(ξ) = −Dk[(ξ −Bk)Pk(ξ)− CkPk−1(ξ)]

with P0(ξ) = 1 and P−1(ξ) = 0. Since Pk(0) = 1, we must have

Dk = 1/(Bk + Ck) .

Using again the auxiliary family {Ui}, as above, we have

c(Uk−1Pk+1) = 0 = −Dk[c(ξUk−1Pk)− Ckc(Uk−1Pk−1)]

and thus
Ck = c(ξUk−1Pk)/c(Uk−1Pk−1) .

Similarly,

c(UkPk+1) = 0 = −Dk[c(ξUkPk)−Bkc(UkPk)− Ckc(UkPk−1)]

and thus we obtain

Bk = [c(ξUkPk)− Ckc(UkPk−1)]/c(UkPk) .

Again, for the particular choice Uk = Pk, we recover the usual formulae.
Assume that H(0)

k 6= 0 and set

Qk(ξ) = (−1)kH
(0)
k P

(1)
k (ξ)/H(1)

k .

Since Pk and P (1)
k both have degree k exactly, the coefficients of ξk in Pk and Qk

are the same and Qk is proportional to P (1)
k . Moreover,

c(ξi+1Qk) = 0 for i = 0, . . . , k − 1 .

By using the same uniqueness argument as above we can write

Qk(ξ) = Pk(ξ) + αkQk−1(ξ) ,(4)
Pk+1(ξ) = Pk(ξ)− βkξQk(ξ)(5)

with

αk = −c(ξUk−1Pk)/c(ξUk−1Qk−1) and βk = c(UkPk)/c(ξUkQk) .

4. Lanczos type algorithms. We shall now examine the various possibilities
for computing recursively the vectors rk defined by rk = Pk(A)r0. They give rise
to the different methods which are known and some new ones can also be obtained
as we shall see below.

4.1. Lanczos/Orthodir . Let us set

zk = P
(1)
k (A)r0 .

From (1) we immediately obtain

rk+1 = rk − λkAzk .
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Using rk = b−Axk, this gives

xk+1 = xk + λkzk .

From (2) we have
zk = Azk−1 − akzk−1 − bkzk−2 .

This method is called Lanczos/Orthodir.
Let us now see how to compute the coefficients λk, ak and bk appearing in

these formulae or, in other words, how to choose the auxiliary polynomials {Ui}.
The simplest choice consists in taking

Uk(ξ) = ξk .

We have
λk = c(ξkPk)/c(ξk+1P

(1)
k ) .

But

c(ξkPk) = (A∗
k

y, Pk(A)r0) and c(ξk+1P
(1)
k ) = (A∗

k+1
y, P

(1)
k (A)r0)

and we finally obtain

λk = (A∗
k

y, rk)/(A∗
k+1

y, zk) .

Similarly, we have

bk = (A∗
k

y, zk−1)/(A∗
k−1

y, zk−2)
and

ak = [(A∗
k

y,Azk−1)− bk(A∗
k−1

y,Azk−2)]/(A∗
k

y, zk−1) .

Now let us make the choice

Uk(ξ) = P
(1)
k (ξ) .

We have
λk = c(P (1)

k Pk)/c(ξP (1)2

k ) .
Thus if we set

z̃k = P
(1)
k (A∗)y = P

(1)
k (A)∗y

we obtain
λk = (z̃k, rk)/(z̃k, Azk) .

We also have

ak =
c(ξ2P (1)2

k−1 )

c(ξP (1)2

k−1 )
=

(A∗z̃k−1, Azk−1)
(z̃k−1, Azk−1)

and then

bk =
c(ξ2P (1)

k−2P
(1)
k−1)

c(ξP (1)2

k−2 )
=

(A∗z̃k−2, Azk−1)
(z̃k−2, Azk−2)

.
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But c(ξ2P (1)
k−2P

(1)
k−1) = c(ξP (1)2

k−1 ) by the orthogonality of P (1)
k−1 to any polyno-

mial of degree strictly less than k − 1, and thus

bk = (z̃k−1, Azk−1)/(z̃k−2, Azk−2) .

Thus, we obtain
z̃k = A∗z̃k−1 − akz̃k−1 − bkz̃k−2 .

If we set
r̃k = Pk(A)∗r0

then we have
r̃k+1 = r̃k − λkA

∗z̃k .

If we gather all these formulae together, we obtain the algorithm known under
the name of BIODIR [12].

R e m a r k. This algorithm is defined (that is, xk+1 exists) only if P (1)
k has exact

degree k, or, in other words, if ∀k, H(1)
k 6= 0. If this condition is not satisfied, it

is possible to jump over the non-existing polynomials P (1)
k and to use only those

which exist. Thus we obtain a generalization of BIODIR without breakdown. This
algorithm, called the MRZ (Method of Recursive Zoom), was given in [6]. Related
algorithms can also be found in [12]. They will be briefly described in Section 5.

4.2. Lanczos/Orthores. Let us now assume that Pk has exact degree k. Thus
the three-term recurrence relationship (3) holds and we immediately obtain

rk+1 = −Dk(Ark −Bkrk − Ckrk−1) .

Since rk = b−Axk, we have

xk+1 = Dk(rk +Bkxk + Ckxk−1) .

These formulae define the method known under the name of Lanczos/Orthores
(see [17]).

Let us now see how to compute the coefficients Dk, Bk and Ck appearing
in these formulae. There are several possibilities according to the choice of the
auxiliary polynomials {Ui}.

Let us start again by taking

Uk(ξ) = ξk .

We have
Ck = c(ξkPk)/c(ξk−1Pk−1)

and hence
Ck = (A∗

k

y, rk)/(A∗
k−1

y, rk−1) .
Similarly, we have

Bk = [c(ξk+1Pk)− Ckc(ξkPk−1)]/c(ξkPk) ,
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that is,

Bk = [(A∗
k

y,Ark)− Ck(A∗
k−1

y,Ark−1)]/(A∗
k

y, rk) .
Since Pk has exact degree k, we can also make the choice

Uk(ξ) = Pk(ξ) .

In that case
Ck = c(ξPk−1Pk)/c(P 2

k−1) .
But, multiplying both sides of (3) by Pk+1 and applying c, we obtain

c(P 2
k+1) = −Dkc(ξPkPk+1)

and thus

Ck = − 1
Dk−1

c(P 2
k )

c(P 2
k−1)

.

If we set
r̃k = P k(A∗)y

then

Ck = − 1
Dk−1

(r̃k, rk)
(r̃k−1, rk−1)

.

We also have, since c(Pk−1Pk) = 0,

Bk = c(ξP 2
k )/c(P 2

k ) ,

that is,
Bk = (r̃k, Ark)/(r̃k, rk).

Finally, (3) gives us

r̃k+1 = −Dk(A∗r̃k −Bkr̃k − Ckr̃k−1) .

These formulae define the algorithm known under the name of BIORES.

R e m a r k. The two algorithms described in this subsection need the supple-
mentary assumption that Pk has exact degree k. Thus, for all k, H(0)

k and H
(1)
k

both have to be different from zero. The supplementary assumption H
(0)
k 6= 0 is

needed by the procedure used in the recursive computation but it is, in fact, an
unnecessary assumption in the theory of the Lanczos method and it is a supple-
mentary reason for a breakdown. A remedy will be indicated in Section 5.

4.3. Lanczos/Orthomin. Instead of using the polynomials P (1)
k as in the me-

thod Lanczos/Orthores, we shall make use of the polynomials Qk defined in Sec-
tion 3. Thus Pk is again assumed to have exact degree k. We set

pk = Qk(A)r0 .

From (4) and (5) we have

pk = rk + αkpk−1 and rk+1 = rk − βkApk .
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By using the definition of rk, it follows that

xk+1 = xk + βkpk .

These formulae define the method known under the name of Lanczos/
Orthomin (see [11]).

Let us now see how to compute the coefficients αk and βk appearing in these
formulae. We begin by the choice

Uk(ξ) = ξk .

We have

αk = −c(ξkPk)/c(ξkQk−1), βk = c(ξkPk)/c(ξk+1Qk)

and it follows that

αk = −(A∗
k

y, rk)/(A∗
k

y, pk−1), βk = (A∗
k

y, rk)/(A∗
k+1

y, pk) .

Let us now choose
Uk(ξ) = Pk(ξ) .

In that case
βk = c(P 2

k )/c(ξPkQk) .
But, since the coefficients of ξk in Pk and in Qk are the same, we have

Pk(ξ) = Qk(ξ) + p(ξ)

where p is a polynomial of degree k − 1 at most. Thus

c(ξPkQk) = c(ξQ2
k) + c(ξpQk) .

But, as Qk is proportional to P (1)
k , we have, by the orthogonality property of P (1)

k ,
c(ξpQk) = 0 and thus

βk = c(P 2
k )/c(ξQ2

k) .
Setting

r̃k = Pk(A)∗y
we obtain

βk = (r̃k, rk)/(p̃k, Apk) .
We have

αk = −c(ξPk−1Pk)/c(ξPk−1Qk−1) .
But βk−1 = c(P 2

k−1)/c(ξPk−1Qk−1) and thus

αk = −βk−1c(ξPk−1Pk)/c(P 2
k−1) .

On the other hand, writing (5) for the index k, multiplying it by Pk and
applying c gives

c(P 2
k ) = −βk−1c(ξPkQk−1) .

Moreover, from (4)

c(ξPkQk−1) = c(ξPkPk−1) + αkc(ξPkQk−2) .
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Since Pk is orthogonal to ξQk−2 which is a polynomial of degree k− 1, it follows
that

c(P 2
k ) = −βk−1c(ξPkPk−1) .

Thus, we finally obtain

αk = c(P 2
k )/c(P 2

k−1) ,

that is,

αk = (r̃k, rk)/(r̃k−1, rk−1) .

If we set

p̃k = Qk(A)∗y

we obtain from (5)

r̃k+1 = r̃k − βkA
∗p̃k

and from (4)

p̃k = r̃k + αkp̃k−1 .

These formulae define the so-called biconjugate gradient method (BCG) due to
Lanczos [14], but popularized by Fletcher [11]. When the matrix A is Hermi-
tian and when y = r0 this method reduces to the conjugate gradient method of
Hestenes and Stiefel [13].

4.4. Other methods. All the methods are characterized by the choice of one
or two recurrence relationships for computing the orthogonal polynomials. There
are many other possible choices, thus leading to other (new) methods. Some of
them are described in [8].

5. Breakdown and near-breakdown. Let us now assume that some of the
Hankel determinants H(1)

k are equal to zero. In that case some of the polynomials
Pk, and thus the corresponding polynomials P (1)

k , do not exist. Then, due to a
division by zero, a breakdown will occur in the Lanczos type algorithms described
in Section 4. It is possible to avoid such a breakdown by jumping over the non-
existing polynomials and considering only the existing ones which are usually
called regular. We shall now change a little bit our notations and call Pk and
Pk+1 two successive regular orthogonal polynomials with respect to c, of respective
degrees nk and nk+1 = nk +mk at most. Similarly, P (1)

k and P (1)
k+1 will denote two

successive regular monic orthogonal polynomials with respect to c(1), of respective
degrees nk and nk+1.

It was proved by Draux [10] that P (1)
k satisfies the conditions

c(1)(ξiP
(1)
k ) = c(ξi+1P

(1)
k ) = 0 for i = 0, . . . , nk +mk − 2 ,

c(1)(ξnk+mk−1P
(1)
k ) = c(ξnk+mkP

(1)
k ) 6= 0 .
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These conditions determine the length mk of the jump. Moreover, the poly-
nomials P (1)

k satisfy the recurrence relationship

(6) P
(1)
k+1(ξ) = qk(ξ)P (1)

k (ξ)− Ck+1P
(1)
k−1(ξ), k = 0, 1, . . .

with P
(1)
−1 (ξ) = 0, P (1)

0 (ξ) = 1 and qk a monic polynomial of degree mk.
It can also be proved that, in such a case,

(7) Pk+1(ξ) = Pk(ξ)− ξwk(ξ)P (1)
k (ξ)

with P0(ξ) = 1 and wk a polynomial of degree mk − 1 at most.
The coefficients of the polynomials qk and wk and the constants Ck+1 are

obtained by imposing the orthogonality conditions on the respective polynomials.
Gathering all these formulae together we have the following algorithm called

the MRZ (Method of Recursive Zoom) [6]:

• Choose x0 and y. Set

r0 = z0 = b−Ax0, z−1 = 0, n0 = 0 .

• For k = 0, 1, . . . compute mk and then if nk +mk ≤ n set

xk+1 = xk + wk(A)zk, rk+1 = rk −Awk(A)zk .

• If rk+1 6= 0, then compute

nk+1 = nk +mk, zk+1 = qk(A)zk − Ck+1zk−1 .

Clearly this algorithm is a generalization of the Lanczos/Orthodir and
BIODIR algorithms. It cannot suffer from breakdown except the incurable hard
one which occurs if c(ξnP

(1)
k ) = 0. The corresponding subroutine is given in [7].

If we make the supplementary assumption that c(ξnkPk) 6= 0 then it is possible
to generalize some of the other algorithms given in Section 4.

As explained above, breakdown is due to the non-existence of some polyno-
mials Pk and the remedy is to jump over these non-existing polynomials. In the
methods Lanczos/Orthores and Lanczos/Orthomin, we made the supplementary
assumption that Pk has exact degree k. In fact this assumption is totally unnec-
essary in the theory of the Lanczos method but it was required by the form of the
recurrence relation used, thus being a supplementary (and unnecessary) cause for
breakdown.

Now if |c(1)(ξnk+mk−1P
(1)
k )| is different from zero but small (and possibly

badly computed) the coefficients of the recurrence relations given in Section 4
could be large and badly computed and rounding errors could affect the algorithm.
The same is true if the quantities |c(1)(ξiP

(1)
k )| are not zero for i = nk, . . . , nk +

mk− 2 but small; in that case no breakdown occurs in the method but numerical
instability will be present, a situation called near-breakdown.

It is possible to avoid such a near-breakdown by jumping over these polyno-
mials which could be badly computed and to compute directly the first regular
polynomial following them.
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Thus, let ε ≥ 0 be given. We define mk ≥ 1 such that

|c(1)(ξiP
(1)
k )| ≤ ε for i = nk, . . . , nk +mk − 2 ,

|c(1)(ξiP
(1)
k )| > ε for i = nk +mk − 1 .

Let nk+1 = nk + mk. We shall denote by P
(1)
k+1 the regular orthogonal poly-

nomial of degree nk+1 with respect to c(1). As explained in the sequel if such a
polynomial does not exist (and we are able to detect such a case) the value of
mk has to be increased until a regular polynomial has been obtained. We shall
denote by Pk+1 the corresponding orthogonal polynomial of degree nk+1 at most
with respect to c normalized by the condition Pk+1(0) = 1.

Let us first compute Pk+1. We shall write it in the form

(8) Pk+1(ξ) = Pk(ξ)− ξwk(ξ)P (1)
k (ξ)− ξvk(ξ)Pk(ξ)

where wk is a polynomial of degree at most mk−1 and vk a polynomial of degree
at most mk−2 if nk−mk +1 ≥ 0 and of degree at most nk−1 if nk−mk +1 < 0.

Let us recall that, in the case of a breakdown, vk is identically zero.
Let us now try to compute recursively P

(1)
k+1. We shall look for P (1)

k+1 in the
form

(9) P
(1)
k+1(ξ) = qk(ξ)P (1)

k (ξ) + tk(ξ)Pk(ξ)

where qk is a monic polynomial of degree mk and tk a polynomial of degree at
most mk − 1 if nk −mk ≥ 0 and of degree at most nk − 1 otherwise.

If c(ξnkPk) = 0 this system is singular. However, this case will seldom occur
and most of the time |c(ξnkPk)| will not be equal to zero but small. Such a case
can also be avoided.

If the systems giving the coefficients of the above polynomials are singular, it
means that P (1)

k+1 does not exist and the value of mk has to be increased until a

regular polynomial P (1)
k+1 has been obtained.

Setting rk = Pk(A)r0 and zk = P
(1)
k (A)r0, we obtain an algorithm for avoiding

near-breakdown in the Lanczos method; it was called the BSMRZ, [7].

6. The CGS. A variant of the Lanczos method was proposed by Sonn-
eveld [15]. It is the so-called conjugate gradient squared method (CGS for short)
which consists in taking

rk = P 2
k (A)r0 .

This method obviously has the same finite convergence property as the Lanczos
method. From the above formulae it is obviously possible to avoid also breakdown
and near-breakdown in the CGS algorithm by squaring the above formulae. This
is done in [9] for the breakdown and in [5] for the near-breakdown. As an example
let us show how to treat the case of near-breakdown. We first take the relation
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(8) of the BSMRZ and square it. We obtain

P 2
k+1 = (1− ξvk)2P 2

k − 2(1− ξvk)ξwkPkP
(1)
k + ξ2w2

kP
(1)2

k .

For using this relation, it is necessary to compute recursively the polynomials
P

(1)2

k+1 and Pk+1P
(1)2

k+1 . Thus, let us square the relation (9) of the BSMRZ. We
obtain

P
(1)2

k+1 = q2kP
(1)2

k + 2qktkPkP
(1)
k + t2kP

2
k .

Finally, multiplying (8) by (9) leads to

Pk+1P
(1)
k+1 = (qk − ξqkvk − ξtkwk)PkP

(1)
k − ξqkwkP

(1)2

k + tk(1− ξvk)P 2
k .

Thus, if we set

rk = P 2
k (A)r0, zk = P

(1)2

k (A)r0, sk = Pk(A)P (1)
k (A)r0,

then we obtain the following algorithm called, for obvious reasons, the BSMRZS:

rk+1 = (I −Avk(A))2rk − 2(I −Avk(A))Awk(A)sk +A2w2
k(A)zk ,

xk+1 = xk − (Avk(A)− 2I)vk(A)rk + 2(I −Avk(A))wk(A)sk −Aw2
k(A)zk ,

zk+1 = q2k(A)zk + 2qk(A)tk(A)sk + t2k(A)rk ,
sk+1 = (qk(A)−Aqk(A)vk(A)−Atk(A)wk(A))sk −Aqk(A)wk(A)zk

+ tk(A)(I −Avk(A))rk .
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