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ERGODIC PROPERTIES OF SKEW PRODUCTS WITH
FIBRE MAPS OF LASOTA–YORKE TYPE

Abstract. We consider the skew product transformation T (x, y) =
(f(x), Te(x)y), where f is an endomorphism of a Lebesgue space (X,A, p),
e : X → S and {Ts}s∈S is a family of Lasota–Yorke type maps of the unit
interval into itself. We obtain conditions under which the ergodic properties
of f imply the same properties for T . Consequently, we get the asymptotical
stability of random perturbations of a single Lasota–Yorke type map. We
apply this to some probabilistic model of the motion of cogged bits in the
rotary drilling of hard rock with high rotational speed.

1. Preliminaries and main results. Let f be a negative nonsingular
transformation of a Lebesgue space (X,A, p) into itself. Let I be the unit
interval.
Definition. The transformation τ : I → I is of the Lasota–Yorke type

if there exist 0 = a0 < a1 < . . . < aN = 1 and a constant λ, λ > 1, such
that for any j = 0, 1, . . . , N − 1:

(i) τ |(aj , aj+1) is of class C1 and the limits τ ′(a+
j ), τ ′(a−j+1) exist (or

are infinite),
(ii) there exists a positive integer n such that inf |(τn)′| ≥ λ,
(iii) |1/τ ′| is a function of bounded variation.

We denote by Rτ the set {a0, a1, . . . , aN} and by Zτ the partition of I
into closed intervals I1 = [a0, a1], . . . , IN = [aN−1, aN ].
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Let {Ts}s∈S be a family of Lasota–Yorke type maps of I into itself.
Consider a function e : X → S such that the mapping (x, y) → Te(x)y is
measurable. We define the skew product transformation by

T (x, y) = (f(x), Te(x)y) .

The transformation T is negative nonsingular with respect to the product
measure p×m (m the Lebesgue measure).

Let PT denote the Frobenius–Perron operator for T , i.e.

PT G =
d

dp×m

∫
T−1(·)

G d(p×m) for G ∈ L1(p×m) .

Then (using the Fubini theorem)

(1.1) PT = PfPe(·) ,

where Pf and Pe(x) denote the Frobenius–Perron operators for f and Te(x),
respectively. Moreover, fixing the function e we write Px, Tx instead of
Pe(x) and Te(x), respectively. For a function F , F : X × I → C, let Vx F
denote the total variation of F (x, ·), for every x ∈ X. For G ∈ L1(p ×m)
we introduce the following notation:

V G = inf
{∫

V
x

F dp : F is any version of G
}

,

BV = {G ∈ L1(p×m) : V G < ∞} and
D = {G ∈ L1(p×m) : G ≥ 0, ‖G‖1 = 1} .

Our first aim is to estimate the variation of iterations of the Frobenius–
Perron operator. By Lemma 2 of [6] we have V PfG ≤ V G for G ∈ BV
and consequently by using (1.1) we get

(1.2) V PT G ≤ V PxF ,

where F is any version of G.
For further considerations we introduce a property (A) of the family

{Ts}s∈S . Let Sn = {(s1, . . . , sn) : si ∈ S, i = 1, . . . , n}. For α ∈ Sn,
α = (s1, . . . , sn), we define Tα = Tsn ◦ . . . ◦ Ts1 . Then

(A) There exists a positive integer n such that
(A1) there is a constant λ > 1 such that |T ′α| ≥ λ for all α ∈ Sn,
(A2) there is a constant W > 0 such that V |1/T ′α| ≤ W for all

α ∈ Sn,
(A3) there is a constant δ > 0 such that for any α ∈ Sln, there is

a finite partition Kα of I into intervals such that for J ∈ Kα,
Tα|J is 1-1 and Tα(J) is an interval, and minJ∈Kα diam(J) > δ.
Here l is the minimal integer such that

3
λl

+
l

λl−1
W < 1 .
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If the family {Ts}s∈S has property (A) then an analysis similar to that
in the proof of Theorem 1 of [2] shows that

(1.3) V
x

Pfk−1(x) ◦ . . . ◦ PxF ≤ α(k)V
x

F + c
∫
|F | dm ,

where c and α(k) are independent of F and limk→∞ α(k) = 0. Therefore by
(1.2) and (1.3) we get

V P k
T G ≤ α(k)V G + c‖G‖1 .

The following result may be proved in the same way as Theorem 6 of [6].

Theorem 1. If the family {Ts}s∈S has property (A) and if for every
G ∈ L1(p×m) the limit

lim
n→∞

1
n

n−1∑
k=0

P k
T G = QT G exists in L1 ,

then V QT G ≤ c‖G‖1, where the constant c is independent of G.

The assumption about the existence of limn→∞
1
n

∑n−1
k=0 P k

T G implies
the existence of a T -invariant absolutely continuous measure (a.c.i.m.) and
therefore the existence of an f -a.c.i.m. It turns out that the converse impli-
cation is true, i.e. if p is an f -invariant measure and the family {Ts}s∈S has
property (A) then the limit limn→∞

1
n

∑n−1
k=0 P k

T G exists. The description
of a T -a.c.i.m. and the ergodic properties of T can be found in Morita [9].
Below we present the Morita theorem with weakened assumptions. Namely,
we omit the condition: infs∈S minJ∈ZTs

diam(J) > 0 when sups |T ′s| < ∞.

Morita Theorem. Suppose f preserves the measure p and the family
{Ts}s∈S has property (A).

(1) The limit limn→∞
1
n

∑n−1
k=0 P k

T G exists in L1 for every G ∈ L1.
(2) If the dynamical system (f, p) is ergodic, then there exists a finite

number of a.c.i.m. µ1, . . . , µr such that

(i) for each i = 1, . . . , r, the dynamical system (T, µi) is ergodic,
(ii) if µ is an a.c.i.m. for (T, p×m), then µ is a linear combination

of the µi.

(3) If (f, p) is totally ergodic and µi is one of the above mentioned prob-
ability measures, then there is an integer Ni and a collection of disjoint sets
Li,0, Li,1, . . . , Li,Ni−1 such that

(i) T (Li,j) = Li,j+1 (0 ≤ j < Ni − 1), T (Li,Ni−1) = Li,0,
(ii) for each j = 0, 1, . . . , Ni − 1, the dynamical system (TNi , µi,j) is

totally ergodic where µi,j = Niµi|Li,j.

(4) Under the assumptions of (3), if moreover the dynamical system (f, p)
is exact , so is (TNi , µi,j).
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Section 3 contains a simplified version of the proof of the above theo-
rem ([9]). From the Morita Theorem we conclude that if T is totally ergodic
with respect to an a.c.i.m. and if f is exact, then T is also exact. Therefore,
it seems useful to find some criteria for the ergodic properties of T .

Suppose the family {Tx}x∈X has property (A). Let DG = {(x, y) :
G(x, y) > 0}, where PT G = G and G ∈ D ∩ BV . Then T (DG) = DG

up to (p×m)-null sets. Fixing the density G we write µ = µG and D = DG.
Here µG is a T -a.c.i.m. such that dµG/d(m × p) = G. Theorem 1 and
arguments similar to those in [6] imply:

Lemma 1. Let A be a T -invariant set such that µ(A) > 0. Then there
exists a set B ∈ A, p(B) > 0, such that

⋃
x∈B x × Ix ⊂ A ∩ D for some

nonempty open intervals Ix.

Lemma 2. If T is not weakly mixing , then there exists a T ×T -invariant
set A with 0 < (µ× µ)(A) < 1 such that⋃

(x,v)∈B

(x, v)× Ix × Iv ⊂ A ∩D ×D

for some set B ∈ A × A with (p × p)(B) > 0, and for some nonempty
intervals Ix, Iv.

Next, we introduce a new property (B) of the family {Tx}x∈X :

(B) For a.e. x and for every nonempty open interval J there exists k(J)
such that

(B1) k(J) = 1 when J = I,
(B2) Tfk(J)−1(x) ◦ . . . ◦ Tx(J) = I.

R e m a r k s . 1) In the case |T ′x| ≥ λ > 2 for a.e. x it suffices to take
under consideration only maximal intervals of continuity and monotonicity
for Tx.

2) If τ is a Lasota–Yorke type map with invariant measure equivalent to
m then the condition: for every nonempty interval J there exists k(J) such
that τk(J)(J) = I, is equivalent to the total ergodicity of τ ([4]).

Lemma 3. Suppose the family {Tx}x∈X has properties (A) and (B).

(i) If A is a T -invariant set such that µ(A) > 0 then there exists a set
B ∈ A such that A ∩D = B × I.

(ii) If T × T is not weakly mixing , then there exists a T × T -invariant
set A such that 0 < (µ × µ)(A) < 1 and A ∩D ×D = B × I × I for some
B ∈ A×A.

P r o o f. (i) By Lemma 1, A∩D ⊃
⋃

x∈B1
x× Ix. From (B) we conclude

that there exist a positive integer k and a set B2 ⊂ B with p(B2) > 0 such
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that Tfk−1(x) ◦ . . . ◦ Tx(Ix) = I for every x ∈ B2. Hence

A ∩D ⊃ T k
( ⋃

x∈B1

x× Ix

)
⊃ fk(B2)× I .

For B = {x ∈ X : {y : (x, y) ∈ A ∩ D} = I} we have p(B) > 0 and
f(B) = B and so the set A ∩ D − B × I is T -invariant. The assumption
µ(A ∩D −B × I) > 0 leads to a contradiction with the definition of B (by
repeating the above considerations).

(ii) can be proved in a similar manner.

Theorem 2. Suppose the family {Tx}x∈X has properties (A) and (B).
If f is ergodic (totally ergodic, weakly mixing , exact), then T is ergodic
(respectively totally ergodic, weakly mixing , exact).

We assume, for the rest of this paper, that if (f, p) is a Bernoulli endo-
morphism then the random variables ξn(x) = e(fn(x)), n = 0, 1, . . . , are
mutually independent and A = F(ξ0, ξ1, . . .).

In the case when (f, p) is a Bernoulli endomorphism and property (A)
holds we can use Theorem 3.1 of [10] to get the following result:

If E is a T -invariant set, then E ∩D = X × B for some set B ∈ B and
µ = p×m1.

Theorem 3. If the family {Tx} has property (A) and f is a Bernoulli
endomorphism, then T is exact provided {B : T−1

x (B) = T−1
y (B) p×p-a.e.}

= {∅, I} up to m1-null sets.

P r o o f. In order to show this we replace m by m1 and the unit interval
I by suppm1. Now, we prove the property of weak mixing of T as in the
proof of Theorem 1 of [5]. By the Morita Theorem we conclude the proof.

2. Applications. We investigate two kinds of random perturbations of
a Lasota–Yorke type transformation.

I. Let τ be a Lasota–Yorke type transformation which satisfies the fol-
lowing assumptions:

(a) τ |(ai, ai+1) can be extended to a C2-function τ on [ai, ai+1] for ai

∈ Rτ ,
(b) if k(τ) is the first integer such that inf |(τk(τ))′| > 2, then

k(τ)−1⋃
i=1

τ i(Rτ ) ∩ (Rτ − {0, 1}) = ∅ .

Theorem 4. If τ satisfies conditions (a) and (b), then there exists a
number δ, 0 < δ < 1, such that for every Bernoulli dynamical system (f, p)
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and for every measurable function e : X → [1− δ, 1] which is not constant ,
the dynamical system T (x, y) = (f(x), e(x)τ(y)) is exact.

P r o o f. We obtain the assertion by applying Theorem 3. Here we prove
inequality (1.3) instead of property (A). By conditions (a), (b) and by the
estimation of variation (as in [8]) we get the existence of a δ, 0 < δ < 1,
such that for every function e : X → [1− δ, 1] the inequality (1.3) holds.

Now, if a set B belongs to the family{
B : τ−1

(
1

e(x)
B

)
= τ−1

(
1

e(y)
B

)
p× p-a.e.

}
then

B ∩ (0, e(x)) =
e(x)
e(y)

(B ∩ (0, e(y))) for p× p-a.e. (x, y) .

It is not difficult to see (by Lemma 2) that if m1(B) > 0 then there exists
an interval I1 such that I1 ⊂ B and m(I1) > dδ (limδ→0 dδ > 0). If we take
a maximal interval I0 in B then for small δ we obtain B ⊃ I0 ⊃ (0, e(x)) for
p-a.e. x and hence m1(B) = 1.

The exactness means that limn→∞ ‖Pn
T G − QT G‖1 = 0 for every G ∈

L1(p×m). Therefore the operator PT is asymptotically stable.
Let τ = τλ, λ > 2, where τλ is the Lasota–Yorke type transformation

which appears in the mathematical model (see [7]) describing the motion of
cogged bits in the rotary drilling of hard rock with high rotational speed.
The transformation τλ satisfies conditions (a) and (b), except possibly a
finite number of values of λ. Theorem 4 is a generalization of the result of
K. Horbacz [3], which concerns the asymptotic stability of PT for T (x, y) =
(f(x), e(x)τλ(y)).

II. Let τ be a totally ergodic Lasota–Yorke type transformation such
that inf |τ ′| = λ > 1, µτ ≈ m, where µ is an a.c.i.m. We will denote by R
the set Rτ and by Z the set Zτ . Let {τm}m≥1 be a family of Markovian
transformations associated with τ (defined in [2]). Let Rn =

⋃n
j=0 τ−j(R),

n = 0, 1, . . . , and Zn =
∨n

j=0 τ−j(Z). The transformation τn has the fol-
lowing properties:

(2.1) τn(Rn) ⊆ Rn where τn(b) = τ(b) for b ∈ Rn −R and Zτn
= Zn ,

(2.2) inf |τ ′n| ≥ inf |τ ′| ,
(2.3) V

J
|1/τ ′n| ≤ V

J
|1/τ ′| for J ∈ Zn ,

(2.4) τn(J) ⊃ τ(J) for J ∈ Zn .

The family {τs}s≥l has property (A). To see this, we take n = 1. Condi-
tions (A1) and (A2) follow from (2.2) and (2.3). We take Zl for Kα in (A3),
where l is defined in (A3).
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Let k be the least integer such that d = λk/2 > 1. Moreover, set

k0 = ([− ln((λ/2)kb)/ ln d] + 1)k and n0 = max{k(J) : J ∈ Zk} ,

where k(J) is such that τk(J)(J) = I, b = infJ∈Zk m(J) and [x] denotes the
integer part of x. Let the dynamical system (f, p) be ergodic and let en :
X → {n, n+1, . . .} for n ≥ max{n0, l}. We define Tn(x, y) = (f(x), τen(x)y).

Theorem 5. If (f, p) is ergodic and there exists a sequence n ≤ n1 <
n2 < . . . < nn0+k0 such that

p(f−n0−k0+1(e−1
n (nn0+k0)) ∩ . . . ∩ e−1

n (n1)) > 0 ,

then {τen(x)} has properties (A) and (B).

P r o o f. Since {τen(x)} has property (A) for n ≥ l, it remains to prove
property (B). Let J be a fixed nonempty interval. For some integer r with
r ≤ − lnm(J)/ ln d and for any positive integers irk, . . . , i1 there exists J1 ∈
Zk such that τirk

◦ . . . ◦ τi1(J1) ⊃ J1. Therefore, for any j ≥ 0 there exists
an interval J2 ⊂ J ′2 ∈ Zk such that τirk+j ◦ . . . ◦ τi1(J) ⊃ J2 and m(J2) ≥
(λ/2)kb. By the assumption, for a.e. x there exists r ≥ (− lnm(J)/ ln d)k
such that

n1 = en(fr(x)) < n2 = en(fr+1(x)) < . . . < nn0+k0 = en(fr+n0+k0−1(x)) .

Hence

τen(fr+n0+k0−1(x)) ◦ . . . ◦ τen(x)(J) ⊃ τnn0+k0
◦ . . . ◦ τnr2

(J3) ,

for some r2 ≤ k0 and J3 ∈ Zk.
By definition of n0, τn0(J3) = I. Let J4 ∈ Zn0 and J4 ⊂ J3. Then

τnr2
(J4) ⊃ τ(J4). This is a consequence of (2.4) and of the inequality

Znr2 ≥ Zn0 , for nr2 ≥ n ≥ n0. The set τnr2
(J4) is a union of intervals from

Znr2 (by (2.1)) and, consequently, a union of intervals from Znr2+1 , because
nr2+1 ≥ nr2 . Therefore,

τnr2+1τnr2
(J4) ⊃ τ(τnr2

(J4)) ⊃ τ2(J4) .

Finally, τnn0+r2
◦ . . . ◦ τnr2

(J4) ⊃ τn(J4), which implies τnn0+r2
◦ . . .

. . . ◦ τnr2
(J3) = I.

Corollary 1. If (f, p) is a Bernoulli endomorphism then the endomor-
phism Tn is exact for n ≥ max{n0, l}.

Let Tn be as in Corollary 1. Then the a.c.i.m. has the form p×mn. Let
gn = dmn/dm.

Theorem 6. If τn → τ uniformly on I −
⋃∞

i=0 Ri, then limn→∞ gn = g
in L1, where g is an invariant density of τ .

P r o o f. By Theorem 1, the set {gn} is relatively compact in L1. It suf-
fices to show that any limit point of {gn} is an invariant density of τ . With-
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out loss of generality we can assume that limn→∞ gn = g∗. By Lemma 4
of [2], limn→∞ ‖Pnxh− Pτh‖1 = 0, for every x. Here Pnx = Pτen(x) . Hence∫

‖Pnxh− Pτh‖1 dp →
n

0 ,

because ‖Pnxh− Pτh‖1 ≤ 2‖h‖1, and next we have

‖Pτg∗ − g∗‖1 = ‖PfPτg∗ − g∗‖1
≤ ‖PfPτg∗ − PfPnxg∗‖1

+ ‖PfPnxg∗ − PfPnxgn‖1 + ‖gn − g∗‖1
≤
∫
‖Pτg∗ − Pnxg∗‖1 dp + 2‖g∗ − gn‖1 .

The piecewise linear Markov approximations of τ satisfy the assumptions
of Theorem 6.

In case I, i.e. Tε(x, y) = (f(x), eε(x)τ(y)), where eε : X → [1− ε, 1] and
0 < ε < δ, we can show in the same manner that the set {gε}ε<δ, where
gε = dmε/dm and µε = p ×mε is a T -a.c.i.m., is relatively compact in L1

and any limit point of {gε}ε<δ is an invariant density of τ .

3. Proof of the Morita Theorem. (1) Let G ∈ BV ∩ D. Then

‖Pn
T G‖∞ = ‖Pn

f Pfn−1(x) ◦ . . . ◦ PxG‖∞ ≤ ‖Pfn−1(x) ◦ . . . ◦ PxG‖∞ .

By inequality (1.3),

|Pfn−1(x) ◦ . . . ◦ PxG| ≤
∫
|G| dm + V

x
Pfn−1(x) ◦ . . . ◦ PxG

≤ α(n)V
x

G + (c + 1)
∫
|G| dm ≤ M‖G‖∞

for some constant M > 0. Therefore, the sequence 1
n

∑n−1
k=0 P k

T G is relatively
weakly compact in L1. By the Kakutani–Yosida Theorem [1], 1

n

∑n−1
k=0 P k

T G
converges strongly in L1.

(2)–(4). We obtain these by proving (1) and (2) of Lemma 4.1 of [9] and
next by applying without change the reasoning from [9], p. 661. The proof
of Lemma 4.1 of [9] turns out to be simple by using the equality (1.1) and
the inequality (1.3).
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Polish).

[8] A. Lasota and J. A. Yorke, On the existence of invariant measure for piecewise
monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.

[9] T. Mor i ta, Asymptotic behavior of one-dimensional random dynamical systems, J.
Math. Soc. Japan 37 (1985), 651–663.

[10] —, Deterministic version lemmas in ergodic theory of random dynamical systems,
Hiroshima Math. J. 18 (1988), 15–29.

ZBIGNIEW S. KOWALSKI

INSTITUTE OF MATHEMATICS

TECHNICAL UNIVERSITY OF WROC LAW
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