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ASYMPTOTIC DISTRIBUTIONS
OF LINEAR COMBINATIONS OF ORDER STATISTICS

Abstract. We study the asymptotic distributions of linear combinations
of order statistics (L-statistics) which can be expressed as differentiable
statistical functionals and we obtain Berry-Esseen type bounds and the
Edgeworth series for the distribution functions of L-statistics. We also an-
alyze certain saddlepoint approximations for the distribution functions of
L-statistics.

1. Introduction. This paper is concerned with the asymptotic be-
haviour of linear combinations of order statistics (or L-statistics), i.e. statis-
tics of the form

1 n
(1) L, = nzlcinXi:na n>1,
i
where ¢;,, @ = 1,...,n, are fixed real numbers and X;.,,, i = 1,...,n, are
the order statistics of a sequence X7, ..., X,, of i.i.d. random variables (rv’s)

with common distribution function (df) F. L-statistics are widely used in
the robust estimation of location and scale parameters.

The first step in the investigation of L-statistics was to find conditions
assuring their asymptotic normality. This problem was studied in the sixties
and seventies by Chernoff, Gastwirth and Johns (see [7]), Stigler (see [19,
20, 21]) and Shorack (see [17, 18]), and a little later by Boos (see [4, 5]). A
short summary of their results is included in the book [16] in Chapter 8.2.4.

The next step in the development of the theory was to obtain Berry—
Esseen type bounds for L-statistics and the approximation of their distri-
butions by the first terms of Edgeworth expansions and by the saddlepoint
method. Sections 2 and 3 of the present paper give a short summary of the

1991 Mathematics Subject Classification: Primary 62E20.
Key words and phrases: L-statistic, statistical function, von Mises representation,
Berry—Esseen type bounds, Edgeworth series, saddlepoint method.



202 M. Bogdan

already existing results and some new ones achieved under modified assump-
tions (Theorems 2, 3, 4 and approximations (38) and (48)). Following Boos
(see [5]) we treat the L-statistics as differentiable statistical functions and
utilize the von Mises representation. For the estimation of the remainder
term of the von Mises expansion we apply the result of Inglot and Led-
wina from the theory of strong approximations (see [12]). The investigation
of the behaviour of the leading term of this expansion requires only some
well-known facts concerning the distributions of the mean and U-statistics.

2. Berry—Esseen type bounds. In 1977 Bjerve (see [2]) obtained
the Berry-Esseen rate O(n~'/?) for generalized L-statistics of the form

1
= E ; Cinh(Xi:n) y

where h is some measurable function, under the assumption that a cer-
tain proportion of the observations among the smallest and the largest are
discarded. His theorem concerns the situation when the df F' of X is con-
siderably smooth. In particular, for L-statistics of the form

1 & i
2 Enzi J Xi:n7
@) n; (n—i—l)

where J(s) is a real-valued function which vanishes outside [a,b], 0 < a <
b < 1, the Berry—Esseen bound holds if J(s) and F~"(s) satisfy the Lip-
schitz condition on the open interval containing [a,b]. As usual, we write

F~Ys) =inf{z : F(z) > s}.
In 1979 Boos and Serfling (see [6]) investigated L-statistics of the form

(3) fF1 ds,

where F,(t) is the empirical df based on a sample Xi,...,X,. Equi-
valently, these statistics can be expressed by formula (1) with ¢;,, =

(ZZ/ nl) in (s)ds. If J'(s) satisfies the Lipschitz condition of order 4,

[J'(s) = J'(t)| < D|s—t[°, D >0,

with § > 1/3 or if J(s) vanishes outside [a,b], 0 < a < b < 1, then providing
that some additional assumptions on the distributions are made the authors
of [6] achieved a Berry-Esseen rate O(n~'/2). As in [2], this result is a
conclusion from a more general theorem.

A short summary of all the above mentioned results can be found in the
book [16] (Ch. 8.2.5).
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The following theorem which puts much weaker conditions on the df F' of
X; and a weight function J(s) was obtained by Helmers in his PhD thesis,
published in 1978.

Let us consider a statistic L,, of the form (1).

ASSUMPTION 1. Suppose that a sequence of real numbers 0 < sq,...
...,8, < 1, k € N, is such that F~!(s) satisfies the Lipschitz condition of
order 6 > 1/2 in their neighbourhoods. Suppose further that weights c;,,
1 <1<k, n>1, where j; = [ns;] + 1, are uniformly bounded and that
there exists some real-valued measurable function G(s) such that

n T G d ’ =0 -1 .
ISiSnI,Iil%i,...,jk ¢ n(i—1f)/n (s)ds (n™") asn— oo

Below we use the following notation:

oo o0

4) o= [ [ J(F@)J(F(y)min(F (), F(y) - F@)F(y)] dz dy,

THEOREM 1. Let L,, be a statistic which satisfies Assumption 1. If G(s)
satisfies the Lipschitz condition of order 1 on [0,1] and at the same time
E|X1]? < 0o and o2 >0, then

P(ﬁL"_“ §x> )

sup =0 Y?) asn— 0.

z€ER o

As usual, &(z) denotes the df of the standard normal distribution. It
is easy to check that Assumption 1 is satisfied by the L-statistics defined
by (3), and if J(s) satisfies the Lipschitz condition of order 1, also by the
L-statistics given by (2).

None of the above mentioned theorems can be applied when the function
J(s) in (2) and (3) is not continuous, although such a function is very useful
for obtaining a trimmed mean. The following theorem, dealing with this
situation and proved by elementary methods, gives a Berry—Esseen rate
only a little weaker than O(n~1/?).

THEOREM 2. Let I,, be a statistic of the form (3). Suppose that
(6) J(s) vanishes outside [a,b], 0<a<b<1,
and J(s) satisfies the Lipschitz condition of order 1 on [a, ], i.e.
(7) |J(s) = J(t)] < Dls—t|, s,t€]ab].
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Moreover, assume
Fa+n)— F(a—mn)=0(n)
and
FYo4+n)—-F'b—n=0®n an—0.
Suppose also that o> > 0. Then, uniformly in x € R,
I, —u logn
P = 0 .
(\/ﬁ - <:c> (x) + (ﬁ)

Proof. Set T(H) = fol J(s)H™'(s)ds. Then I,, = T(F},). Taking one
term of the von Mises expansion (see [22]) for T'(F,) — T(F) = I,, —  we
get

(8) In—,u:,,lzih(Xi)‘FRln,
i=1
where
(9) hz)=— [ [I(y>2z)-Fy)J(F(y)dy
and

e e} Fy(x)

Rin== [{ [ Js)ds = J(F@)IFu) - F()] | do,

—oo  F(z)

with I(y > x) denoting the characteristic function of the set {y > x} (com-
pare [16], Ch. 8.2.4). So, for every ¢ > 0 and arbitrary ¢,, we get

P(ﬁI“;“ < x> > P({fih(}g) < x—cen>

i=1

— P<\/ﬁ |Rin| > cen> and

g

Next we show that there is a constant ¢y > 0 such that for ¢, =
n~12logn,

(11) p({f |Rin| > coan> =0(n~Y?.
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Let n1 > 0 be such that for some constant ¢; > 0 and for every 0 < 7
< m,

“a—n)

F~la+mn) - <
“Ho—n) <an.

12 F
(12) b+ -F

Next, take 1y such that 0 < 79 < min{a,1 —0b
sup,er |[Fn(z) — F(x)|. For every ¢ > 0,

cin and

(b—a),m}. Put M,, =

1
)2
(13) P(‘(/f |Rin| > c€n> < P(M,, > 1)

re(t < myn { im» ee)).

Applying (12) and the conditions on J (see (6) and (7)), it is easy to check
that under the assumption M,, < 1y, we have

n
‘{Rln S |\/ﬁD2Mn2‘ )

where Dy = (co + D1)/0, ¢2 = 4c1supgc <y |J(s)], and Dy = D[F~*(b) —
F~'(a)]. Thus using (13) and the Dvoretzky-Kiefer-Wolfowitz (D-K-W)
inequality we conclude that for every ¢ > 0,

1 1
P<\/ﬁ|R1n| > c Og") < P(M, >770)+P<\FD2M2 - L )
o NG

2cl
< Dy exp(—2nm2) + Dg exp ( €08 )

where Dy is the constant from the D-K-W inequality. Therefore (11) holds
with the constant ¢y = Dy /4.
Next we estimate

P<\/ﬁlzn:h(X)<xicohz§;>.

From (9) and (6) it is immediate that for every z € R,

F~1(b+no)

(14) z)| < frJ Wldy= [ |J(F(y))ldy
F~'(a)

< [F~Y(b+no) — F~Y(a)] sup 1J(s)] < oo.

Thus h(X1) is a bounded rv and in particular E|h(X1)|® < oco. Applying
Fubini’s Theorem to the right-hand side of (9) we have Eh(X7) = 0. Because
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Eh%*(X1) = 02 > 0 (see [16], Ch. 8.2.4) we can apply the classical Berry—
Esseen Theorem to get

1 n
P(ﬁ =3 h(Xs) < x> = &(x) +O(n~1/?),
uniformly in x € R. Because @(z) has a bounded derivative we have

P(*fiiz:h(xi) <zte 1‘3%”) :925(3:)+O<k\)§§> as m — o0o.

Together with (10) and (11), this completes the proof. m

3. Edgeworth expansions. In his 1980 work [11], Helmers gave Edge-
worth expansions for distributions of normalized L-statistics expressed by
(2) and (3), which produce the error of order o(n~!). He achieved his results
by analytic methods, under conditions including the existence of J"’(s) on
(0,1) and E|X;]* < .

In Theorem 3 below, we give the Edgeworth expansion for L-statistics
of the form (3) which, in the case when J'(s) satisfies the Lipschitz condi-
tion of order 1 on (0,1), produces an error of order O((log*n)/n). In the
proof we use probabilistic methods and apply an already known result for
U-statistics. In comparison with the work of Helmers [11] we weaken the
conditions concerning the smoothness of J(s) but we put some additional
requirements on the distribution of X;.

In the proof of Theorem 3 we need the following lemma.

LEMMA 1. Let 6 > 0. Suppose that Eexp(t|X1]|*) < oo for somet > 0
and o> 1/(246). If {en} is a sequence of positive numbers satisfying

en=0n"Y? and v, =201 50 asn— oo,

then there exists ¢ > 0 such that for sufficiently large n,
P(\/ﬁ [ |Fu(e) = F(2)] "2 dz > an> < exp(—cy/(5+2)y |

where, as usual, F(x) denotes the df of the rv X1 and F, (x) is the empirical
df based on X1,...,X,.

Proof. Let Uy,...,U, be independent uniform (0,1) rv’s. It is well
known that the joint distribution of Xi,..., X, is the same as that of
F~Y(U),...,F~Y(U,). Therefore we identify X; with F~1(U;),i =1,...,n.

Let I, (z) denote the empirical df based on a sample Uy, ..., U, and let
a,, denote the classical empirical process, i.e.

an(u) =vn[[(u) —u], ue(0,1).
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It is easy to check that I5,(F(z)) = F,,(z) for every x € R. Thus we obtain
J 1)~ )P+ ar = [ 1P~ P de
- o
= [ 1I(s) = s dF~(s).
0

Therefore

(15) P(\/ﬁ j? |Fy(z) — F(2)|° 2 dx > sn)
:P(\/ﬁ [ 1T(s) — s/ dF~(s) 25n>
0

e ()"
where
Ae) = { fl \x(s)|5+2dF_1(s)}1/ e
0
y(

5),

A(e) — AW)| < Ale —y) < A sup 2 Y&
0<s<1 |W(3)|

For any two measurable functions z(s) and

where
1 1
= log —— 1
o) = (lou ) o se0),
and
1/(64+2)

A= ( 6[1 |w(s)|5+2dp—l(s))

Applying the Markov inequality and the condition a(d 4+ 2) > 1, it is easy
to check that A < oo.

Hence the functional A satisfies the assumptions of Proposition 3.2
of [12]. So there exists a number a > 0 such that for every sequence of
positive numbers z,, satisfying

T, —0 and nz? —oo asn— 0o,

we get

(16) P(A(a) > zpv/n) = exp{

a

ani + o(nmi)} .
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Therefore, combining (15) and (16), we obtain

P(‘/ﬁ_j? |Fo () = F ()2 do > 5n> - P(A(an) > \/n <\6/%)1/(6+2)>

() ()
=expqy —zn|— +oln{—
2 n n
a
o {0 ot 00

Thus, for sufficiently large n and ¢ = a/4 we have
P(x/ﬁ f |Fy(x) — F(x)° T2 da > €n> < exp(—ey/ 0+ | o

Before we give Edgeworth expansions for L-statistics we introduce the
following notation. Let h(z), o and p be as in Section 1 (see (9), (4) and (5)).
Let

[eo]

Bla,y)=— [z <2)—F@)y<z) - F()J (F(2))dz,

ofw,y) = S[h(x) + h(y) + Bz,y)],
(A7) ., = BRC0) +3B{M(X)A(X2)B(X1, Xo)}

o3

Eao Xl,Xl
s = 4 PEL X))
n
K3

@ and ¢ denote, as usual, the df and the density of the standard normal
distribution.

We call X an eigenvalue of the function 3(z,y) with respect to the df F
if there exists a function ¥(x) (an eigenfunction) such that

(22 — 1)n~1/2.

[ Bl o(@) dF(2) = M0 (y).

THEOREM 3. Let I,, be a statistic given by (3). Suppose that J'(z) sat-
isfies the Lipschitz condition of order § > 0 with a constant D < oo, and

1
(18)  Eexp(t|X1]”) < oo for some t >0 and ~ > 512
(19)  limsup |EeX)| <1,

[t]|—o0



Asymptotic distributions 209

(20)  limsup|Ee!t*(XuX)| <1

[t|—o0
(21)  B(x,y) has at least 5 nonzero eigenvalues with respect to F.

Then, uniformly in x € R,

n(Il, — tn log(s/2+1 n

Proof. From the definition (3) of I,, we have I,, = T'(F},), where T'(H) =
fol J(s)H~'(s)ds, for any df H. To the expression I,, — pu = T(F,) — T(F)
we apply the following von Mises expansion obtained by Serfling (see [16],

Ch. 8.2.5):

1
In_/'L: ﬁ Z a(Xian)+R2n7

where s
o  Fn(z)
@) Ron=- [{ [ I ds = JFE@)IF) - F@)
—oo  F(z)
~3T (F(@))[Fu(x) — F@)} deo
Notice that
(24) % Y X, X)) = ”T_lyn n %Wn,

where U,, = (g)_l Di<icj<n @(Xi, X;) is a U-statistic with kernel a(z,y),
and -
1

(25) Wy =~ Z (X, X;).
1<i<n
Thus we have
n—1
In_ﬂn: n Un+Zn+R2nu

where
1
Ly = E(Wn — FEa(X1,X1)).

From (19) we conclude that 02 = Varh(X;) > 0, so for every &, > 0 we
obtain

-1
(26) P(‘/ﬁ (I, — ) < :c) < P(*/ﬁ z
o

g n

U, < x+2en>
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and
(27) P(‘f(fn—un)ga;)zP(‘/ﬁ”_lUngaz—an>

g n
- P(ﬁ |Zy + Ran| > 25n> .
g

It is evident that

P({L \Z + Rop| > 25n> < P({f 20| > £n> +P<‘f | Ron| > €n> .

We examine the expression P(@|R2n| > €n). Using the Lipschitz con-
dition for J’ we obtain

D oo
|Ron| < 5 [ [Fa(@) = F(a)"* da.

Applying Lemma 1 with

log5/2+1 n

(28) En =G G

where ¢; = %6(54-2)/27 we have

g

(29) P<\/ﬁ |Ron| > en> =0(n Y.

Next we consider the expression P(@\Zn\ > e,). We have

P({f | Z,| > 5n> < P(‘f (W, — BEa(X1, X)) > nsn>

+ P(ﬁﬁ (W, — Ea(X1, X1)) < —n5n> .

It is easily seen that

[ 11(X1 < 2) = F(a)| de < |X:1| + E|[X,].
Thus, using (18), we see that all the moments of the rv’s «(X;, X1) and
(X7, X5) are finite. Because a(X1, X;) also satisfies the standard condi-
tion (20) we can apply the Edgeworth expansion of order O(n~1) for the df
of the mean W,,. Thus, it is easy to check that for &,, given by (28) we have
P(\/ﬁ (W, — Ea(X1, X1)) > n€n> =0(n™Y,

(30) 7

g

P(ﬁ (W,, — Ba(X1,X1)) < —n5n> =01,
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Hence

(31) }><V%¢Zﬁ|>en>::cxn—w.

o
Next we consider the expression

P(\/ﬁn_lUngxi%n).

g n

From Fubini’s Theorem we have Ea(X;, X2) = 0 and E{a(X;,X2) | X5 =
z} = Lh(z). So the assumptions (19) and (21) allow us to apply Corol-
lary 1.1 of [1] (taking g(x) = h(z)/2, ¥(z,y) = B(z,y)/2, k =5 and r = 11).
As a result, after some simple calculations exploiting the uniform bounded-
ness of ¥, (x), we obtain

(M)P<V%"_1

g n

U,<z+ 26n> =9(x)+0(n" ) +0(,) asn— .

This result combined with (26)—(29) and (31) gives (22). =

Remark 1. The assumption of the existence of k eigenfunctions (in our
case k = 5) for the function 3(x,y) can be replaced by a condition easier to
verify: there exist points z1,...,x; in the support of the df of X; such that
the functions (-, z1),. .., B(-, zx) are linearly independent (see [1], p. 1478).

Let us consider the case when J'(s) vanishes outside [a,b], 0 < a < b < 1.
Then we show that (22) holds even if the assumption (18) is not satisfied.
To this end we prove the following lemma.

LEMMA 2. Suppose J(s) vanishes outside [a,b], 0 < a < b < 1. Let J'(s)
satisfy the Lipschitz condition of order § € (0,1] on [0,1]. Then there exists
¢ > 0 such that for d,, = cn=(t1/2]6g%/2+1

P(Vn|Ron| > dn) = O(n™1) .

Proof. In this proof we repeat some parts of the proof of Theorem 2.
Define M,, = sup,ep |Fn(z) — F(x)|. Fix a number 7 such that 0 < n <
min{a,1 — b}. Then

P(v/n|Roy| > dy) < P(M,, >n)+ P{M, <n}n{vn|Rap| > d,}).
It is easy to check that under the assumption M, < n we have |Ra,| <

Dy M2+2, where

Dy = [P (bn) ~ F M a— )] < o0

and D is the constant from the Lipschitz condition for J'(s).
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Finally, using the D-K-W inequality, we get for ¢ = (20/2+1 D)~
P(\/n|Ray| > dy) < P(M,, >n) + P(v/nDi M2 > d,,)

. d 2/(5+2)
< Doe 2™ 4+ Dgyexp ( — 2n<\/ﬁ%1> )

=0(n™1),
where Dy is the constant from the D-K-W inequality. =

THEOREM 4. Let J(s) and J'(s) satisfy the assumptions of Lemma 2. If
the assumptions (19)—(21) of Theorem 3 are satisfied then (22) holds.

Proof. Since J(s) is continuous and vanishes outside [a, b],

[h(x)] < S | T(s)I[F~(b) = F~*(a)] < o0

(compare (14)). Similarly we get

|6(z, 2)| < S [T/ ($)I[F~H(b) = F~'(a)] < o0

and
B(z,y)| < sup [J'(s)|[F~(b) — F~'(a)] < oo

0<s<1
So Ela(X1, X1)|* < co and E|B(X1, X2)|'' < co. Thus we can prove (31)
and (32) in the same way as in the proof of Theorem 3, without using the
condition (18). We also get (29) as a result of Lemma 2. So, repeating the
proof of (26) and (27), we get (22). m

4. The saddlepoint approximation. In a fundamental 1954 paper,
Daniels derived a very accurate approximation to the density of the mean
of a sample of independent, identically distributed observations using the
saddlepoint technique of asymptotic analysis (see [8]). The resulting ap-
proximation is in most cases more accurate (especially in the tails) than the
two-term Edgeworth series approximation.

The saddlepoint approximations have been found very useful in a variety
of problems in statistics. Reid in [15] gives the general review of their
applications and suggests using them for approximations of distributions of
L-statistics (p. 222). In this paper we investigate such approximations. At
first we present the saddlepoint approximations to the density and df of the
mean of a sample of independent rv’s.

Let Xq,...,X, be iid. rv’s. Denote the moment generating function
of the rv X1 by M(t) = Eexp(tX1) and its cumulant generating function
by K(t) = log M(t). Assume that M (t) and K(t) exist in an open neigh-
bourhood of the origin. Then the density of X, = %Z?Zl X; is expressed
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as the inversion integral of its moment generating function:

4100
(33) fe @) =5 [ esplnlK() —tal)dr,

where r € R is such that M(r) < co. The leading contribution to the value
of the integral (33) comes from a small region near the real saddlepoint
t = t(x) of the function K(t) — tz, i.e. the real number defined by

(34) K'(t)=z, 1€R,

and the saddlepoint approximation to the density of the mean X, is

(5 fx, @) =[5 el () ~ T+ O]

(see [8]). In the same paper Daniels showed that a unique real root of the
saddlepoint equation (34) exists under very broad conditions.

In 1980, Lugannani and Rice, applying the idea of Bleinstein (see [3]),
derived the approximation for the tail probability of X,, which proved to be
very accurate over the whole range of arguments for which the saddlepoints
exist (see [14]). Their result is

(36)  P(Xu>a)=1- () + ¢<a>{1 — g+ 0<n-3/2>},

z

z=1\/nK"({t), &=\/2n[te— K(t)]sgn(t).

At z = EX;, (36) reduces to

where

P(X, > EX)) =

D=
)

3

S

1
5
where A = K®3)(0)/[K"(0)]?/2.

The approximation (36) has been discussed by Daniels in [9]. Some
remarks on the uniformity of the error in (35) and (36) can be found in [13].
For many standard distributions of X;’s the error in (36) can be bounded

uniformly in some neighbourhood of z = 0 if the saddlepoints exist for all
x from some larger neighbourhood of 0. In that case from (36) we have

(37) P( Va%yn > :U> = P(X, > xy/n~!Var X;)
1

—1-0(6) +ol6){ - - -+ o),
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Zn, :tAn\/nK”(fn),

&n = \/271[%\”1‘ n=! Var X; — K ()] sgn(ty,) ,

where

and the saddlepoint 7,, is given by

K’(fn):m\/n—1VarX1, tn €R.

For L-statistics of the form (3) we have
1 n
Iy, —p=— h X n
p=- ; (X)) + R

(see (8)). In most cases we can apply (37) for the mean h,, = L 37" | h(X;).
Therefore we would like to know how accurate is the approximation of the
df of a normalized L-statistic by

(39) LR(z) = B(E,) - <z><sn>{jn - ;} ,
where &, and z, are given by (37) with K(t) = log Elexp(th(X1))]. To
answer this question we compare the Edgeworth series for the mean h,, and
for the L-statistic I,,.

The Edgeworth series for the statistics I, and E,, (see (3) and (2)) can
be found in [11]. They were obtained under assumptions on the smoothness
of J(s) (the existence of J"(s)) and on the existence of F|X;|*. Denote by

S, any of the statistics I, and F,,. We have

(39) P(ﬁ S”U_ £ < x) = &(z)—¢(x) [(w2—1)—a3] n~ 24071,

with o, u, k3 as in (4), (5) and (17). The parameter as for E,, is given by
1

a5 = 1[; Ofs(l )T (s) dF 1 (s) —Oj’ F_l(s)<; —s) 7 (s) ds]

g

and for I,, by

{1
[ 1 _ ! F*l
a5 = o Of s(1—s)J'(s)dF~"(s)
(see [11], p. 1363).
Since Eh(X;) = 0 and Varh(X;) = o, the Edgeworth series for the
mean h,, is

(40) P<\/j ER(X1)

= n~2 4+ 0m™1).
o

o< a:) — $(@) - o) (e — 1)
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Comparing (39) and (40) we obtain

(41) P<\/ﬁw < :c) = P<\f B < :c> +D(z)n 2+ 0(n™),

where
D) = o) G0 (07 1) .
o
Applying (37) for h,, we get

where LR(x) is given by (38). Thus from (41) and (42) we have

(43) P<\/ﬁ S"U_ P < x) = LR(z) + D(z)n "2+ O(n™").

In most cases D(x) # 0, so we conclude that the approximation of
P(y/n(S, — p) < ox) by LR(z) gives an error of order O(n~'/2). How-
ever, if the density function of X; is symmetric about FX; and J(s) is
symmetric about 1/2, then Eh3(X1) = 0, k3 = 0 and a3z = 0. Therefore in
that case D(x) = 0 and (43) reduces to

(44) P(\/ﬁ S"Of P < a:) = LR(x)+0(n™").

On the other hand, from (39) we get

P<\/ﬁ S"U_ P < x) = d(z) + O(nY).

Thus we have shown that in such a symmetric case the approximations of
P(\/n(S, — n) < oz) by the Edgeworth series and LR(x) are asymptot-
ically equivalent. We compare the behaviour of these approximations by
calculating some examples (see Section 5).

Easton and Ronchetti [10] have proposed another application of the sad-
dlepoint method for approximating the density functions of L-statistics. We
briefly recall their approach and also suggest an alternative way of using
the Lugannani—Rice formula to approximate the df of S,,. The Easton—
Ronchetti approach can be applied when the Edgeworth expansion up to
and including the term of order o(n~!) for the density f,(z) of the consid-
ered statistic S, is available, i.e.

(45) fa(@) = falz) +o(n™"),
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where
Fulz) = é(x) [1 + %( 3 _ 31) + %(:& — 622 +3)
/432
+ %(1’6 — 152" + 4522 — 15)

and k3, and k4, are known numbers. Their approach is as follows: let
K, (t) = log f e fo(z)dr and Ry(t) = K. (nt)/n.

By Fourier inversion,

_ n T+i00 "
fn(z) = I f exp[n(R,(t) — tx)]dt.

Applying the saddlepoint technique to this integral Easton and Ronchetti
have obtained

fa(@) = fulz) +O(n™"),

where

(46) fo(z) =, /m exp[n(Rn(t) - tx)],

and T is the saddlepoint of the function R, (t) — tz, ie. R, (f) =z, t € R.
They have also noticed that

o212 K3noon?t?  Kypoindtt

2 6 + 24 ’

where m,, is the mean and ai the variance of S,,, and that the replacement
in (47) of m,, and o, by

(47) R, (t) = mpt +n

a
s :ml"‘;l‘i‘o(nil)v

does not change the order of the approximation of f,,(x) by ﬁ(a:) Finally,
Easton and Ronchetti obtained the df of S,, by numerical integration of the
approximated density f,(z).

In this paper, by analogy with the above presented method of approxi-
mating a density function, we propose approximating the df of S, by utiliz-
ing the Lugannani-Rice formula (36) with K(t) = R,,(t). Thus to estimate
P(/n(S,, — ) < ox) we use the expression

(48) Qu() = B(En) — 0(60) (1 - ;) ,
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where

o~

2n = to\/nR! (L), &n = \/2n [%\nx\;ﬁ — Ry (t) + pt | sgn(ty),

and %, is given by
R (ty) —p= x% )
We verify the above mentioned approximations in the examples below.
Notice that while approximating the density of S,, and P (@(Sn — )
< m) by fn(x) and @, (x) respectively, we only use the information given by
the Edgeworth series (45), so we should not expect our results to be much
better than the Edgeworth expansion.

5. Examples

ExaMPLE 1. Consider the asymptotically first-order efficient L-estimator
A, for the centre € of the logistic distribution
1
- 1+exp(d —z)’
which is given by (2), with J(s) = 6s(1 — s), i.e.

1 1 1
A, =— 6 1- Xiin -
" n; n+1< n—i—l) w

Some approximations of the df of this estimator were investigated by Helmers
[11] and Easton and Ronchetti [10].

The results of the approximations of P(y/n(4, —u) < ox), obtained by
several different methods, for sample sizes n = 3,4, 10, 25, can be found in
Tables 1-4.

In column 2 of Tables 1-4 we denote by P,(x) the exact values of
P(y/n(A, — pn) < ox), taken from the work of Helmers [11]. They were
calculated by numerical integration for n = 3 and 4 and by Monte Carlo
simulation for n = 10 and 25.

Helmers [11] has given the Edgeworth expansion of order o(n~!) for the
df of the normalized A,, (see p. 1364)

P(ﬁ ol az) — Hy(2) +o(n™).

where = 0, 02 = 3 and

(19) H,(2) = B(x) — 6(z) [ H-n

1
20n

(23 — 3z) + x| .
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The values of H,(x) calculated by Helmers can be found in column 5 of
Tables 1-4. The values of @(x) are given in column 3 of these tables. It
follows from (49) that ®(z) approximates the df of A, with an error of
order O(n™1).

In column 4 the values of LR(x) given by (38) can be found.
For the function J(s) = 6s(1 — s),

WX = — [ [l > X0) — F@)lJ(F) dy = 6F(X,) — 3

— o0

is a uniform rv on [—3, 3]. For the uniform distribution the Lugannani-Rice
formula (36) gives a uniformly bounded error in some neighbourhood of its
mean. Therefore using (37) we have

P(ﬁhn < x) = LR(z) + O(n=3/?) asn — oco.
o

Because J is symmetric about 1/2 and the density of X; is symmetric
about 0, we conclude that (44) holds for A,,, so the approximation LR(x)
for the df of the normalized A, gives an error not larger than O(n™?!)
(it is easy to check that this error is not o(n~!)). Taking the Edgeworth
series (49), Easton and Ronchetti in [10] have approximated P(y/n(A4,, — u)
< ox) by numerical integration of fn(x) given by (46). In the considered
case

~ 1 1
(50) R, (t) = myt + §nait2 + 2—Oaﬁn3t4 ,

where m,, = 6 + O(n~2) and

11 — 72
Un:\/g‘i‘ i \/§+O(n2)
n n n

(see [10], equations (2.5), (4.2), (4.3) and the remark below equation (4.1)).

Their results, denoted by ER1(x), can be found in column 6 of Tables
1-4. Since usually fn(:c) does not integrate to 1, Easton and Ronchetti
have also calculated the values of ER1(x) rescaled in such a way that the
approximation obtained has got the features of df. These modified results,
denoted by ER2(x), are given in column 7 of Tables 1-4. In column 8 the
values of Q,, given by (48) (with R, (t) as in (50)) can be found.
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TABLE 1
Exact and approximate df of A,; n =3

1 2 3 4 5 6 7 8
x  Pp(z) P(z) LR(x) Hn(xr) FERl(z) ER2(z) Qn(z)
0.2  .5640 .5793 5754 .5536 .5735 5617 .5606
0.4 .6262 .6554 .6484  .6069 .6320 6217 .6196
0.6 .6850 .7257  .7167  .6592 .6874 6787 .6755
0.8 .7391 .7881 7786 .7099 7387 7314 7273
1.0 .7875 .8413  .8327  .7582 .7850 7790 7741
1.2 .8248 .8849  .8783 .8032 .8259 .8210 .8154
1.4 .8658 .9192 9152 .8439 .8610 .8572 .8512
1.6 .8958 .9452  .9439 .8796 .8908 .8877 .8816
1.8  .9202 9641  .9651 .9100 9154 .9130 .9070
2.0 .9397 9772 .9800 .9348 .9353 9335 .9278
2.2 9550 .9861  .9897 = .9543 .9513 .9499 .9446
24 9669 .9918  .9956 .9691 .9638 .9628 .9580
2.6 .9758  .9953 9987 .9798 9734 9727 9685
2.8 .9825 .9974 - .9873 .9807 .9802 .9766
3.0 .9875  .9987 - .9923 .9862 .9858 .9828
TABLE 2
Exact and approximate df of A,; n =4
1 2 3 4 5 6 7 8
z  Pp(x) @) LR(zx) Hp(x) FERl(z) ER2(z) Qn(z)
0.2 .5663 .5793  .5763 .5601 5750 .5650 .5642
0.4 .6307 .6554 .6501 .6190 .6366 .6281 .6266
0.6 .6919 .7257  .7190 .6758 .6949 .6877 .6856
0.8 .7469 .7881  .7811 7295 7484 7424 7397
1.0 .7963 .8413 .8350 7790 7962 7914 7882
1.2 .8391 .8849  .8801 .8236 .8379 .8341 .8305
1.4 .8752 9192  .9163 .8627 .8732 .8703 .8665
1.6 .9049  .9452 .9442 .8960 .9026 .9003 .8966
1.8  .9287 9641 9647 .9235 .9264 .9247 9211
2.0 .9474 9772 .9790 .9454 .9453 .9440 .9407
2.2 9618 .9861  .9885 .9622 .9600 .9591 .9561
24 9726 9918  .9942 .9748 9712 .9705 9679
2.6 .9807 .9953  .9975 .9837 .9796 9791 .9769
2.8 9865 .9974  .9991 .9898 .9857 .9854 .9836
3.0 .9907 .9987  .9998 .9939 .9902 .9899 .9885
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TABLE 3
Exact and approximate df of An; n =10

1 2 3 4 5 6 7 8
x  Pp(z) P(z) LR(x) Hn(xr) FERl(z) ER2(z) Qn(z)
0.2 5734 5793 5781 5716 5776 5725 5723
0.4 .6445 .6554  .6533 .6409 .6468 .6426 .6423
0.6 .7089 .7257 @ .7231 .7058 7115 .7080 .7075
0.8 .7680 .7881 .7854 7647 7698 7670 .7665
1.0 .8196 .8413  .8389 .8164 .8208 .8186 .8180
1.2 8629 .8849  .8831 .8604 .8638 .8622 .8615
1.4 8985 9192 9181 .8966 .8990 .8978 .8971
1.6 9275 9452 9448 .9255 .9269 .9260 .9254
1.8 .9486 .9641  .9643 .9478 9483 9477 .9472
2.0 9646 9772  .9790 .9645 .9644 9639 .9635
2.2 9764 .9861  .9869 .9766 9760 9757 9753
24 9845 9918  .9926 .9850 9842 .9840 9837
26  .9905 9953  .9961 .9907 .9898 9897 .9895
2.8 .9937  .9974  .9980 .9944 .9936 9935 .9934
3.0 .9959  .9987  .9991 .9967 9961 .9960 .9959
TABLE 4

Exact and approximate df of An; n =25

1 2 3 4 5 6 7 8

z  Pp(x) @) LR(zx) Hp(x) FERl(z) ER2(z) Qn(z)

0.2 .5785 .5793  .5788 .5762 5787 5763 .5763

0.4 .6492 .6554  .6546 .6496 .6518 .6499 .6498
0.6 .7152  .7257  .7247 7178 7196 7181 .7181
0.8 7728 .7881  .7870 1787 7803 7791 7791
1.0 .8295 .8413  .8404 .8314 .8326 8317 .8316
1.2 8756 .8849  .8842 .8751 .8761 8754 .8753
1.4 9100 9192  .9188 .9102 9108 9103 .9103
1.6 9376  .9452  .9450 9373 9377 9373 9373
1.8 9580 .9641  .9641 .9576 9577 9575 .9574
2.0 9732 9772 9775 9721 9722 9720 .9720
2.2 9830 .9861  .9864 9823 9822 9821 9821
2.4 9895 .9918  .9921 9891 .9890 .9889 .9889
2.6 .9942 9953  .9956 .9935 9933 9933 .9933
2.8 .9963 9974 9977 .9962 9961 9961 19961

3.0 .9982 .9987  .9988 .9979 9978 9978 .9978
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Comparing the asymptotically equivalent approximations @(x) and
LR(z), which are shown in columns 3 and 4, we notice that for larger sam-
ple sizes (n = 10, 20) they give very similar results over the whole range
of z. For very small sample sizes (n = 3, 4) and = < 1.6, the approximation
LR(z) is alittle better but for z > 2.2 it becomes much worse than ¢(x). We
could expect this to happen because near the ends of the support ([—3, 3])
of the density of the mean h,, its df cannot be an accurate approximation
for the df of the normalized A,,, whose support is the whole real line. For
larger sample sizes this phenomenon is not so significant.

The approximations from columns 5-8 (H,(z), ER1(z), ER2(x) and
Qn(x)) are much more accurate than LR(x) and ¢(z). For larger n their
results are very similar to each other, and the differences are within the
bounds of the error of the Monte Carlo method. Also for very small n and
x > 1.8, the values in columns 5-8 are comparable.

For very small n and « < 1.8, the results of the approximation by the
Edgeworth series H,, () are worse than those of @, (z), ER1(z) and ER2(x),
which are still similar to each other. We should remark that to compute
Qn(x) we do not need to integrate numerically, unlike in the cases of ER1(z)
and ER2(x), so Q,(x) is easier to calculate.

ExXAaMPLE 2. We consider the estimator x,, for the centre 6 of the logistic
distribution, given by (3) with J(s) = 6s(1 — s).
In this case the Edgeworth series obtained by Helmers [11] is of the form

P(\/ﬁX”U_“ < x) — Ho(@) +on™),

where 1 =0, 02 = 3 and

(51) H,(z) = &(z) — o(x) [(zS 32) 4

So, similarly to Example 1, we have

P(x/ﬁx’;“ < :):) = &(z) + O(nY).

Furthermore,
P<\/H>TL < x> = LR(z) + O(n™Y),

where LR(x) is as in (38) with h(x) = 6F (x) — 3.

Tables 5-8 are similar to Tables 1-4. In column 2 the exact values of
P (\/ﬁ% < m) are given. For n = 3 and 4 they were calculated by nu-
merical integration of the joint density of the random vector Xq.,,,..., Xp.p.
For n = 10 and 25 we have applied the Monte Carlo method.
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In columns 3 and 4 of Tables 5-8 the values of &(z) and LR(x), re-
spectively, are given, which are the same as in Tables 1-4. In column 5,
the values of the Edgeworth series H,,(z) given by (51) can be found. In
column 6 the values of Q,,(x) calculated from (48) are shown, with

~ 1 1
Rdw:mﬂ+§mﬁﬂ+ﬁw%%{

n

where m,, = 0 + O(n™') and

3 10—x% /3
%:w7+——1ﬂ7+0mﬁy
n n n

Comparing different approximations of P(\/ﬁ o < a:) we notice that
they are all very accurate, even for small n. This happens because the
statistics given by (3) are more regular than those given by (2).

Summary of the examples. The analysis of our examples shows that
approximations based on the saddlepoint method (LR(x), ER1(x), ER2(x),
Qn(x)) can be applied for small z and n. For larger n (n > 10), &(z) gives
an approximation comparable with LR(x), and the Edgeworth series H,,(x)
comparable with FR1(z), ER2(x) and @, (x). In that case serious numerical
difficulties resulting from the saddlepoint method disqualify it.

TABLE 5

Exact and approximate df of xn; n =3

1 2 3 4 5 6
z  Pn(z) @(x) LR(x) Hp(x) Qn(z)

0.2 .5801 .5793  .5754 5797 5797
0.4 .6568 .6554  .6484 .6560 .6557
0.6 .7270 .7257  .7167 7259 7252
0.8 .7885 .7881  .7786 7872 7861
1.0 .8404 .8413  .8327 .8389 8374
1.2 .8825 .8849  .8783 .8809 8793
1.4 9154 9192 9152 9138 9127
1.6 .9404 9452  .9439 .9388 9376
1.8 .9588  .9641  .9651 9573 9567
2.0 9721 9772 .9800 9706 9702
2.2 9813 .9861  .9897 .9803 .9800
2.4 9877  .9918  .9956 9870 9868
2.6 .9920 .9953  .9987 9916 9914
2.8 .9948 .9974 — .9947 .9945
3.0  .9967  .9987 — .9967 .9966
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TABLE 6

Exact and approximate df of xn; n =4

1 2 3 4 5 6
x  Pn(z) @(x) LR(z) Hn(z) Qn(z)
0.2 .5798 .5793  .5763 .5796 .5796
0.4 .6563 .6554  .6501 .6558 .6557
0.6 .7264 .7257  .7190 7258 7255
0.8 .7882 .7881  .7811 7874 .7868
1.0 .8403 .8413  .8350 .8395 .8386
1.2 .8828 .8849  .8801 .8819 .8809
1.4 9161 .9192 .9163 9151 9142
1.6 9413  .9452  .9442 .9404 .9396
1.8  .9599 9641  .9647 .9590 .9584
2.0 9731 .9772  .9790 .9724 .9720
2.2 9824 9861  .9885 .9818 .9815
2.4 9886 .9918  .9942 .9882 .9881
2.6 .9928 .9953  .9975 .9925 .9924
2.8  .9955 .9974  .9991 .9954 .9953
3.0 .9972 .9987 = .9998 .9972 9971
TABLE 7
Exact and approximate df of xn; n =10
1 2 3 4 5 6
T Pn(z) &(x) LR(z) Hn(z) Qn(x)
0.2 .5818 .5793  .5781 5794 5794
0.4 .6569 .6554  .6533 .6556 .6556
0.6 .7256 .7257  .7231 7258 7257
0.8 .7893 .7881  .7854 7879 1877
1.0 .8412 .8413  .8389 .8406 .8404
1.2 .8841 .8849  .8831 .8837 .8835
1.4 9172 9192 9181 .9176 9174
1.6 .9427  .9452  .9448 .9433 .9431
1.8  .9622 9641  .9643 .9620 .9619
2.0 9763 .9772 9790 .9753 9752
2.2 9856 .9861  .9869 .9844 .9843
2.4 9904 .9918  .9926 .9904 .9903
2.6 .9941 .9953  .9961 .9942 .9942
2.8  .9961 .9974  .9980 .9966 .9966
3.0 .9976 .9987  .9991 .9981 .9981
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TABLE 8
Exact and approximate df of xn; n = 25

1 2 3 4 5 6
v Pua) @) LR() Ha(z) Qu(a)

0.2 .5782 .5793  .5788 5793 5793
0.4 .6552 .6554  .6546 .6555 .6555
0.6 .7240 .7257  .7247 7258 7257
0.8 .7875 .7881  .7870 .7880 .7880
1.0 .8412 8413  .8404 .8411 .8410
1.2 .8827 .8849  .8842 .8844 .8844
1.4 9164 9192 9188 .9186 9185
1.6 .9433 9452  .9450 .9444 .9444
1.8 .9614 .9641  .9641 9633 9632
2.0 9758 9772 9775 9765 9764
2.2 9850 .9861 = .9864 .9854 9854
2.4 9910 .9918  .9921 9912 9912
2.6 9946 .9953  .9956 .9949 .9949
2.8  .9974 9974 9977 9971 9971
3.0 .9982  .9987  .9988 .9984 .9984
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