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ON FOURIER COEFFICIENT ESTIMATORS CONSISTENT
IN THE MEAN-SQUARE SENSE

Abstract. The properties of two recursive estimators of the Fourier co-
efficients of a regression function f € L?[a,b] with respect to a complete
orthonormal system of bounded functions (eg), k = 1,2,..., are considered
in the case of the observation model y; = f(x;) +n;, i = 1,...,n, where
7; are independent random variables with zero mean and finite variance,
z; € [a,b) C R, i = 1,...,n, form a random sample from a distribution
with density o = 1/(b — a) (uniform distribution) and are independent of
the errors n;, ¢ = 1,...,n. Unbiasedness and mean-square consistency of
the examined estimators are proved and their mean-square errors are com-
pared.

1. Introduction. Let y;, i = 1,...,n, be observations at points x; €
[a,b] C R, according to the model y; = f(z;) + n;, where f : [a,b] — R?
is an unknown square integrable function (f € L?[a,b]) and n;,i = 1,...,n,
are independent identically distributed random variables with zero mean
and finite variance 0727 > 0. Let furthermore the points z;,¢ = 1,...,n, form
a random sample from a distribution with density o = 1/(b — @) (uniform
distribution), independent of the observation errors 7;, i = 1,...,n.

We assume that the functions (e;),k = 1,2,..., constitute a complete

orthonormal system in L?[a, b], and that they are bounded and normalized
so that

1
b—a

b
fei(a:)dle, E=1,2,...
Then f has the representation
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b

ff(ﬂ?)ek(a:)dx, E=1,2,...

a

1

—a

oo
f= g CLEL , where ¢, = 5
k=1

The first estimator of the Fourier coefficients we shall deal with is well-
known and has a simple form

1n
1.1 = =S yen(z), k=12,
(1.1) Ch n;yek(x)

so that we easily obtain the following formulae:

Eck = EIEan; = Ck,

(1.2) 1 b 1
E@ —cp)? = ——— x)ep(x) — ) ’de + —o2 .
(Ck — cx) n(b_a)af(f()k() k)dr + oy
The estimators ¢, k = 1,2,..., are thus unbiased and consistent in the
mean-square sense. If we estimate the Fourier coefficients c¢q,...,cn, the

number N being fixed, we can write formula (1.1) in the vector form

where ¢(n, N) = (¢1,...,¢cn)T, eN(z) = (e1(x),...,en(z))T, which can be
rewritten in the recursive form

n—1_

S, N) = "L -1 Ny 4+ %yneN(:rn) CHO,N)Y = (0,...,0)T

n
In view of (1.2) we also have
E¢(n,N) = (ci,...,en)T =V,

(1.3)
E[[e(n, N) — M|?

1 1 b )
- n(b— a f P @)eN (@) dz — !cN\2> + gNO'?].

The second estimator of the Fourier coefficients is constructed similarly
to the estimators occurring in stochastic approximation methods [1], [2];
namely, it is defined by the recursive formula

(1.4) ¢(n,N)=¢(n—1,N) + %5neN($n),

where 6, = y, — (¢(n — 1, N),eN(z,)), €0, N) = (0,...,0)T.
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In the sequel we shall use the notation A, = ¢(n, N) — V¥, Ag = —cV.

By (1.4) we can write
A, =2¢(n,N)—cN

=¢(n—1,N)—c" + %(f(xn) + 1 — (€(n =1, N), e (@n)))e" (zn)

and, since f(z) = Zivzl crer(r) + ry(x), where ry = Y777 1 creg, we
obtain

(15) A, =A4,41— %(An_l, eN(z,))eN (x,) + %(nn + 7y (zn))eN (x,) .

2. Unbiasedness and mean-square consistency of the estima-
tors. We have already remarked that the estimator ¢(n,N) is unbiased
and consistent in the mean-square sense (see formulae (1.3)). Now we will
prove the same for ¢(n, V). First we prove by induction that EA, = 0 for
n=1,2,... By (1.5) for n = 1, we have

EA, =E,E,Ay = Ay — E e (xz)eN (x)T A + Epry(z1)eN (1)
=Ay—I14)=0,
since Eyny = 0, Eze™ (z1)eN (z1)T =TI and E,ry(z1)e™ (z1) = 0.
Assume now that EA,,_; = 0. Then, by (1.5),

1
EA,=EA,_| — ﬁEeN(xn)eN(acn)TAn_l ,

since E,n, = 0 and E,ry(x,)eN (z,) = 0. Since A,,_1 does not depend on
Z, we finally obtain

EA, =EA,_, — lEgceN(q:n)eN(;cn)TEAn,l = (1 - 1>EAn1 =0.
n n

The unbiasedness of ¢(n, N) is thus proved. To prove the mean-square
consistency of this estimator we need the following two lemmas.

LEMMA 2.1. The random variables A,, n = 1,2, ..., satisfy the recursive
nequality
2 2 Lo 2
(2.1) Elanl? < (1= 2+ 5 N2My ) Bl A,

1
+ = (pNMN + N03]> ,
n
where py = ZZOZNH Ci, My = SUPg<z<b ‘|€N(x)||2-

Proof. Taking into account (1.5) and remembering that E|A,|? can
be computed here as Eqy . w0 1misn 1 B, En, | Anl]?, we can write



278 W. Popinski

1
EHA,LH2 =E,E,||Ap-—1— geN(xn)eN(mn)TAn_l

2

+ 2 ran) + m)e™ (o)

2

_ EH (1 - TlleN(a:n)eN(wn)T> Ani+ %TN(%)@N(%)

1
+ Bl @)

Since A,,_; does not depend on z,, and EA,_; = 0 we obtain
2

1
E|A,|? = EH (I - neN(xn)eN(xn)T) Ap_q

1 1
+ 5 Bellra(@n)e™ @n)|* + —sopEalle™ (@)

Furthermore, E,|e" (x,)|? = E, 25:1 e3(xn) = N, since E €2 (z,) =1 for
k=1,2,..., and finally,

Bl A2 = EH (1 - :LeN(xn)eN(xn)T> Ay

2

1 1
+ ﬁEerN(a:n)eN(xn)Hz + ﬁNUg )

For the first term on the right hand side we obtain

EH(I ieN(xn)eN(a:n)T>An_1 :
~ Ftr [<1— ;eN(:En)eN(a:n)T> w1 AT (1— 1w N(a:n)T>]

:Etr[<l—ieN(xn)eN(xn)> AT }

= tr [Em (I— %eN(ﬂfn)eN( n) ) EAn—lﬂnl]

_ KI—H — Fe (xn)HeN(xn)HZeN(xn)T)EAn_lﬂi_l]

:< Q)tI‘EAn 1A

+ 5 tr[Eu e (@) [P (@n)e™ (@) BAn 1 Ay ]

(1 )E\\An P+ (B ()26 (an)e™ ()T By 1 AT).
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Observe that
B, [|eN (@n)|Pei(zn)e;j ()]

< sup ||V (2)|*Exlei(zn)e;(2y)]

< sup (¥ @IP(Eac(mn) 2 (Eac (@) = My
for i,5 = 1,...,N. On the other hand, for A,,_1 = (An—11,4p-1,2,...
A,—1 n)T, we also have
‘E(An—l,iAn—l,j” S E||An—1||2 for ’L,] = 1, N ,N.

These estimates yield

2 1
Bl AnalP < (1= 2) BlAwall + 5 N*ME) A,

1 1
+ —2Emfr?\[(acn)HeN(mn)H2 + 7NJ727 ,
n n
and since

Eyry(n)lle™ (zn)]|* < sup, le™ (@) 1> Eary (n)

oo
= My Z ¢k = Mypw
k=N+1
we finally obtain the estimate

2 1 1 1
EHAnH2 < <1 o + TL2N2MN)EHAHIH2 + ﬁpNMN + ﬁNUTZI . m

LEMMA 2.2. If nonnegative real numbers vy, n = 0,1,2,..., satisfy the
recursive inequality

2 d b

vn§(1—+2>vn_1+2, b>0,d>1, n=12,...,
n o n n

then

-1
Uy < an (vo +b+bIn(n — 1)) exp(n?(d — 1)/6) + %, n=12...

Proof. From the assumptions it follows immediately that

<(i-24 9412 4 ¢ -2 4
Un = n - n? n—1 (n—1)2) " 1 12)"
2 d 2 d 2 d\ 1
-+ 2 (1= U (I et
+b< n+n2>< n—1+(n—1)2> ( 2+22>12

2 d 1 1
oo+ l——+ = | ——= +b—.
L ( n+n2)(n—1)2+ n?
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Taking into account the identity

2 22 —1)%+d—
L2, d K -2%+d _(h-1P+d-1

ko k2 k2 k2
we obtain
(n—124+d-1 (n—-2?+d-1 (1-12+d-1
Un, S 5 . 3 e 5 Vo
n (n—1) 1
+b(n—1)2+d—1 (n=2°4+d-1 (2-10*+d-1 1
n?2 (n—12 7 22 12
(n—1)2+d-1 1 1
.+b : b—
T n? (n—1)2+ n?’

or equivalently,

ungnlz<1+H>(1+ﬁ)...<l+d;1>(d—1)vo
(i) 0 pae) - (05

1 d—1 1
ot 14+ — b—.
T n< +<n—1>2>+ n?

Since exp(z) > 1+ x for = > 0, we have

n—1
1 1
Un < —5(d = 1)voexp ((d— D) k2>
1

k=1

i) oo (@Dt ) +1).

Since Y 72, 1/k? is known to be equal to 72/6, and clearly
exp(x) <14+ Mz, M =exp(r?(d—1)/6), forz € [0,7%(d—1)/6],

n—1

- leb[exp ((d— ny

k=1

we have

1
Uy, < ﬁ(d — DovgM

n—1 n—1

1 1 1
—bll d—1)M — +1 d—1)M —
‘o [ DM L DM Y

1
+...+1+(d—1)M(n_1)2+1]



Fourier coefficient estimators 281

Summing the terms in square brackets we get

v, < (‘1;1)]\/](@0%[("__11)2 + (:__22)2 ++112]> +%

Since In(1 + z) > x/(1 + x) for = > 0, putting x = 1/k we obtain

k+1 1
1 > f =1,2....
n( i >_k:+1 or k ,2, ,

and consequently
E S
k=1

which completes the proof. m

n—2 n—2

> In <k:1) =14 (n(k+1)—In(k)) =1+In(n—1),
k=1

k=1

Inequality (2.1) assures that the sequence v,, = E||A,||*>, n =0,1,2,...,
satisfies the assumptions of Lemma 2.2 (sup,<,<; [le™ (z)[|? > 1 for N > 1
since E|eMN(x)||> = N) so that we have the estimate

1
E|A,|? < E(NQMN — 1) exp(m*(N*My —1)/6)
x [E[|Ao* + (pv My + Nop)(1 +In(n — 1))]
1
+ ﬁ(pNMN + NU%)
and putting C' = exp(—72/6) we can write
o _ 1 2 2 772
(2.2) E| A7 < ECN My exp(m*N*Mp /6)
< [l + (pn My + Nog)(1 + Inn)]
1
+ —(pyMy + No?).
n

This implies that, for fixed N, the estimator ¢(n,N) is consistent in the
mean-square sense.

Now we shall compare the mean-square errors of ¢(n, N) and ¢(n, N) in
the case when f € L?(0,27). The system

e1(z) =1, egm(z)=+V2sin(mz),
eam1(z) = V2cos(mzx), m=1,2,...,

is a complete orthogonal system in L?(0,27) and (27)~! fo% e(z)dr = 1,
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k=1,2,... For this system we also have
2m—+1
le¥@)|?= )" ef(@)=2m+1=N for N=2m+1, m=>0
k=1

so that the estimates for the mean-square errors considered (see (1.3) and
(2.2)) take the form

~ 1 1

BJ[e(n, N) = VP = S N(py +02) + (¥ = 1),
(2.3)

Elle(n, N) - V2

1
< ECN3 exp(m?N®/6)[||c™[|* + N(p + o3) (1 + Inn)]

1

where N = 2m + 1, m > 0 and C = exp(—m2/6).
From (2.3) we see that for N > 1 and ||V ||? > 0 we have

(2.4) Eljé(n, N) = cM||* < Eljé(n, N) - V|?

for sufficiently large n, so that ¢(n, N), although more complicated in form,
has a smaller mean-square error for large values of n than ¢(n, N).

3. Conclusions. We now assume that f € L?(0,2n). Having deter-
mined the estimators ¢ = (¢;,...,¢x)T of Fourier coefficients we can form
an estimator of the regression function f, called a projection type estimator
3]:

N
(3.1) Tv@) = aen(@) = @&, N (@),
k=1

N =2m+1, m > 0, eN(z) = (1,v2sin(z), vV2cos(x),...,v2sin(mz),
V2 cos(ma))T.

In case ¢V = ¢(n, N) this estimator is also a kernel type estimator [3],
since then formula (3.1) takes the form

1 n N
fn(z) =~ Zyi er(zi)er () .
=1 k=1
For such an estimator the following formula for the integrated mean-square

error is valid:

27 e}

0 k=N+1

= EHEN — CNH2 + PN -
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In view of the inequality
N 0o 1
NP =D < e = 5 11
k=1 k=1

and (2.3) we can obtain the following estimates for the mean-square errors:

N 1 1N
E|é(n,N) — V|| < =N(pn + 07) + *;Hfll?

(3.3) " nen
E|c(n,N) —cN|J?

1 3 2 773 L2 2
SECN exp(m“N”/6) %HfH + N(py +0,)(1+1nn)

1

where N = 2m + 1, m > 0 and C = exp(—72/6).
Formula (3.2) and the estimates in (3.3) imply that if we put N(n) =
o2m(n) + 1, eV =2(n,N(n)) and if
lim N(n)=o0, limsupN(n)/(Inn)*/? < (12/7%)Y/3,
n—oo n—oo
then lim, . E||f — fn@m)ll? = 0. The same is true if we put N —
¢(n, N(n)) with lim,,_.. N(n) = oo and lim,,_.., N(n)/n = 0.
In this way we have obtained sufficient conditions for convergence to zero
of the integrated mean-square error of the estimator fy.
If the estimator " is unbiased then

E(f(x) = fn(2))? = B(cV =V, eN(x))®
+ 2rn(z)E(cN — &N, eN(2)) + Erd (z)
=E(N =2V, eN ()2 4+ 13 (2),

where 7y =Y 1o v 41 Ckek. From the Cauchy-Schwarz inequality it follows
that

E(f(z) = fn(2)* < Blle™ — NPl (2) ]| + r} (z)
and since ||V (2)||?> = N for N = 2m + 1, m > 0, we finally have
(3-4) E(f(z) - fn(2))* < NE|[e" — c|* + ] ().
If the Fourier series of f converges at a point = € [0,27] to f(x) then, of

course, limy, oo "N (n)(z) = 0 if lim, .o N(n) = co. The estimates in (3.3)
and (3.4) imply that if we put N(n) = 2m(n) +1, eV ™ = &(n, N(n)) and if

lim N(n) =00, limsupN(n)/(Inn)'/3 < (12/7%)'/3,

n—oo n—oo

then lim, .o E(f(2) — fn(n)(2))? = 0. The same is true if we put ") =
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¢(n,N(n)) and
lim N(n) = oo, lim N(n)*/n=0.
n—oo n—oo
Sufficient conditions for the point convergence of the Fourier series are
described in [4], [5] and together with the conditions for the sequence N (n)
given above they are sufficient for the point convergence in the mean-square
sense of the regression function estimator f .
The theory presented above can be extended to the case of functions
f € L*(A, j1) defined on subsets A C R™,m > 1, satisfying the conditions
0 < u(A) < oo, and inequality (2.4) is then also true for certain orthogonal
systems of functions (for example, spherical harmonics), if n is large enough.
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