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The Kreiss matrix theorem with Spijker’s improvement may be formulated as
follows:

If A is a linear operator acting in a normed d-dimensional space such that

(1) ‖(A− λ)−1‖ ≤ M

|λ| − 1
for |λ| > 1 ,

then

(2) ‖An‖ ≤ edM .

In this paper we are looking for some infinite-dimensional version of this theo-
rem in Hilbert spaces. As a measure of “finite-dimensionality” we shall use cross-
norms of compact operators.

The first lemma and its proof show difficulties in obtaining estimates of norms
of powers of an operator.

Lemma 1. Suppose that K is a compact operator such that (1) holds. Then
K is power bounded , i.e. supn ‖Kn‖ <∞.

P r o o f. Let E be the eigenprojection of K on the subspace spanned by all
the generalized eigenvectors corresponding to the eigenvalues of modulus 1. The
Kreiss matrix theorem implies that

‖Kn|ranE‖ ≤ eM dim ranE .

1991 Mathematics Subject Classification: 47D50, 47A10, 15A45.
The paper is in final form and no version of it will be published elsewhere.

[45]



46 A. POKRZYWA

Since the spectral radius of K|ran(1−E) is equal to limn→∞ ‖Kn|ran(1−E)‖1/n =
r < 1, there exists M1 such that ‖Kn|ran(1−E)‖ ≤M1. Therefore

‖Kn‖ = ‖Kn|ranEE +Kn|ran(1−E)(1− E)‖ ≤ eM dimE‖E‖+M1‖1− E‖ .

The dimension of the eigenspace ranE may be effectively bounded for some
classes of operators. A simple modification of the above proof shows also that

lim sup
n→∞

‖Kn‖ ≤ eM dimE‖E‖ .

It follows from the proof that in order to estimate the norms of powers of
A it suffices to estimate the dimension and norm of the eigenprojection on the
subspace spanned by eigenvectors corresponding to sufficiently large eigenvalues.
This may be effectively done for operators with a bounded unitarily invariant
crossnorm which is not equivalent to the operator norm. Let · be such a norm,
defined on an ideal S.

Let Pn be the orthogonal projection on an n-dimensional subspace. Since
Pn → ∞ as n → ∞, the function n(r) = max{n : r Pn ≤ 1} is a decreasing

function of r ∈ (0,∞) and n(r) → ∞ as r → 0. Let F denote the set of finite-
dimensional operators. The adjoint crossnorm is defined by A ∗ = sup{|trAX| :
X ∈ F , X ≤ 1}. We set τ(r) = Pn(r) ∗. τ(r) is also a decreasing function.

It follows from [3] that

(i) there exists a function φ : [0,∞) × [0,∞) → [0,∞) such that for any
A ∈ S

‖(A− λ)−1‖ ≤ φ(d, a) ≤ 3
2d

exp
(

39
d
aτ

(
d

6a

))
,

where d = d(λ, σ(A)) = infµ∈σ(A) |µ − λ|, a = A . The function φ(d, a) is de-
creasing in d and increasing in a,

(ii) if λ1, λ2, . . . are the eigenvalues of A ordered in such a way that |λj | ≥
|λj+1| and repeated according to multiplicity then

(3) |λj | < r A for j > n(r) .

For the Schatten ideals Sp (1 ≤ p < ∞) the crossnorms ‖ · ‖p are defined by
‖A‖p = (

∑∞
j=1 s

p
j (A))1/p, where s1(A), s2(A), . . . are the singular values of A. For

these crossnorms we can estimate the functions n(r), τ(r), φ(d, a) as follows:

(4)

np(r) ≤ r−p ,

τp(r) ≤ rp−1 ,

φp(d, a) ≤ 3
2d

exp
(

39
d
a

(
d

6a

)1−p)
=

3
2d

exp
(

39 · 6p−1

(
a

d

)p)
.

The theorem below is the main result of this paper.

Theorem 1. Let · be a unitarily invariant crossnorm not equivalent to the
operator norm, and M ≥ 1, a > 0. Then there exists C > 0 such that for any
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A ∈ S satisfying

A ≤ a and ‖(A− λ)−1‖ ≤ M

|λ| − 1
for |λ| > 1

we have
‖An‖ ≤ C .

P r o o f. We assume that a > 1; in the opposite case ‖A‖ ≤ A ≤ 1 and the
assertion is trivial. Let λ1, λ2, . . . be the eigenvalues of A arranged in decreasing
order of their modulus. Let us fix r ∈ (0, 1); then for some m ≤ n(r/a) we have
1 ≥ |λ1| ≥ |λ2| ≥ . . . ≥ |λm| ≥ r > |λm+1|. At least one of the numbers 1− |λ1|,
|λ1| − |λ2|, . . . , |λm−1| − |λm|, |λm| − r is greater than (1− r)/(m+ 1), therefore
there exists r1 ∈ (r, 1) such that the annulus ||λ| − r1| < (1− r)/(2(m+ 1)) does
not contain eigenvalues of A. Hence

d(λ, σ(A)) ≤ 1− r
2(m+ 1)

for |λ| = r1 .

This allows us to estimate the norm of the projection E on the subspace spanned
by the generalized eigenvectors corresponding to the eigenvalues with modulus
greater than r1. Namely, since

I − E =
−1
2πi

∫
|λ|=r1

(A− λ)−1 dλ ,

we have

‖E‖ = ‖I − E‖ ≤ r1φ
(

1− r
2(m+ 1)

, a

)
.

Similarly we can estimate the norms of powers of A1 = A|ran(1−E). Since A1 ≤
A and σ(A) ∈ K(0, r1),

‖An1‖ =
∥∥∥∥−1

2πi

∫
|λ|=1

λn(A1 − λI)−1 dλ

∥∥∥∥ ≤ φ( 1− r
2(m+ 1)

, a

)
.

The norms of powers of A0 = A|ranE may be estimated from the Kreiss matrix
theorem: ‖An0‖ ≤ eM dim ranE ≤ eMm.

These two inequalities give the desired estimate

‖An‖ = ‖An0E +An1 (I − E)‖ ≤ ‖An0‖‖E‖+ ‖An1‖‖I − E‖

≤
(
φ

(
1− r

2(m+ 1)
, a

)
+ eMm

)
φ

(
1− r

2(m+ 1)
, a

)
= C .

For operators in Schatten ideals Sp and r = p/(1 + p) we havem ≤ ap((1 + p)/p)p

≤ eap, d = (1− r)/(2(m+ 1)) ≥ 1/(2p(eap + 1)), φ(d, a) ≤ 3(eap + 1) exp(39 ·
6p−1(2p(eap + 1)a)p). Finally, C = Cp = (φ(d, a) + e2Map)φ(d, a).

The obtained estimate has only theoretical significance; we shall obtain a
better one for trace class operators. It is contained in the theorem below; instead
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of the operator norm we use its numerical radius w(C) = sup‖u‖=1 |〈Cu, u〉|,
which is equivalent to the norm: 1

2‖C‖ ≤ w(C) ≤ ‖C‖. Inspecting Leveque and
Trefethen’s proof of the Kreiss matrix theorem one can find that it remains true
with norms replaced by the numerical radius. The proof of the next theorem is
given for a finite-dimensional Hilbert space — however, the estimate does not
depend on dimension, and one can easily modify the proof to make it work in the
infinite-dimensional case.

Theorem 2. Suppose that A is a trace class operator such that

‖A‖1 ≤ a, w((A− λI)−1) ≤ M

|λ| − 1
;

then

w(An) ≤ 2aeM
(

4 +
(
n+ 1
n

)
e8a
)

for n = 1, 2, 3, . . .

P r o o f. For a vector u = (u1, u2, . . . , ud)T, set u∗ = (u1, u2, . . . , un). Consider
the determinant

det
(

0 u∗

u B

)
with B an invertible matrix and u a unit vector. Without loss of generality we
may assume that u = (1, 0, . . . , 0)T; then setting Pu = I−〈·, u〉u, Bu = PuB|ranPu

we see that

det
(

0 u∗

u B

)
= det


0 1 0 . . . 0
1 . . . . . .
0 .
...

... Bu
0 .

 = det(Bu) .

Note also that for any vector v,

detBu = det
(

0 u∗

u B

)
det
(

1 0
v I

)
= det

(
u∗v u∗

u+Bv B

)
.

Setting here v = −B−1u we get

detBu = det
(
−u∗B−1u u∗

0 B

)
= −〈B−1u, u〉detB .

For B = (A− λI)−1 this identity implies that

〈(A− λI)−1u, u〉 = −det(A− λI)u
det(A− λI)

.

Let λi, λi(u) denote the eigenvalues of the operators A, Au arranged in de-
creasing order of their modulus, respectively. We put λd = 0, and then we can
write

〈(A− λ)−1u, u〉 = −
∏d−1
j=1 λj(u)− λ∏d
j=1 λj − λ

=
1
λ

d∏
j=1

λ− λj(u)
λ− λj

.
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Let a = ‖A‖1; then ‖Au‖1 ≤ a, and it follows from (3) and (4) that for m ≤ a/r,

(5) |λj | ≤ r , |λj(u)| ≤ r for j > m .

We put

φ(λ) =
∏
j≤m

λ− λj(u)
λ− λj

, ψ(λ) =
∏
j>m

λ− λj(u)
λ− λj

.

Note that if |λ| = %, r < % then it follows from (5) that

|ψ(λ)| =
∏
j>m

∣∣∣∣1 +
λj − λj(u)
λ− λj

∣∣∣∣ ≤ ∏
j>m

exp
(∣∣∣∣λj − λj(u)

λ− λj

∣∣∣∣)

≤ exp
(∑
j>m

|λj |+ |λj(u)|
|λ| − |λj |

)
≤ exp

(∑
j>m |λj |+ |λj(u)|

%− r

)

≤ exp
(

2a
%− r

)
.

The same estimate may be obtained for (ψ(λ))−1 =
∏
j>m (λ− λj)/(λ− λj(u)).

Thus we have shown that

(6) exp
(
−2a
%− r

)
≤ |ψ(λ)| ≤ exp

(
2a
%− r

)
for |λ| = % > r .

Note further that

ψ′(λ) =
∑
j>m

(
λ− λj(u)
λ− λj

)′(
λ− λj(u)
λ− λj

)−1

ψ(λ)

= −ψ(λ)
∑
j>m

λj − λj(u)
(λ− λj)(λ− λj(u))

,

hence

(7) |ψ′(λ)| ≤ |ψ(λ)|
∑
j>m

|λj |+ |λj(u)|
(|λ| − |λj |)(|λ| − |λj(u)|)

≤ |ψ(λ)| 2a
(%− r)2

for |λ| = % > r .

Now we can estimate

〈Anu, u〉 =
−1
2πi

∫
Γ%

λn〈(A− λ)−1u, u〉 dλ =
−1
2πi

∫
Γ%

λn−1φ(λ)ψ(λ) dλ ,

where Γ% is the circle with center 0 and radius %.
Integrating by parts we get

〈Anu, u〉 =
−1

2πin

∫
Γ%

λn(φ′(λ)ψ(λ) + φ(λ)ψ′(λ)) dλ .
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It follows from (7) that∣∣∣ ∫
Γ%

λnφ(λ)ψ′(λ) dλ
∣∣∣ ≤ 4πa

(%− r)2
%n+1 max

λ∈Γ%

|φ(λ)ψ′(λ)| ,

while by (6) and the Spijker Lemma in [4] we have∣∣∣ ∫
Γ%

λnφ′(λ)ψ(λ) dλ
∣∣∣ ≤ %n exp

(
2a
%− r

) ∫
Γ%

|φ′(λ)| |d λ|

≤ 2πm%n exp
(

2a
%− r

)
max
λ∈Γ%

|φ(λ)| ,

and since by (6),

|φ(λ)| ≤ |φ(λ)| · |ψ(λ)| exp
(

2a
%− r

)
and m ≤ a/r, we see that∣∣∣ ∫

Γ%

λnφ′(λ)ψ(λ) dλ
∣∣∣ ≤ 2πa%n

r
exp

(
4a
%− r

)
max
λ∈Γ%

|φ(λ)ψ(λ)| .

The above inequalities imply that

|〈Anu, u〉| ≤ 1
2πn

(
4πa

(%− r)2
%n+1 +

2πa
r

exp
(

4a
%− r

))
max
|λ|=%

|φ(λ)ψ(λ)| .

It follows from the definition of ψ and φ that for |λ| = % > 1,

|φ(λ)ψ(λ)| = |λ〈(A− λI)−1u, u〉| ≤ % M

%− 1
.

Now it is easy to see that for n > 1, % = 1 + 1/n, r = %/2,

|〈Anu, u〉| ≤ 2aM
n(%− 1)

(4%n + %n+1 exp(8a)) ≤ 2aeM
(

4 +
(
n+ 1
n

)
e8a
)
.

The obtained inequality holds obviously also for n = 1. This ends the proof.
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