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VISCOSITY SOLUTIONS OF THE ISAACS EQUATION
ON AN ATTAINABLE SET

Abstract. We apply a modification of the viscosity solution concept in-
troduced in [8] to the Isaacs equation defined on the set attainable from a
given set of initial conditions. We extend the notion of a lower strategy in-
troduced by us in [17] to a more general setting to prove that the lower and
upper values of a differential game are subsolutions (resp. supersolutions)
in our sense to the upper (resp. lower) Isaacs equation of the differential
game. Our basic restriction is that the variable duration time of the game
is bounded above by a certain number T > 0. In order to obtain our re-
sults, we prove the Bellman optimality principle of dynamic programming
for differential games.

1. Introduction. This paper may be viewed as a continuation of [8]
which concerned optimal control problems and the Bellman equation. Here
we concentrate our attention on differential games and Isaacs’ equations. By
a two-person zero-sum differential game we understand a conflict situation
involving two objects whose dynamics are governed by a system

(1) ẋ(t) = f(t, x(t), u, v) , x(t0) = x0 , (t0, x0) ∈ Ω0 ⊂ Rn+1 , t ≥ t0 ,

where piecewise continuous control functions u(t), v(t) are chosen by player I
and player II, respectively from multivalued sets U(t), V (t). Player I strives
to maximize his payoff functional

(2) P = P [t0, x0, u(·), v(·)] = g(τ, x(τ)) +
τ∫

t0

h(t, x(t), u(t), v(t)) dt ,
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through an appropriate choice of control parameters u ∈ U(t), while player II
tries to minimize his cost (2); here τ = τ [t0, x0, x(·)] is the first time t ≥ t0
for which (t, x(t)) ∈ Γ , where Γ is a terminal set. The role of an optimal
cost function is replaced in this differential game setting by a value function
W (t, x), to be defined later. We study this value function on the set

(3) Ω = {(t, x) : x = x(t, t0, x0, u(·), v(·)), (t0, x0) ∈ Ω0, t0 ≤ t ≤ τ} ,

which is the set of points attainable from Ω0. Let us note that Ω is invariant
under the flow generated by equation (1), which means that each trajectory
of (1) starting from Ω will stay in Ω until the terminal time τ , depending
on the trajectory.

It has long been known that value functions, which may be defined dif-
ferently according as one understands strategies, satisfy the Isaacs equation
for a given differential game, provided they are differentiable [3, 5, 6, 9,
12]. Since usually this is not the case, the natural question arises how to
overcome this difficulty.

An important step forward was made by introducing [2, 11] and develop-
ing [1, 4, 7, 13] the idea of a viscosity solution of a PDE; for more references
on differential games (and control problems) in the context of viscosity solu-
tions, the reader is referred to [8], from which we borrow the notion of a solu-
tion to the Isaacs equation, which is a modification of the viscosity solution.

Independently of those approaches, a different framework for solving the
Isaacs equation was proposed by Subbotin [14] who proved later [16] that his
approach is equivalent to the viscosity solution, when applied to fixed time
duration problems, which the original definition of a viscosity solution was
aimed at. Quite recently, in a quite general setting, he developed [15] his
earlier joint ideas with Krasovskĭı [10] to show that the notions of u-stable
and v-stable functions introduced some 20 years ago by Krasovskĭı (see [9]
and the references therein) may be used to obtain nonlocal definitions of a
viscosity subsolution and supersolution of the Isaacs equation for a suitable
differential game.

In this paper, after extending the concept of a lower strategy introduced
in [17], we study a general class of differential games which has not been
treated so far in the context of viscosity solutions. We prove that the lower
and upper values of a differential game are subsolutions (resp. supersolu-
tions) in the sense of the definition of [8] to the corresponding upper (resp.
lower) Isaacs equation, assuming the terminal time τ is bounded from above
by a certain number T > 0. To obtain these results, we derive the Bellman
optimality principle of dynamic programming for differential games, which
has been proved here under weaker assumptions for more general classes of
differential games than in [17]. If the Isaacs condition holds then the lower
and upper values of the game are solutions of the Isaacs equation.
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2. Assumptions and the value function. Throughout the paper we
make assumptions similar to those in [8].

(4) The multivalued function U : [0, T ] → Rk is continuous (in the Haus-
dorff metric), all U(t) are closed and lie in a fixed ball B ⊂ Rk and, for
each u ∈ U(t), there is a selection u(t) from U(t) that is continuous at
t and satisfies u(t) = u; a similar condition holds for V : [0, T ] → Rm.

(5) The functions f , g and h are continuous.

(6) The function f(t, x, u, v) is Lipschitz in x, i.e., for all x ∈ Rn, u ∈ U(t)
and v ∈ V (t), one has ‖f(t, x, u, v)− f(t, x, u, v)‖ ≤ k(t)‖x−x‖, with
k(t) being integrable over [0, T ].

(7) The terminal set Γ is a closed subset of Rn+1.

It is well known that under conditions (4)–(6) equation (1) admits a
unique solution on [t0, T ] for each initial point (t0, x0) ∈ Ω and any pair of
controls u(·), v(·); let us denote such a trajectory by x[·, t0, x0, u(·), v(·)].

In addition to those rather standard assumptions, we impose the follow-
ing condition.

(8) There exists a T > 0 such that, for each x[·, t0, x0, u(·), v(·)] with
(t0, x0) ∈ Ω0, one has τ(x[·, t0, x0, u(·), v(·)]) ≤ T and inf{t : (t, x) ∈
Ω0} = 0.

In order to define the spaces of strategies for both players, denote by
X(t0, x0) the set of all trajectories (solutions of equation (1)) and by U
(resp. V ) the space of all piecewise continuous controls for player I (resp.
player II). Let Π stand for the set of all finite partitions π of the interval
[t0, T ]. For any α : X(t0, x0) → (Π,U) 3 (π, u(·)) we shall often denote π by
α1[x(·)] and u(·) by α2[x(·)] so that α[x(·)] = (α1[x(·)], α2[x(·)]). Extend-
ing the definition of a lower strategy introduced in [17] for systems of the
form ẋ = f1(t, x(t), u(t)), ẏ = f2(t, y(t), v(t)), we propose here the following
definition.

Definition 2.1. An operator α : X(t0, x0) → (Π,U) is said to be a
strategy of player I if whenever x1(t) = x2(t), t0 ≤ t ≤ t, then (i) t11 =
t21, . . . , t

1
k+1 = t2k+1, where t11, t

1
2, . . . , t

1
k+1 are the first k + 1 points of the

partition π1 = α1[x1(·)], while t21, t
2
2, . . . , t

2
k+1 are the first k + 1 points of

the partition π2 = α1[x2(·)], with k being the index for which t1k ≤ t < t1k+1,
and (ii) α2[x1(·)](t) = α2[x1(·)](t), t0 ≤ t ≤ tk+1, where tk+1 = t1k+1 = t2k+1.

In an analogous fashion one introduces the concept of a strategy for
player II. It is easy to see how both players proceed according to their
strategies. Namely, at time t0 player I (a similar observation applies to
player II) chooses his first partition point t1 (knowing x0 only) and a control
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u(s), t0 ≤ s ≤ t1. At time t1, knowing x(s) for t0 ≤ s ≤ t1, player I selects
t2 and u(s) for s ∈ [t1, t2) and so on.

Denote by A(t0, x0), B(t0, x0) the spaces of strategies for player I and
player II, respectively. Given a strategy α ∈ A(t0, x0) we say that a tra-
jectory x(·) ∈ X(t0, x0) is an outcome of α (x(·) ∈ O[α] for short) if there
are controls u(·), v(·) such that ẋ(t) = f(t, x(t), u(t), v(t)), x(t0) = x0, and
α[x(·)](t) = u(t), t ≥ t0. In a similar fashion we define the notion of an
outcome resulting from a strategy β : X(t0, x0) → V of player II. When
α[x(·)](t) = u(t) and β[x(·)](t) = v(t) with ẋ(t) = f(t, x(t), u(t), v(t)),
x(t0) = x0, we say x(·) is an outcome of the pair (α, β) (x(·) ∈ O[α, β]
for short).

Clearly, when ẋ(t) = f(t, x(t), u(t), v(t)), x(t0) = x0, then P [t0, x0, x(·)]
will mean P [t0, x0, u(·), v(·)]; analogously, since each pair of strategies α ∈
A(t0, x0), β ∈ B(t0, x0) gives rise to exactly one outcome x(·), it is natural
to understand by P [t0, x0, α, β] the amount P [t0, x0, x(·)]. The notions of
lower and upper values of the game are defined in a standard way:

(9) W (t0, x0) = sup
α∈A(t0,x0)

inf
x(·)∈O[α]

P [t0, x0, x(·)] ,

(10) W (t0, x0) = inf
β∈B(t0,x0)

sup
x(·)∈O[β]

P [t0, x0, x(·)] .

These formulas may, clearly, be replaced by the following:

(11) W (t0, x0) = sup
α∈A(t0,x0)

inf
β∈B(t0,x0)

P [t0, x0, α, β] ,

(12) W (t0, x0) = inf
β∈B(t0,x0)

sup
α∈A(t0,x0)

P [t0, x0, α, β] .

A game is said to have a value W (t0, x0) if W (t0, x0) = W (t0, x0) =
W (t0, x0). It follows from our assumptions that all solutions of equation (1)
starting from any bounded domain remain uniformly bounded and equicon-
tinuous, which implies the following two properties:

(∗) W (t, x) and W (t, x) are locally bounded functions, and so they admit
both usc and lsc envelopes.

(∗∗) For each δ > 0 there is an ε > 0 such that if (t, x) ∈ Ω, dist[(t, x), Γ ]
≥ δ and ‖(t, x)‖ ≤ 1/δ then dist[(t′, x[t′, t, x, u(·), v(·)]), Γ ] > δ/2,
t ≤ t′ ≤ t + ε, for any pair of control functions u(·), v(·).

3. Concept of a solution of the Isaacs equation and the Bellman
optimality principle of dynamic programming. Having defined our
differential game (1), (2), we are going to study the lower Isaacs function

(13) H−(t, x, p) = sup
u∈U(t)

inf
v∈V (t)

[f(t, x, u, v)p + h(t, x, u, v)]



Viscosity solutions 185

and the upper Isaacs function

(14) H+(t, x, p) = inf
v∈V (t)

sup
u∈U(t)

[f(t, x, u, v)p + h(t, x, u, v)]

on Ω × Rn, where Ω, given by (3), is the set of points attainable from Ω0.
It follows from conditions (4), (5) that both the lower and upper Isaacs
functions are continuous. If they are equal one says the Isaacs condition
holds and the resulting function is called the Isaacs function. The lower
Isaacs function leads naturally to the lower Isaacs equation

(15) wt(t, x) + sup
u∈U(t)

inf
v∈V (t)

[f(t, x, u, v)wx(t, x) + h(t, x, u, v)] = 0

defined on Ω with the boundary condition W (t, x) = g(t, x) on Γ ⊂ Ω.
Similarly, one is led to the upper Isaacs equation

(16) wt(t, x) + inf
v∈V (t)

sup
u∈U(t)

[f(t, x, u, v)wx(t, x) + h(t, x, u, v)] = 0

with the same boundary condition. Clearly, when the Isaacs condition holds,
the equations (15) and (16) coincide and the resulting equation is called the
Isaacs equation.

All these three PDE are special cases of the equation wt(t, x) +
H(t, x, wx(t, x)) = 0, where H(t, x, p) is a continuous function. Let us now
recall the concept of a solution to this PDE introduced in [8].

Definition 3.1. Given a locally bounded function H : [0, T ] × Rn ×
Rn → R, a function w : Ω → R is said to be a subsolution of the equation

(17)
wt(t, x) + H(t, x, wx(t, x)) = 0 , (t, x) ∈ Ω \ Γ ,

w(t, x) = g(t, x) on Γ ⊂ Ω

if w(t, x) ≤ g(t, x) on Γ and, for each C1(Ω\Γ ) function φ, one has φt(t, x)+
H∗(t, x, φx(t, x)) ≥ 0 at each point (t, x) ∈ Ω \Γ which is a local maximum
of the function w∗(t, x) − φ(t, x) : Ω \ Γ → R, where w∗ and H∗ stand for
the usc envelopes of w and H, respectively.

Definition 3.2. A function w : Ω → R is said to be a supersolution
of (17) if w(t, x) ≥ g(t, x) on Γ and, for each C1(Ω \ Γ ) function φ, one
has φt(t, x) + H∗(t, x, φx(t, x)) ≤ 0 at each point (t, x) ∈ Ω \ Γ which is
a local minimum of w∗(t, x)− φ(t, x) : Ω \ Γ → R, where w∗, H∗ stand for
lsc envelopes of w and H, respectively.

Definition 3.3. A function w : Ω → R is said to be a solution of (17)
if it is both a subsolution and a supersolution of (17).
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Clearly, this notion of a solution resembles that of the viscosity solution;
some differences between those two concepts are pointed out in [8]. Since
the only restriction imposed on Γ is condition (7), our framework is general
enough to comprise all differential games that satisfy condition (8).

In the remainder of this section, we prove a principle, known as the
Bellman optimality principle of dynamic programming, which extends and
strengthens the one obtained in [17], where we treated the case of separated
dynamics ẋ(t) ∈ f1(t, x, U(t), V (t)), ẏ(t) ∈ f2(t, x, U(t), V (t)) under the
assumption that the sets fi(t, x, U(t), V (t)), i = 1, 2, are convex. Let us
start with the following lemma.

Lemma 3.1. Let conditions (5), (6) and (8) hold and (t, x) ∈ Ω \ Γ . For
each δ > 0 with t + δ ≤ T , each control u(·) ∈ U and any ε > 0 there exists
a control function vε(·) ∈ V such that , for the trajectory xε(·) satisfying
ẋε(s) = f(s, xε(s), u(s), vε(s)), xε(t) = x, one has either (t+δ, xε(t+δ)) ∈ Γ
for some 0 ≤ δ ≤ δ, or else W (t + δ, xε(t + δ)) + r(t + δ) (the cost incurred
on the interval [t, t + δ)) ≤ W (t, x) + ε, i.e.,

(18) sup
u(·)∈U

inf
v(·)∈V

[
W (t + δ, x[t + δ, t, x, u(·), v(·)])

+
t+δ∫
t

h(s, x(s), u(s), v(s)) ds
]
≤ W (t, x) .

P r o o f. Reasoning by contradiction, we obtain a control u(·) ∈ U and
a δ > 0 such that, for each v(·) ∈ V and for the x(·) satisfying ẋ(s) =
f(s, x(s), u(s), v(s)), x(t) = x, the points (t+ δ, x(t+ δ)) are in Ω \Γ for all
0 ≤ δ ≤ δ and, for z = x(t + δ), we have

W (t + δ, z) +
t+δ∫
t

h(s, x(s), u(s), v(s)) ds > W (t, x) + ε .

By the definition of W (t + δ, z) (cf. (9)), there is a strategy αz ∈ A(t + δ, z)
with the property that

(19) inf{P [t + δ, x(t + δ), x(·)] + ε/2 : x(·) ∈ O[αz]} ≥ W (t + δ, x(t + δ)) .

Using (19), we shall show the existence of a lower strategy α ∈ A(t, x) for
which

(20) inf{P [t, x, x(·)] : x(·) ∈ O[α]} ≥ W (t, x) + ε/2 ,

a contradiction to (9). We define α[x(·)] = (α1[x(·)], α2[x(·)]) as follows.
Let the first partition point t1 of π = α1[x(·)] be t+ δ; denoting by xδ(·) the
portion of x(·) on [t + δ, T ], we set

α2[x(·)](s) =
{

u(s) if t ≤ s < t + δ = t1,
αz

2[x
δ(·)](s) if x(t + δ) = z and t1 ≤ s ≤ T .
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Finally, let α1[x(·)] = {t+δ, tz1, . . . , t
z
k}, where {tz1, . . . , tzk} = αz

1[x
δ(·)]. With

α defined as above, (19) implies (20), as required.

The following result may be proved analogously.

Lemma 3.2. Let conditions (5), (6) and (8) hold and (t, x) ∈ Ω\Γ . Then
for each δ > 0 with t+δ < T , each control function v(·) ∈ V and ε > 0 there
is a control function uε(·) ∈ U such that for the trajectory xε(·) satisfying
ẋε(t) = f(s, xε(s), uε(s), v(s)), xε(t) = x, one has either (t+δ, xε(t+δ)) ∈ Γ
for some δ, 0 ≤ δ ≤ δ, or else W (t + δ, xε(t + δ)) + r(t + δ) ≥ W (t, x)− ε,
i.e.,

inf
v(·)∈V

sup
u(·)∈U

(W (t + δ, x[t + δ, t, x, u(·), v(·)]) + r(t + δ)) ≥ W (t, x) ,

where

r(t + δ) =
t+δ∫
t

h(s, x(s), u(s), v(s)) ds .

Lemma 3.3. For any (t0, x0) ∈ Ω, one has

(21) W (t0, x0) ≤ sup
α∈A(t0,x0)

inf
x(·)∈O[α]

[
W (t0 + ε, x(t0 + ε))

+
t0+ε∫
t0

h(s, x(s), u(s), v(s)) ds
]
.

P r o o f. Given ε > 0, denote by Xε(t0, x0) the set of all portions xε(·) of
trajectories x(·) ∈ X(t0, x0) on [t0, t0 +ε) and by xε(·) the portion of x(·) on
[t0 + ε, T ] so that x(·) = [xε(·), xε(·)]. We may assume that for each lower
strategy α = (α1, α2) ∈ A(t0, x0), the point t0 + ε appears in the partition
α1[x(·)] for each x(·) ∈ X(t0, x0); this can be readily accomplished without
changing the values of α2[x(·)], x(·) ∈ X(t0, x0). Now we can “divide” any
strategy α = (α1, α2) into two “pieces” αε = (αε1, αε2) and αε = (αε

1, α
ε
2),

which are the restrictions of α to [t0, t0 + ε) (resp. [t0 + ε, T ]). Strictly
speaking, we have

αε1[x(·)] = α1[x(·)] ∩ [t0, t0 + ε) , αε2[x(·)](t) = α2[x(·)](t) ,

t0 ≤ t < t0 + ε ,

for all x(·) ∈ X(t0, x0); moreover, αε
1[x(·)] = α1[x(·)] ∩ [t0 + ε, T ], while

αε
2 represents a family of strategies αε

x(·) ∈ A(t0 + ε, x(t0 + ε)) uniquely
determined via the formula

(22) α2[x(·)](t) =
{

αε2[x(·)](t), t0 ≤ t < t0 + ε,
αε

x(·)[x(·)](t), t0 + ε ≤ t ≤ T ,
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for x(·) ∈ X(t0, x0). Observe that if xε(·) is fixed and xε(·) varies over
X(t0 + ε, x(t0 + ε)), then (22) determines exactly one strategy αε

x(·) ∈
A(t0 + ε, x(t0 + ε)). Clearly, αε

x(·) means, in general, something different
than αε

x(·) even though the equality x(t0 + ε) = x(t0 + ε) may hold. These
notational simplifications lead to the obvious identity

W (t0, x0) = sup
αε

sup
αε

inf
xε(·)

inf
xε(·)

{P [t0, x0, x(·)] : x(·) ∈ O[α] , α ∈ A(t0, x0)} ,

implying

W (t0, x0) ≤ sup
αε

inf
xε(·)

sup
αε

inf
xε(·)

{P [t0, x0, x(·)] : x(·) ∈ O[α] , α ∈ A(t0, x0)} ,

which is easy to prove and obvious in elementary game theory. Using the
last inequality and the definition of W (t0 + ε, x(t0 + ε)), one readily ob-
tains (21).

Arguing similarly, one can also show (cf. (10))

(23) W (t0, x0) ≥ inf
β∈B(t0,x0)

sup
x(·)∈O[β]

[
W (t0 + ε, x(t0 + ε))

+
t0+ε∫
t0

h(s, x(s), u(s), v(s)) ds
]
.

Theorem 3.1 (optimality principle of dynamic programming for differ-
ential games). Let conditions (5), (6), (8) hold and (t, x) ∈ Ω \ Γ . Then
there is an ε > 0 such that , for all 0 ≤ δ ≤ ε, the identities below hold :

(24) sup
α∈A(t,x)

inf
x(·)∈O[α]

[
W (t + δ, x(t + δ))

+
t+δ∫
t

h(s, x(s), u(s), v(s)) ds
]

= W (t, x) ,

(25) inf
β∈B(t,x)

sup
x(·)∈O[β]

[
W (t + δ, x(t + δ))

+
t+δ∫
t

h(s, x(s), u(s), v(s)) ds
]

= W (t, x) ,

where ẋ(s) = f(s, x(s), u(s), v(s)), x(t) = x.

P r o o f. It follows from property (∗∗) that there is an ε = ε(t,x) such
that, for all x(·) ∈ O[α], one has (t + δ, x(t + δ)) ∈ Ω \ Γ . We have already
proved (21); the reverse inequality may be deduced from (18), by the defi-
nition of a lower strategy. The second identity is proved analogously, using
inequality (23) and Lemma 3.2.
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4. Existence of solutions to the lower and upper Isaacs
equations

Theorem 4.1. If assumptions (4)–(7) hold then W (t, x) and W (t, x)
(given by (9) and (10), resp.) are subsolutions of equation (17) in the sense
of Definition 3.1, with H(t, x, p) being the upper Isaacs function.

P r o o f. Obviously, W (t, x) = W (t, x) = g(t, x) for (t, x) ∈ Γ . To show
W (t, x) is a subsolution of (16), assume W ∗(t, x)−φ(t, x) : Ω \Γ → R, with
φ ∈ C1(Ω \Γ ), attains a finite local maximum at some point (t, x) ∈ Ω \Γ .
By the definition of W ∗(t, x), we obtain a sequence (tk, xk) ∈ Ω \ Γ such
that

(26) W (tk, xk)−φ(tk, xk)+
1
k

> W (tk + ε, x(tk + ε))−φ(tk + ε, x(tk + ε))

for each x(·) ∈ X(tk, xk), with (tk + ε, x(tk + ε)) belonging to Ω \ Γ for
all ε smaller than some ε > 0 (by (∗∗)), and k = 1, 2, . . . We infer from
Lemma 3.3 that, for each positive integer k, one can find αk ∈ A(tk, xk) for
which

(27) W (tk, xk) < W (tk +ε, xk(tk +ε))+
tk+ε∫
tk

h(s, xk(s), u(s), v(s)) ds+
1
k

,

where ẋk(s) = f(s, xk(s), u(s), v(s)), xk(tk) = xk, xk(·) ∈ O[αk]. Fixing
temporarily v ∈ V (t), let us choose a sequence vk ∈ V (tk) converging to
v and controls vk(·) that are continuous at tk and satisfy vk(tk) = vk (see
assumption (4)). If we substitute vk(·) for v(·) in (27), which is valid for any
v(·) ∈ V , then we get a control uk(·) ∈ U , which together with xk(·) ∈ O[αk]
and vk(·) satisfies (27). Subtracting (26) from (27), and taking into account
that u(tk) converges to some u ∈ U(t), we obtain

(28) − 2
k
≤ φ(tk+ε, xk(tk+ε))−φ(tk, xk)+

tk+ε∫
tk

h(s, xk(s), uk(s), vk(s)) ds .

Dividing (28) by ε and passing with k to infinity, we arrive at φt(t, x) +
H+(t, x, φx(t, x)) ≥ 0 because v ∈ V (t) was chosen arbitrarily and u was
determined later; here H+ is the upper Isaacs function given by (14). In
this way we have shown that W (t, x) is a subsolution of (16) because H+ is
its own usc envelope.

To show W (t, x) is a subsolution of (16), we proceed as at the beginning
of this proof (with W (·) replaced by W (·)) to arrive at inequality (26). As
previously, after fixing (temporarily) v, we choose vk ∈ V (tk) converging
to v and controls vk(·), continuous at tk, with vk(tk) = vk. This time we
use Lemma 3.2 (instead of Lemma 3.3) to find controls uk(·) such that with
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xk(·) satisfying ẋk(t) = f(t, xk(t), uk(t), vk(t)), xk(tk) = xk, we arrive at

(29) W (tk, xk) < W (tk+ε, xk(tk+ε))+
tk+ε∫
tk

h(s, xk(s), uk(s), vk(s)) ds+
1
k

,

playing the role of inequality (27), from which we subtract (26) (with W (·)
replaced by W (·), of course), to obtain (28) and consequently φt(t, x) +
H+(t, x, φx(t, x)) ≥ 0, as required.

Theorem 4.2. If assumptions (4)–(7) hold then W (t, x) and W (t, x)
are supersolutions of equation (17), with H(t, x, p) being the lower Isaacs
function.

P r o o f. We start to argue as at the beginning of the previous proof to
arrive at

(30) W (tk, xk)−φ(tk, xk)− 1
k

< W (tk + ε, x(tk + ε))−φ(tk + ε, x(tk + ε))

for each x(·) ∈ X(tk, xk) with (tk + ε, x(tk + ε)) ∈ Ω \ Γ for all ε ≤ ε and
k = 1, 2, . . . Now we change our reasoning a little by fixing u ∈ U(t), choosing
a sequence uk ∈ U(tk) converging to u and controls uk(·), continuous at tk,
for which uk(tk) = uk. Next we use Lemma 3.1 to find controls vk(·) for
which, with xk(·) satisfying ẋk(t) = f(t, xk(t), uk(t), vk(t)), xk(tk) = xk, the
inequality

(31) W (tk, xk) > W (tk + ε, x(tk + ε)) +
tk+ε∫
tk

h(s, xk(s), uk(s), vk(s)) ds

holds. Based on (4), we may assume vk(tk) converges to some v ∈ V (t);
subtracting (30) from (31), we obtain

(32)
2
k

> φ(tk + ε, xk(tk + ε))− φ(tk, xk) +
tk+ε∫
tk

h(s, xk(s), uk(s), vk(s)) ds

and consequently, after dividing (32) by ε, and passing with k to infinity, we
arrive at φt(t, x) + H−(t, x, φx(t, x)) ≤ 0 because u was chosen arbitrarily
and v was determined later; here H− is the lower Isaacs function, which is
equal to its lsc envelope since it is a continuous function.

To show W (t, x) is a supersolution of (15), we assume W ∗(t, x)−φ(t, x)
attains a local minimum at (t, x) ∈ Ω \ Γ , to arrive at

(33) W (tk, xk)−φ(tk, xk)− 1
k

< W (tk + ε, x(tk + ε))−φ(tk + ε, x(tk + ε))

for each x(·) ∈ X(tk, xk), k = 1, 2, . . . By inequality (23), there are strategies
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βk ∈ B(tk, xk) such that, for all x(·) ∈ O[βk], we have

(34) W (tk, xk) ≥ W (tk + ε, x(tk + ε)) +
tk+ε∫
tk

h(s, x(s), u(s), v(s)) ds− 1
k

,

where ẋ(s) = f(s, x(s), u(s), v(s)), x(tk) = xk. Now we fix u ∈ U(t), select
points uk and controls uk(·) with appropriate properties, and next deter-
mine vk(·) so that (34) holds (with x(·), u(·), v(·) replaced by xk(·), uk(·),
vk(·)). If we subtract (33) from (34), then we obtain (32) and φt(t, x) +
H−(t, x, φx(t, x)) ≤ 0, as required.

Corollary 4.1. If , in addition to assumptions (4)–(7), the Isaacs con-
dition holds, then W (t, x) and W (t, x) are solutions of the Isaacs equation.

Based on the uniqueness result from [8], obtained under additional as-
sumptions, one can deduce the existence of a value to our differential game;
a suitable formulation is left to the reader.
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