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ON ADAPTIVE CONTROL OF A
PARTIALLY OBSERVED MARKOV CHAIN

Abstract. A control problem for a partially observable Markov chain de-
pending on a parameter with long run average cost is studied. Using uniform
ergodicity arguments it is shown that, for values of the parameter varying in
a compact set, it is possible to consider only a finite number of nearly opti-
mal controls based on the values of actually computable approximate filters.
This leads to an algorithm that guarantees nearly selfoptimizing properties
without identifiability conditions. The algorithm is based on probing con-
trol, whose cost is additionally assumed to be periodically observable.

1. Introduction. On a given probability space {Ω,F , P} consider a
discrete-time Markov chain xk (k = 0, 1, . . .) with controlled transition ma-
trix P vα0(i, j), where i, j ∈ E = {1, . . . , s}, the control v lies in a compact
metric space V and the parameter α0 belongs to a compact metric space
A. The initial state x0 is assumed to be distributed according to a given
initial law µ0 and α0 stands for an unknown parameter. The process xk is
partially observed via the s-dimensional process

(1) yk = h(xk) + wk

where wk is a sequence of s-dimensional i.i.d. random vectors with standard
normal distribution and h : E → Rs has components

(2) hi(j) =
{

0 for j 6= i,
hi > 0 for j = i.

Therefore the information available at time k is provided by the σ-field
Yk = σ{y1, . . . , yk}.
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Looking at the form (1)–(2) adopted for the observations, it is clear that
it reflects the situation in which there are “indicators” hi that detect that
the ith state has been reached; the values provided by the indicators are,
however, corrupted by white noise, but still the observation structure is such
that each state can be monitored by the controller. Many of the problems
discussed e.g. in [16] can be described (possibly more realistically) in terms
of our model; in particular, we mention economic models (e.g. cost control),
analysis of diagnostic data, computer networks problems.

The control vk used at time k is a Yk-measurable V -valued random
variable. The purpose of the control is to minimize the pathwise long run
average cost

(3) Jα0({vk}) = lim sup
n→∞

n−1
n−1∑
k=0

c(xk, vk)

or the long run expected average cost

(4) Jα0({vk}) = lim sup
n→∞

n−1Eα0
µ0

n−1∑
k=0

c(xk, vk)

where c(x, ·) is a continuous function and Eα0
µ0

denotes expectation with
respect to the probability Pα0

µ0
induced on the space of trajectories by the

process xk with parameter α0, for fixed initial condition x0 ∼ µ0 and control
sequence {vk}.

In order to transform the partially observable control problem into a
completely observable one [3], [14], we introduce the filtering process

(5) πk(i) = Pα0
µ0
{xk = i | Yk} .

This process can be recursively obtained for k = 1, 2, . . . by

(6) πk(i) =
σk(i)∑s

j=1 σk(j)

(see [12]) where

(7) σk(i) = exp[− 1
2 〈h(i), h(i)〉+ 〈yk, h(i)〉]q(i;α0, vk−1, πk−1)

with 〈 , 〉 denoting inner product in Rs,

(8) q(i;α0, vk−1, πk−1) = Pα0
µ0
{xk = i | Yk−1} =

s∑
j=1

P vk−1α0(j, i)πk−1(j)

and initial condition given by

π0(i) = µ0(i) .

The recursive formula for the filter is concisely written as

(9) πk+1 = Gα0(πk, yk+1, vk) ,
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which provides the evolution of the “completely observed” state πk. The
control functional Jα0 can be written in terms of πk as

Jα0({vk}) = lim sup
n→∞

n−1Eα0
µ0

n−1∑
k=0

s∑
i=1

c(i, vk)πk(i)(10)

=: lim sup
n→∞

n−1Eα0
µ0

n−1∑
k=0

C(πk, vk) .

It is shown in Corollary 1 that the optimal controls for the cost function
(10) are functions of the “completely observed” state πk; more precisely,
denoting by S the (s − 1)-dimensional simplex and by B(S) the Borel σ-
algebra on S, we have vk = uk(πk), where the control law uk : S → V is
B(S)-measurable. In what follows it is of particular interest to consider the
case of time-invariant laws, i.e. vk = u(πk); the class of such laws is denoted
by U . Furthermore, several quantities are parametrized interchangeably by
u ∈ U or by v ∈ V , with obvious meaning of the symbols, e.g. Puα0(i, j) is
used for Pu(i)α0(i, j).

In what follows we require the following assumptions:

(A.1) inf
v∈V

inf
α∈A

inf
i,j∈E

P vα(i, j) ≥ β > 0 ,

(A.2) for each i, j ∈ E,P vα(i, j) is a continuous function on A× V .

The aim of the paper is to find a control procedure which guarantees
the ε-optimal value of the cost functional for the state process xk corre-
sponding to the unknown parameter α0. In the next Section 2, using uni-
form ergodicity arguments, we show that for each ε, there exists a finite set
{uj : S → V : j = 1, . . . , r} of control functions such that for each α ∈ A
one of such functions is ε-optimal for α. This allows us to limit the choice
of control functions only to a finite set. Loosely speaking, there are only
a finite number of relevant control functions. Then, in Section 3, we show
that the same holds if approximate filtering is used; more precisely, if an in-
correct value of α and of the initial condition is used in the filtering formula.
This result is based on the joint uniform ergodicity of approximate filter and
state driven by controls based on the approximate filter. Finally, in the last
Section 4, we provide a direct adaptive control procedure that guarantees
nearly optimal behaviour without explicit identification of the parameter α,
provided that we are able to observe periodically the cost. This adaptive
procedure can be applied to any uniformly ergodic stochastic system and
possesses nearly selfoptimizing properties.

The notion of approximate filter appeared in a paper of Kushner and
Huang [15] and was studied later in [1], [6], [7]. Optimal ergodic control
with partial observations was studied for a more general model by Rung-
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galdier and Stettner [17]. Adaptive control of partially observable Markov
processes has been studied in [10], [11] for discounted cost criterion and for
a particular Quality Control/Replacement model in [6], [7]. However, the
general problem of control of irreducible Markov chains with partial observa-
tions and long run average cost seems to be open. Particular approaches are
based either on the special form of white-noise corrupted observations [17] or
on the simple structure of Quality Control/Replacement models [6], [7]. In
the present paper we present an alternative approach to the problem based
on a particularly rich observation structure.

2. Uniform ergodicity of the controlled filtering process. In this
section we study the uniform ergodicity of the filtering process πk corre-
sponding to a generic value of the parameter α. For this purpose we need
to investigate some properties of the transition kernel for πk, which in turn
are derived from the corresponding properties of the unnormalized filter σk.

Using (7), (1) and (2), we have

Pα{σk(i) ≤ zi, i = 1, . . . , s | Yk−1}(11)
= Pα{wi

k ≤ −hi(xk) + h−1
i [ln zi − ln q(i;α, vk−1, πk−1) + 1

2h2
i ],

i = 1, . . . , s | Yk−1}

=
s∑

r=1

Pα{wi
k ≤ −hi(r) + h−1

i [ln zi − ln q(i;α, vk−1, πk−1) + 1
2h2

i ],

i = 1, . . . , s | Yk−1, xk = r}Pα
µ0
{xk = r | Yk−1}

=
s∑

r=1

Pα{wi
k ≤ −hi(r) + h−1

i [ln zi − ln q(i;α, vk−1, πk−1) + 1
2h2

i ],

i = 1, . . . , s | Yk−1}q(r;α, vk−1, πk−1) .

The conditional distribution function given by (11) has density

(12) g(z1, . . . , zs;α, vk−1, πk−1)

:=
ds

dz1 . . . dzs
Pα{σk(i) ≤ zi, i = 1, . . . , s | Yk−1}

=
s∑

r=1

1
(2π)s/2

{ s∏
i=1

exp[− 1
2 [−hi(r) + h−1

i (ln zi − ln q(i;α, vk−1, πk−1)

+ 1
2h2

i )]
2](hizi)−1

}
q(r;α, vk−1, πk−1)

=:
s∑

r=1

gr(z1, . . . , zs;α, vk−1, πk−1)q(r;α, vk−1, πk−1) .
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We have the following

Lemma 1. There exist positive, integrable functions g, g : Rs
+ → R such

that for all α ∈ A, v ∈ V and ν ∈ S,

(13) 0 < g(z1, . . . , zs) ≤ gr(z1, . . . , zs;α, v, ν) ≤ g(z1, . . . , zs) .

P r o o f. Define

dk(i, r) = ln q(i;α, vk−1, πk−1)− 1
2h2

i + hi(r)hi .

Then using the fact that β ≤ q(i;α, vk−1, πk−1) ≤ 1, with β as in (A.1), we
have

d(i, r) ≤ dk(i, r) ≤ d(i, r)

where

d(i, r) = lnβ − 1
2h2

i + hi(r)hi, d(i, r) = − 1
2h2

i + hi(r)hi .

Consider now the set of functions
D(i, r) = {[ln zi − d(i, r)][ln zi − d(i, r)];

[ln zi − d(i, r)][ln zi − d(i, r)]; [ln zi − d(i, r)][ln zi − d(i, r)]} .

Then

minD(i, r) ≤ [ln zi − dk(i, r)]2 ≤ max D(i, r)

and as a consequence

g(z1, . . . , zs) ≤ gr(z1, . . . , zs;α, vk−1, πk−1) ≤ g(z1, . . . , zs)

where

g(z1, . . . , zs)=
s∑

r=1

1
(2π)s/2

{ s∏
i=1

exp
[
− 1

2h2
i

max D(i, r)
]
(hizi)−1

}
>0,(14)

g(z1, . . . , zs)=
s∑

r=1

1
(2π)s/2

{ s∏
i=1

exp
[
− 1

2h2
i

minD(i, r)
]
(hizi)−1

}
.(15)

Due to the form of the functions in D(i, r), it is also clear that g(z1, . . . , zs)
and g(z1, . . . , zs) are integrable functions.

For B ∈ B(S) define

Br =
{

(ξ1, . . . , ξs−1) ∈ Rs−1
+ :

(
ξ1, . . . , ξs−1, 1−

∑
i

ξi

)
∈ B

}
and

Bn = Br × R+ .

From (6) we deduce that the conditional probabilities πk(i), i = 1, . . . ,
s − 1, can be obtained from the unnormalized probabilities σ using the
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transformation H : Rs
+ → Sn := Sr × R+ given by

(16)


ξ1

...
ξs−1

ξs

 = H


z1
...

zs−1

zs

 =


z1/

∑
i zi

...
zs−1/

∑
i zi∑

i zi

 .

Clearly

(17)


z1
...

zs−1

zs

 = H−1


ξ1

...
ξs−1

ξs

 =


ξ1ξs

...
ξs−1ξs

(1−
∑s−1

i=1 ξi)ξs


and its associated Jacobian is given by

(18)
∣∣∣∣∂H−1

∂ξ

∣∣∣∣ = ξs−1
s .

We have

(19) Pα
µ0
{πk ∈ B | Yk−1} = P{H(σk) ∈ Bn | Yk−1}

= Pα
µ0
{σk ∈ H−1(Bn) | Yk−1}

=
∫

H−1(Bn)

g(z1, . . . , zs;α, vk−1, πk−1)dz1 . . . dzs

=
∫

Br

∞∫
0

ξs−1
s

× g
(
ξ1ξs, . . . , ξs−1ξs,

(
1−

s−1∑
i=1

ξi

)
ξs;α, vk−1, πk−1

)
dξs dξ1 . . . dξs−1.

Proposition 1. The filtering process πk corresponding to an admissible
control function u : S → V is a Markov process with respect to the σ-field
Yk with transition kernel

(20) Πuα(ν, B) =
∫

Br

f(ξ1, . . . , ξs−1;α, u(ν), ν) dξ1 . . . dξs−1

with

f(ξ1, . . . , ξs−1;α, u(ν), ν) =
s∑

r=1

fr(ξ1, . . . , ξs−1;α, u(ν), ν)q(r;α, u(ν), ν)
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where

(21) fr(ξ1, . . . , ξs−1;α, u(ν), ν)

:=
∞∫
0

ξs−1
s gr

(
ξ1ξs, . . . , ξs−1ξs,

(
1−

s−1∑
i=1

ξi

)
ξs;α, u(ν), ν

)
dξs

with gr as in (12).
Furthermore, there exist integrable functions f(ξ1, . . . , ξs−1) and f(ξ1, . . .

. . . , ξs−1) on Sr such that for all α ∈ A, u ∈ U and ν ∈ S,

(22) 0 < f(ξ1, . . . , ξs−1) ≤ fr(ξ1, . . . , ξs−1;α, u(ν), ν) ≤ f(ξ1, . . . , ξs−1) .

P r o o f. Equations (20) and (21) are immediate consequences of (19)
and (12), while inequality (22) can be easily derived from (13) using the
change of variables (16) to (18) to prove integrability.

Lemma 2. For any continuous function F on Sr the map

(23) V × S 3 (v, ν)

→
∫
Sr

F (ξ1, . . . , ξs−1)f(ξ1, . . . , ξs−1;α, v, ν) dξ1 . . . dξs−1

is continuous.

P r o o f. Using (21), (12), (8) and assumption (A.2), it is easily seen
that f(ξ1, . . . , ξs−1;α, v, ν) is a continuous function of (v, ν). The result
then follows using the last inequality in (22) and the Lebesgue dominated
convergence theorem.

In what follows the transition kernel Πvα will also play the role of an
operator and we use the notation Πvαw(ν) =

∫
w(η)Πvα(ν, dη) for any

integrable function w : S → R.

Corollary 1. For each α ∈ A there exists a continuous function wα :
S → R, a constant λα and a control function uα ∈ U such that for each
ν ∈ S,

(24) wα(ν) + λα = inf
v∈V

{Πvαwα(ν) + C(ν, v)} = Πuααwα(ν) + C(ν, uα(ν))

with C(·, ·) as in (10).The constant λα is the optimal value for the functional
Jα in (10) and the control uα is an optimal control rule, namely

(25) λα = inf
{vk}

Jα({vk}) = Jα({uα(πk)})

where πk is the filtering process corresponding to the true parameter α and
stationary control law uα ∈ U . Furthermore, if for all ν ∈ S the control law
u ∈ U satisfies

(26) Πuαwα(ν) + C(ν, u(ν)) ≤ wα(ν) + λα + ε



172 G. B. Di Masi and  L. Stettner

then u is ε-optimal for Jα, namely

(27) Jα({u(πk)}) ≤ λα + ε .

Finally , for all u ∈ U ,

(28) lim sup
n→∞

n−1
n−1∑
k=0

C(πk, uα(πk)) ≥ λα P -a.s.

with equality holding for u = uα.

P r o o f. Equations (24) to (27) follow from [8, Theorem 3]. In fact the
assumptions in [8, Remark 4] or [9, Ch. 3] hold since

(i) c(x, ·) in (4) is a continuous function on the compact set V ;
(ii) the mapping in (23) is continuous;
(iii) by Proposition 1, there exists a nontrivial measure φ on B(S) such

that for each u ∈ U , α ∈ A and B ∈ B(S), we have

(29) φ(B) ≤ Πuα(ν, B) .

Finally, inequality (28) can be easily derived from (24) and the law of
large numbers for the martingale [5, Theorem VII.9.3]

n−1∑
k=0

[Πuαwα(πk)− wα(πk+1)] .

In what follows we say that a control is optimal [ε-optimal ] for α if it is
optimal [ε-optimal] when the value of the actual parameter is α.

Corollary 2 [uniform ergodicity]. There exists a constant 0 < γ < 1
and measures Φuα on B(S), for all admissible u ∈ U and α ∈ A, such that

(30) sup
u∈U

sup
α∈A

sup
ν∈S

sup
B∈B(S)

|(Πuα)n(ν, B)− Φuα(B)| < γn

where (Πuα)n is the n-th iterate of the operator Πuα.

P r o o f. The result follows directly from equation (5.6) of Chapter V in
[4]. In fact, using the minorization property (29), it is possible to see that
condition (D′), required in Case b) there, is satisfied.

Denoting by %A the metric in A and letting B(αi, δ) := {α ∈ A :
%A(α, αi) < δ}, we recall that a set {α1, . . . , αr} is called a δ-net of A if⋃

i B(αi, δ) ⊃ A. We have the following

Theorem 1. For each ε>0 there exists a δ>0 such that for %A(α, α′)<δ,

(31) sup
u∈U

sup
B∈B(S)

|Φuα(B)− Φuα′(B)| < ε .

P r o o f. It is possible to proceed analogously to what has been done in
[18, Proposition 1], where arguments from [13] are suitably adapted. The
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crucial point in order to exploit these results is the proof of the uniform
continuity in α of Πuα. We then have to show that for all ε > 0 there exists
a δ > 0 such that for all α, α′ with %A(α, α′) < δ,

(32) sup
u∈U

sup
ν∈S

sup
B∈B(S)

|Πuα(ν, B)−Πuα′(ν, B)| < ε .

We have

|Πuα(ν, B)−Πuα′(ν, B)|

≤
∫

Br

|f(ξ1, . . . , ξs−1;α, u(ν), ν)− f(ξ1, . . . , ξs−1;α′, u(ν), ν)| dξ1 . . . dξs−1 .

Taking into account that the majorization property given by the last in-
equality in (22) implies uniform integrability of f(ξ1, . . . , ξs−1;α, v, ν) and
that by (A.2), (21) and (12) it is uniformly continuous in α, v and ν, (32)
follows immediately.

Corollary 3. For each ε > 0 there exists δ > 0 and a δ-net {α1, . . . , αr}
⊂ A such that if the control function ui ∈ U is ε/2-optimal for αi and
%A(α, αi) < δ, then ui is ε-optimal for α.

P r o o f. As in Corollary 1, denote by uα the optimal control for α. Let
‖c‖ = supi∈E supv∈V c(i, v) and take δ > 0 such that (31) holds for ε/(4‖c‖).
Then, using (30), we have

Jα({ui(πk)}) =
∫
S

C(ν, ui(ν))Φuiα(dν)

≤
∫
S

C(ν, ui(ν))|Φuiα(dν)− Φuiαi(dν)|+
∫
S

C(ν, ui(ν))Φuiαi(dν)

≤ ε/4 +
∫
S

C(ν, uαi(ν))Φuαiαi(dν) + ε/2

≤ 3ε/4 +
∫
S

C(ν, uα(ν))Φuααi(dν)

≤ 3ε/4 +
∫
S

C(ν, uα(ν))|Φuααi(dν)− Φuαα(dν)|

+
∫
S

C(ν, uα(ν))Φuαα(dν)

≤ ε + λα .

Due to the compactness of A the existence of {α1, . . . , αr} follows.
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3. Robustness of controls. Ergodicity of the “state-filter” pair.
As mentioned in the introduction, in applications we are not able to calculate
the exact value of the filter πk corresponding to the true value α0, since this
value is unknown. Therefore we cannot use the filter given in (9), but we
have to resort to an approximate filter described by the recursive equation

(33) πα
k+1 = Gα(πα

k , yk+1, vk)

in which we assume for the moment that α is close to α0. We then use a
control sequence of the form vk = u(πα

k ). If α = α0 then the approximate
filter coincides with the optimal filter πk. On the other hand, if α 6= α0 it
is clear from the derivation of (11) that πα

k is no longer a Markov process
and in order to exploit ergodicity results it is necessary to augment the state
vector by including the process xα

k , namely the original signal process driven
by controls based on the values of the approximate filter.

It is also conceivable that the initial measure µ0 is known only approxi-
mately so that we assume that the initial condition of the approximate filter
is given by a measure µ possibly different from µ0; however, this is not ex-
plicitly indicated in the notation. Also notice that, although not explicitly
indicated, πα

k and xα
k depend on α0 since xα

k also evolves according to P vα0 .
By arguments analogous to those used for the derivation of (11), (12),

(20) and (21), denoting by P(E) the class of all subsets of E we have the
following

Lemma 3. For all u ∈ U the pair [xα
k , πα

k ] is a Markov process with
transition kernel given by

(34) Γuα(i, ν, F, B)

=
∑
j∈F

Pu(ν)α0(i, j)
∫

Br

fj(ξ1, . . . , ξs−1;α, u(ν), ν) dξ1 . . . dξs−1

for i ∈ E, ν ∈ S and F ∈ P(E), B ∈ B(S).

The following proposition is the analogue of Corollary 2 and Theorem 1
in the case when the approximate filter (33) is used in the control procedure.

Proposition 2. There exists a constant 0 < γ < 1 and measures Ψuα

on P(E)× B(S) for all u ∈ U and α ∈ A such that

(35) sup
u∈U

sup
α∈A

sup
i∈E

sup
ν∈S

sup
F∈P(S)

sup
B∈B(S)

|(Γuα)n(i, ν, F, B)− Ψuα(F,B)| < γn .

Furthermore, for all ε > 0 there exist δ > 0 such that for %A(α, α′) < δ,

(36) sup
u∈U

sup
F∈P(S)

sup
B∈B(S)

|Ψuα(F,B)− Ψuα′(F,B)| < ε .
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P r o o f. Analogously to (30), inequality (35) follows immediately from
equation (5.6) of Chapter 5 in [4]. Similarly to (31) the uniform continuity
(36) can be obtained analogously to what has been done in [18, Proposi-
tion 1]. Again the crucial point is the proof of the uniform continuity in α
of Γuα. This is perfectly analogous to the proof of (32).

Corollary 4. For each ε > 0, there exists a δ > 0 such that for
%A(α, α0) < δ we have

Jα0({u(πα
k )}) ≤ Jα0({u(πk)}) + ε .

In particular , if u ∈ U is ε-optimal for α0, then the control u(πα
k ) is 2ε-

optimal.

P r o o f. Define ‖c‖ = supi∈E supv∈V c(i, v) and take δ > 0 such that
(36) holds for ε/‖c‖. Using (35) we have

Jα0({u(πα
k )}) =

s∑
i=1

∫
S

c(i, u(ν))Ψuα(i, dν)

≤
s∑

i=1

∫
S

c(i, u(ν))|Ψuα(i, dν)− Ψuα0(i, dν)|

+
s∑

i=1

∫
S

c(i, u(ν))Ψuα0(i, dν)

≤ ε +
∫
S

C(ν, u(ν))Φuα0(dν) = ε + Jα0({u(πk)}) .

Considering in Corollary 4 a δ′ > 0 corresponding to ε′ = ε/8 and
in Corollary 3 a δ′′ > 0 corresponding to ε′′ = ε′ and then taking δ =
min{δ′, δ′′}/2, we have immediately

Corollary 5. For each ε > 0, one can choose a partition {Ai : i =
1, . . . , r} of A, representative elements αi ∈ Ai and control functions ui :
S → V , i = 1, . . . , r, such that if α ∈ Ai then the control ui(πα

k ) is ε/4-
optimal for α′ ∈ Ai. In particular , if α0 belongs to Ai then the control is
ε/4-optimal.

The problem of computation of ε-optimal controls can be studied by
the use of techniques developed in [2], [17]; for details and more references
see [9].

4. Adaptive control algorithm. In this section we describe an adap-
tive control procedure that proves nearly optimal for the model considered.
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For the purpose of this section we assume that periodically, i.e. for k =
T−1, 2T−1, . . . we obtain the summarized cost incurred up to that time, i.e.

nT−1∑
k=0

c(xk, vk)

is given at time nT for all n = 1, 2, . . .

First notice that by (35), for any ε > 0 there is an integer MT > 0 such
that

(37) sup
α∈A

sup
x0∈E

sup
π0∈S

sup
u∈U

∣∣∣(MT )−1Ex0π0

MT−1∑
k=0

c(xα
k , u(πα

k ))

−
s∑

j=1

∫
S

c(j, u(z))Ψuα(j, dz)
∣∣∣ ≤ ε/4 .

Then choose a sequence of integers k1, k2, . . . with ki ≥ r, and r as in
Corollary 5, such that

(38) n
/ n∑

i=1

ki → 0 as n →∞ ,

and let the sequence {ai : i = 1, 2, . . .} be defined by a0 = 0, ai+1 − ai =
kiMT .

The adaptive procedure is based on the conclusion of Corollary 5 and is
the following.

Starting from k = a0 = 0 we use controls ui(πα
k ) for k ∈ [a0 +(i−1)MT ,

a0 + iMT ), i = 1, . . . , r, respectively. Then, if rMT < a1, we compare the
average costs incurred in the intervals [a0 + (i − 1)MT , a0 + iMT ) using
ui(παi

k ), i = 1, . . . , r, and in [rMT, (r + 1)MT ) we use the control corre-
sponding to the minimal cost. If (r + 1)MT < a1, we analogously compare
the average costs incurred in all the past intervals by the controls ui, and
again for k ∈ [(r + 1)MT , (r + 2)MT ) we use the control corresponding to
the minimum average cost. We proceed in this way until a1 is reached.

Then we use again all controls ui(παi

k ), i = 1, . . . , r, in the intervals
[a1 + (i − 1)MT , a1 + iMT ) respectively. Afterwards, if a1 + rMT < a2,
in time intervals of length MT we apply the controls for which the average
costs incurred in all the previous intervals were minimal.

In general, when a point aj is reached, we first “test” all the controls
ui(παi

k ) in the intervals [aj + (i − 1)MT , aj + iMT ) and then we use the
controls corresponding to the minimal average past cost, and this procedure
is continued until aj+1 is reached.

Notice that the algorithm is based on the idea of comparing the average
past costs incurred by the various controls and following the “leader”. In
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order to be able to compare all possible controls we force the use of every
control in the “testing intervals” [ai, ai + rMT ). Because of (38) these
intervals are sparse and their influence on the final cost is going to become
negligible in the long run.

Denoting by v∗k the controls resulting from the described procedure, we
have the following

Theorem 2. There exist N ⊂ Ω with P{N} = 0 such that for ω ∈ Ω \N
we have

Jα0({v∗k}) ≤ inf
{vk}

Jα0({vk}) + ε .

P r o o f. Let βk denote the index of control used at time k. Define
recursively

σ1(i) = inf{k ≥ 0 : βkMT = i}, σn+1(i) = inf{k > σn(i) : βkMT = i} .

By the law of large numbers for martingales, we find that for i = 1, . . . , r
and ω ∈ Ω \N1 with P{N1} = 0,

(39) m−1
m∑

j=1

[ (σj(i)+1)MT−1∑
k=σj(i)MT

c(xαi

k , ui(παi

k ))

−Ex
αi
σj(i)MT

π
αi
σj(i)MT

{ MT−1∑
k=0

c(xαi

k , ui(παi

k ))
}]

→ 0 as m →∞ .

Since by (37),∣∣∣Ex
αi
σj(i)MT

π
αi
σj(i)MT

{ MT−1∑
k=0

c(xαi

k , ui(παi

k ))
}

−MT

s∑
j=1

∫
S

c(j, u(z))Ψuiαi(j, dz)
∣∣∣ ≤ εMT/4 ,

from (39) we have

(40) lim sup
m→∞

m−1
∣∣∣ m∑

j=1

[ (σj(i)+1)MT−1∑
k=σj(i)MT

c(xαi

k , ui(παi

k ))

−MT

s∑
j=1

∫
S

c(j, ui(z))Ψuiαi(j, dz)
]∣∣∣ ≤ εMT/4 .

Assume now that i is a Cesàro frequent index of control, i.e.

lim sup
n→∞

1
n

n−1∑
k=0

I{βk=i} > 0 .
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In this case, by (38), the control ui is also used outside the “testing intervals”
[aj , aj + rMT ), because it corresponds to a minimum average past cost.
Therefore, given any other control index i′ there exist sequences mk and m′

k

such that

lim sup
k→∞

m−1
k

mk∑
j=1

(σj(i)+1)MT−1∑
k=σj(i)MT

c(xαi

k , ui(παi

k ))

≤ lim sup
k→∞

m′−1
k

m′
k∑

j=1

(σj(i
′)+1)MT−1∑

k=σj(i′)MT

c(xαi′
k , ui′(π

αi′
k ))

so that, using (40) we have for all i′ = 1, . . . , r,

MT

s∑
j=1

∫
S

c(j, ui(z))Ψuiαi(j, dz)− εMT/4

≤ MT

s∑
j=1

∫
S

c(j, ui′(z))Ψui′αi′ (j, dz) + εMT/4

and therefore using Corollary 5 we have

(41)
s∑

j=1

∫
S

c(j, ui(z))Ψuiαi(j, dz) ≤ λα0 + 3ε/4 .

Consequently, the control ui(παi

k ), corresponding to the Cesàro frequent
index i, is 3ε/4-optimal.

Denoting by x∗k and π∗k the state and filter at time k resulting from the
adaptive procedure and using again the law of large numbers for martingales,
we have for ω ∈ Ω \N2 with P{N2} = 0,

(nMT )−1
n∑

i=1

[ (i+1)MT−1∑
k=iMT

c(x∗k, v∗k)

−Ex∗
iMT

π∗
iMT

{ MT−1∑
k=0

c(x∗k, v∗k)
}]

→ 0 as n →∞ .

From this, using (37) we have

(42) lim sup
n→∞

n(MT )−1
n∑

i=1

(i+1)MT−1∑
k=iMT

c(x∗k, v∗k)

≤ lim sup
n→∞

n−1
n∑

i=1

r∑
j=1

I{βiMT =j}

s∑
h=1

∫
S

c(h, uj(z))Ψujαj (j, dz) + ε/4 .
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Denoting by C the set of Cesàro frequent indices of control, we have

lim sup
n→∞

n−1
n∑

i=1

∑
j 6∈C

I{βiMT =j} = 0

and consequently

lim sup
n→∞

n−1
n∑

i=1

∑
j∈C

I{βiMT =j} = 1 .

Then from (42) and (41) we conclude that the adaptive procedure is ε-
optimal for ω ∈ Ω/N with N = N1 ∪N2.

From Theorem 1, a direct application of Fatou’s lemma provides the
following

Corollary 6. The controls v∗k are such that

(43) Jα0({v∗k}) ≤ inf
{vk}

Jα0({vk}) + ε .

This result shows that the controls resulting from the adaptive procedure
are ε-optimal for the functional Jα0 . By (28) they are also ε-optimal for the
functional Jα0 .
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