W. POPIŃSKI (Warszawa)

ON FOURIER COEFFICIENT ESTIMATORS CONSISTENT IN THE MEAN-SQUARE SENSE

Abstract. The properties of two recursive estimators of the Fourier coefficients of a regression function $f \in L^2[a,b]$ with respect to a complete orthonormal system of bounded functions (e_k) , $k=1,2,\ldots$, are considered in the case of the observation model $y_i=f(x_i)+\eta_i, \ i=1,\ldots,n$, where η_i are independent random variables with zero mean and finite variance, $x_i \in [a,b] \subset \mathbb{R}^1, \ i=1,\ldots,n$, form a random sample from a distribution with density $\varrho=1/(b-a)$ (uniform distribution) and are independent of the errors $\eta_i, \ i=1,\ldots,n$. Unbiasedness and mean-square consistency of the examined estimators are proved and their mean-square errors are compared.

1. Introduction. Let y_i , i = 1, ..., n, be observations at points $x_i \in [a, b] \subset \mathbb{R}^1$, according to the model $y_i = f(x_i) + \eta_i$, where $f : [a, b] \to \mathbb{R}^1$ is an unknown square integrable function $(f \in L^2[a, b])$ and $\eta_i, i = 1, ..., n$, are independent identically distributed random variables with zero mean and finite variance $\sigma_{\eta}^2 > 0$. Let furthermore the points $x_i, i = 1, ..., n$, form a random sample from a distribution with density $\varrho = 1/(b-a)$ (uniform distribution), independent of the observation errors η_i , i = 1, ..., n.

We assume that the functions $(e_k), k = 1, 2, \ldots$, constitute a complete orthonormal system in $L^2[a, b]$, and that they are bounded and normalized so that

$$\frac{1}{b-a} \int_{a}^{b} e_k^2(x) dx = 1, \quad k = 1, 2, \dots$$

Then f has the representation

 $^{1991\} Mathematics\ Subject\ Classification:\ 62F12,\ 62G07.$

 $[\]it Key\ words\ and\ phrases$: Fourier coefficients, consistent estimator, unbiasedness, mean-square error.

$$f = \sum_{k=1}^{\infty} c_k e_k$$
, where $c_k = \frac{1}{b-a} \int_a^b f(x) e_k(x) dx$, $k = 1, 2, ...$

The first estimator of the Fourier coefficients we shall deal with is well-known and has a simple form

(1.1)
$$\widetilde{c}_k = \frac{1}{n} \sum_{i=1}^n y_i e_k(x_i), \quad k = 1, 2, \dots,$$

so that we easily obtain the following formulae:

$$E\widetilde{c}_k = E_x E_n c_k = c_k$$

(1.2)
$$E(\widetilde{c}_k - c_k)^2 = \frac{1}{n(b-a)} \int_a^b (f(x)e_k(x) - c_k)^2 dx + \frac{1}{n}\sigma_\eta^2.$$

The estimators \tilde{c}_k , $k=1,2,\ldots$, are thus unbiased and consistent in the mean-square sense. If we estimate the Fourier coefficients c_1,\ldots,c_N , the number N being fixed, we can write formula (1.1) in the vector form

$$\widetilde{c}(n,N) = \frac{1}{n} \sum_{i=1}^{n} y_i e^N(x_i),$$

where $\widetilde{c}(n,N) = (\widetilde{c}_1,\ldots,\widetilde{c}_N)^T$, $e^N(x) = (e_1(x),\ldots,e_N(x))^T$, which can be rewritten in the recursive form

$$\widetilde{c}(n,N) = \frac{n-1}{n}\widetilde{c}(n-1,N) + \frac{1}{n}y_n e^N(x_n), \quad \widetilde{c}(0,N) = (0,\ldots,0)^T.$$

In view of (1.2) we also have

(1.3)
$$E\widetilde{c}(n,N) = (c_1, \dots, c_N)^T = c^N,$$

$$E\|\widetilde{c}(n,N) - c^N\|^2$$

$$= \frac{1}{n} \left(\frac{1}{b-a} \int_{a}^{b} f^2(x) \|e^N(x)\|^2 dx - \|c^N\|^2 \right) + \frac{1}{n} N \sigma_{\eta}^2.$$

The second estimator of the Fourier coefficients is constructed similarly to the estimators occurring in stochastic approximation methods [1], [2]; namely, it is defined by the recursive formula

(1.4)
$$\widehat{c}(n,N) = \widehat{c}(n-1,N) + \frac{1}{n}\delta_n e^N(x_n),$$

where
$$\delta_n = y_n - \langle \hat{c}(n-1, N), e^N(x_n) \rangle, \ \hat{c}(0, N) = (0, \dots, 0)^T$$
.

In the sequel we shall use the notation $\Delta_n = \widehat{c}(n, N) - c^N$, $\Delta_0 = -c^N$. By (1.4) we can write

$$\Delta_n = \widehat{c}(n, N) - c^N$$

$$= \widehat{c}(n - 1, N) - c^N + \frac{1}{n} (f(x_n) + \eta_n - \langle \widehat{c}(n - 1, N), e^N(x_n) \rangle) e^N(x_n)$$

and, since $f(x) = \sum_{k=1}^{N} c_k e_k(x) + r_N(x)$, where $r_N = \sum_{k=N+1}^{\infty} c_k e_k$, we obtain

(1.5)
$$\Delta_n = \Delta_{n-1} - \frac{1}{n} \langle \Delta_{n-1}, e^N(x_n) \rangle e^N(x_n) + \frac{1}{n} (\eta_n + r_N(x_n)) e^N(x_n).$$

2. Unbiasedness and mean-square consistency of the estimators. We have already remarked that the estimator $\widetilde{c}(n,N)$ is unbiased and consistent in the mean-square sense (see formulae (1.3)). Now we will prove the same for $\widehat{c}(n,N)$. First we prove by induction that $E\Delta_n=0$ for $n=1,2,\ldots$ By (1.5) for n=1, we have

$$E\Delta_1 = E_x E_\eta \Delta_1 = \Delta_0 - E_x e^N(x_1) e^N(x_1)^T \Delta_0 + E_x r_N(x_1) e^N(x_1)$$

= $\Delta_0 - I\Delta_0 = 0$,

since $E_{\eta}\eta_{1} = 0$, $E_{x}e^{N}(x_{1})e^{N}(x_{1})^{T} = I$ and $E_{x}r_{N}(x_{1})e^{N}(x_{1}) = 0$. Assume now that $E\Delta_{n-1} = 0$. Then, by (1.5),

$$E\Delta_n = E\Delta_{n-1} - \frac{1}{n}Ee^N(x_n)e^N(x_n)^T\Delta_{n-1},$$

since $E_{\eta}\eta_n = 0$ and $E_x r_N(x_n) e^N(x_n) = 0$. Since Δ_{n-1} does not depend on x_n we finally obtain

$$E\Delta_n = E\Delta_{n-1} - \frac{1}{n}E_x e^N(x_n)e^N(x_n)^T E\Delta_{n-1} = \left(1 - \frac{1}{n}\right)E\Delta_{n-1} = 0.$$

The unbiasedness of $\widehat{c}(n,N)$ is thus proved. To prove the mean-square consistency of this estimator we need the following two lemmas.

LEMMA 2.1. The random variables Δ_n , n = 1, 2, ..., satisfy the recursive inequality

(2.1)
$$E\|\Delta_n\|^2 \le \left(1 - \frac{2}{n} + \frac{1}{n^2} N^2 M_N\right) E\|\Delta_{n-1}\|^2 + \frac{1}{n^2} \left(p_N M_N + N\sigma_\eta^2\right),$$

where $p_N = \sum_{k=N+1}^{\infty} c_k^2$, $M_N = \sup_{a \le x \le b} ||e^N(x)||^2$.

Proof. Taking into account (1.5) and remembering that $E\|\Delta_n\|^2$ can be computed here as $E_{x_1,...,x_{n-1},\eta_1,...,\eta_{n-1}}E_{x_n}E_{\eta_n}\|\Delta_n\|^2$, we can write

$$E\|\Delta_n\|^2 = E_x E_\eta \left\| \Delta_{n-1} - \frac{1}{n} e^N(x_n) e^N(x_n)^T \Delta_{n-1} + \frac{1}{n} (r_N(x_n) + \eta_n) e^N(x_n) \right\|^2$$

$$= E \left\| \left(I - \frac{1}{n} e^N(x_n) e^N(x_n)^T \right) \Delta_{n-1} + \frac{1}{n} r_N(x_n) e^N(x_n) \right\|^2$$

$$+ \frac{1}{n^2} \sigma_\eta^2 E_x \|e^N(x_n)\|^2.$$

Since Δ_{n-1} does not depend on x_n and $E\Delta_{n-1}=0$ we obtain

$$E\|\Delta_n\|^2 = E\left\|\left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T\right)\Delta_{n-1}\right\|^2 + \frac{1}{n^2}E_x\|r_N(x_n)e^N(x_n)\|^2 + \frac{1}{n^2}\sigma_\eta^2 E_x\|e^N(x_n)\|^2.$$

Furthermore, $E_x ||e^N(x_n)||^2 = E_x \sum_{k=1}^N e_k^2(x_n) = N$, since $E_x e_k^2(x_n) = 1$ for k = 1, 2, ..., and finally,

$$E\|\Delta_n\|^2 = E\left\|\left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T\right)\Delta_{n-1}\right\|^2 + \frac{1}{n^2}E_x\|r_N(x_n)e^N(x_n)\|^2 + \frac{1}{n^2}N\sigma_\eta^2.$$

For the first term on the right hand side we obtain

$$E \left\| \left(I - \frac{1}{n} e^{N}(x_{n}) e^{N}(x_{n})^{T} \right) \Delta_{n-1} \right\|^{2}$$

$$= E \operatorname{tr} \left[\left(I - \frac{1}{n} e^{N}(x_{n}) e^{N}(x_{n})^{T} \right) \Delta_{n-1} \Delta_{n-1}^{T} \left(I - \frac{1}{n} e^{N}(x_{n}) e^{N}(x_{n})^{T} \right) \right]$$

$$= E \operatorname{tr} \left[\left(I - \frac{1}{n} e^{N}(x_{n}) e^{N}(x_{n})^{T} \right)^{2} \Delta_{n-1} \Delta_{n-1}^{T} \right]$$

$$= \operatorname{tr} \left[E_{x} \left(I - \frac{1}{n} e^{N}(x_{n}) e^{N}(x_{n})^{T} \right)^{2} E \Delta_{n-1} \Delta_{n-1}^{T} \right]$$

$$= \operatorname{tr} \left[\left(I - \frac{2}{n} I + \frac{1}{n^{2}} E_{x} e^{N}(x_{n}) \| e^{N}(x_{n}) \|^{2} e^{N}(x_{n})^{T} \right) E \Delta_{n-1} \Delta_{n-1}^{T} \right]$$

$$= \left(1 - \frac{2}{n} \right) \operatorname{tr} E \Delta_{n-1} \Delta_{n-1}^{T}$$

$$+ \frac{1}{n^{2}} \operatorname{tr} [E_{x} \| e^{N}(x_{n}) \|^{2} e^{N}(x_{n}) e^{N}(x_{n})^{T} E \Delta_{n-1} \Delta_{n-1}^{T} \right]$$

$$= \left(1 - \frac{2}{n} \right) E \| \Delta_{n-1} \|^{2} + \frac{1}{n^{2}} \operatorname{tr} [E_{x} \| e^{N}(x_{n}) \|^{2} e^{N}(x_{n}) e^{N}(x_{n})^{T} E \Delta_{n-1} \Delta_{n-1}^{T} \right].$$

Observe that

$$|E_x||e^N(x_n)||^2 e_i(x_n) e_j(x_n)|$$

$$\leq \sup_{a \leq x \leq b} ||e^N(x)||^2 E_x |e_i(x_n) e_j(x_n)|$$

$$\leq \sup_{a \leq x \leq b} ||e^N(x)||^2 (E_x e_i^2(x_n))^{1/2} (E_x e_j^2(x_n))^{1/2} \equiv M_N$$

for i, j = 1, ..., N. On the other hand, for $\Delta_{n-1} = (\Delta_{n-1,1}, \Delta_{n-1,2}, ..., \Delta_{n-1,N})^T$, we also have

$$|E(\Delta_{n-1,i}\Delta_{n-1,j})| \le E\|\Delta_{n-1}\|^2$$
 for $i, j = 1, ..., N$.

These estimates yield

$$E\|\Delta_{n-1}\|^{2} \leq \left(1 - \frac{2}{n}\right) E\|\Delta_{n-1}\|^{2} + \frac{1}{n^{2}} N^{2} M_{N} E\|\Delta_{n-1}\|^{2} + \frac{1}{n^{2}} E_{x} r_{N}^{2}(x_{n}) \|e^{N}(x_{n})\|^{2} + \frac{1}{n^{2}} N \sigma_{\eta}^{2},$$

and since

$$E_x r_N^2(x_n) \|e^N(x_n)\|^2 \le \sup_{a \le x \le b} \|e^N(x)\|^2 E_x r_N^2(x_n)$$
$$= M_N \sum_{k=N+1}^{\infty} c_k^2 = M_N p_N,$$

we finally obtain the estimate

$$E\|\Delta_n\|^2 \le \left(1 - \frac{2}{n} + \frac{1}{n^2}N^2M_N\right)E\|\Delta_{n-1}\|^2 + \frac{1}{n^2}p_NM_N + \frac{1}{n^2}N\sigma_\eta^2. \blacksquare$$

LEMMA 2.2. If nonnegative real numbers v_n , n = 0, 1, 2, ..., satisfy the recursive inequality

$$v_n \le \left(1 - \frac{2}{n} + \frac{d}{n^2}\right) v_{n-1} + \frac{b}{n^2}, \quad b > 0, \ d > 1, \ n = 1, 2, \dots,$$

then

$$v_n \le \frac{d-1}{n^2}(v_0 + b + b\ln(n-1))\exp(\pi^2(d-1)/6) + \frac{b}{n}, \quad n = 1, 2, \dots$$

Proof. From the assumptions it follows immediately that

$$v_n \le \left(1 - \frac{2}{n} + \frac{d}{n^2}\right) \left(1 - \frac{2}{n-1} + \frac{d}{(n-1)^2}\right) \dots \left(1 - \frac{2}{1} + \frac{d}{1^2}\right) v_0$$

$$+ b \left(1 - \frac{2}{n} + \frac{d}{n^2}\right) \left(1 - \frac{2}{n-1} + \frac{d}{(n-1)^2}\right) \dots \left(1 - \frac{2}{2} + \frac{d}{2^2}\right) \frac{1}{1^2}$$

$$+ \dots + b \left(1 - \frac{2}{n} + \frac{d}{n^2}\right) \frac{1}{(n-1)^2} + b \frac{1}{n^2}.$$

Taking into account the identity

$$1 - \frac{2}{k} + \frac{d}{k^2} = \frac{k^2 - 2k + d}{k^2} = \frac{(k-1)^2 + d - 1}{k^2}$$

we obtain

$$v_n \le \frac{(n-1)^2 + d - 1}{n^2} \cdot \frac{(n-2)^2 + d - 1}{(n-1)^2} \dots \frac{(1-1)^2 + d - 1}{1^2} v_0$$

$$+ b \frac{(n-1)^2 + d - 1}{n^2} \cdot \frac{(n-2)^2 + d - 1}{(n-1)^2} \dots \frac{(2-1)^2 + d - 1}{2^2} \cdot \frac{1}{1^2}$$

$$+ \dots + b \frac{(n-1)^2 + d - 1}{n^2} \cdot \frac{1}{(n-1)^2} + b \frac{1}{n^2},$$

or equivalently,

$$\begin{aligned} v_n &\leq \frac{1}{n^2} \left(1 + \frac{d-1}{(n-1)^2} \right) \left(1 + \frac{d-1}{(n-2)^2} \right) \dots \left(1 + \frac{d-1}{1^2} \right) (d-1) v_0 \\ &+ b \frac{1}{n^2} \left(1 + \frac{d-1}{(n-1)^2} \right) \left(1 + \frac{d-1}{(n-2)^2} \right) \dots \left(1 + \frac{d-1}{1^2} \right) \\ &+ \dots + b \frac{1}{n^2} \left(1 + \frac{d-1}{(n-1)^2} \right) + b \frac{1}{n^2} \,. \end{aligned}$$

Since $\exp(x) > 1 + x$ for x > 0, we have

$$v_n \le \frac{1}{n^2} (d-1) v_0 \exp\left((d-1) \sum_{k=1}^{n-1} \frac{1}{k^2} \right)$$

$$+ \frac{1}{n^2} b \left[\exp\left((d-1) \sum_{k=1}^{n-1} \frac{1}{k^2} \right) + \dots + \exp\left((d-1) \frac{1}{(n-1)^2} \right) + 1 \right].$$

Since $\sum_{k=1}^{\infty} 1/k^2$ is known to be equal to $\pi^2/6$, and clearly

$$\exp(x) \le 1 + Mx$$
, $M = \exp(\pi^2(d-1)/6)$, for $x \in [0, \pi^2(d-1)/6]$,

we have

$$v_n \le \frac{1}{n^2} (d-1)v_0 M$$

$$+ \frac{1}{n^2} b \left[1 + (d-1)M \sum_{k=1}^{n-1} \frac{1}{k^2} + 1 + (d-1)M \sum_{k=2}^{n-1} \frac{1}{k^2} + \dots + 1 + (d-1)M \frac{1}{(n-1)^2} + 1 \right]$$

$$\le \frac{(d-1)M}{n^2} \left(v_0 + b \left[\sum_{k=1}^{n-1} \frac{1}{k^2} + \sum_{k=2}^{n-1} \frac{1}{k^2} + \dots + \frac{1}{(n-1)^2} \right] \right) + \frac{b}{n}.$$

Summing the terms in square brackets we get

$$v_n \le \frac{(d-1)M}{n^2} \left(v_0 + b \left[\frac{n-1}{(n-1)^2} + \frac{n-2}{(n-2)^2} + \dots + \frac{1}{1^2} \right] \right) + \frac{b}{n}$$
$$= \frac{(d-1)M}{n^2} \left(v_0 + b \sum_{k=1}^{n-1} \frac{1}{k} \right) + \frac{b}{n}.$$

Since $\ln(1+x) \ge x/(1+x)$ for x > 0, putting x = 1/k we obtain

$$\ln\left(\frac{k+1}{k}\right) \ge \frac{1}{k+1} \quad \text{for } k = 1, 2, \dots,$$

and consequently

$$\sum_{k=1}^{n-1} \frac{1}{k} \le 1 + \sum_{k=1}^{n-2} \ln \left(\frac{k+1}{k} \right) = 1 + \sum_{k=1}^{n-2} (\ln(k+1) - \ln(k)) = 1 + \ln(n-1),$$

which completes the proof.

Inequality (2.1) assures that the sequence $v_n = E\|\Delta_n\|^2$, $n = 0, 1, 2, \ldots$, satisfies the assumptions of Lemma 2.2 $(\sup_{a \le x \le b} \|e^N(x)\|^2 > 1$ for N > 1 since $E\|e^N(x)\|^2 = N$ so that we have the estimate

$$E\|\Delta_n\|^2 \le \frac{1}{n^2} (N^2 M_N - 1) \exp(\pi^2 (N^2 M_N - 1)/6)$$

$$\times [E\|\Delta_0\|^2 + (p_N M_N + N\sigma_\eta^2)(1 + \ln(n - 1))]$$

$$+ \frac{1}{n} (p_N M_N + N\sigma_\eta^2)$$

and putting $C = \exp(-\pi^2/6)$ we can write

(2.2)
$$E\|\Delta_n\|^2 \le \frac{1}{n^2} C N^2 M_N \exp(\pi^2 N^2 M_N / 6) \\ \times [\|c^N\|^2 + (p_N M_N + N\sigma_\eta^2)(1 + \ln n)] \\ + \frac{1}{n} (p_N M_N + N\sigma_\eta^2).$$

This implies that, for fixed N, the estimator $\widehat{c}(n,N)$ is consistent in the mean-square sense.

Now we shall compare the mean-square errors of $\widehat{c}(n,N)$ and $\widetilde{c}(n,N)$ in the case when $f \in L^2(0,2\pi)$. The system

$$e_1(x) = 1$$
, $e_{2m}(x) = \sqrt{2}\sin(mx)$,
 $e_{2m+1}(x) = \sqrt{2}\cos(mx)$, $m = 1, 2, ...$,

is a complete orthogonal system in $L^2(0,2\pi)$ and $(2\pi)^{-1} \int_0^{2\pi} e_k^2(x) dx = 1$,

 $k = 1, 2, \dots$ For this system we also have

$$||e^N(x)||^2 = \sum_{k=1}^{2m+1} e_k^2(x) = 2m+1 = N$$
 for $N = 2m+1, m \ge 0$

so that the estimates for the mean-square errors considered (see (1.3) and (2.2)) take the form

(2.3)
$$E\|\widetilde{c}(n,N) - c^N\|^2 = \frac{1}{n}N(p_N + \sigma_\eta^2) + \frac{1}{n}(N-1)\|c^N\|^2,$$

$$E\|\widehat{c}(n,N) - c^N\|^2$$

$$\leq \frac{1}{n^2}CN^3 \exp(\pi^2N^3/6)[\|c^N\|^2 + N(p_N + \sigma_\eta^2)(1 + \ln n)]$$

$$+ \frac{1}{n}N(p_N + \sigma_\eta^2),$$

where N = 2m + 1, m > 0 and $C = \exp(-\pi^2/6)$.

From (2.3) we see that for N > 1 and $||c^N||^2 > 0$ we have

(2.4)
$$E\|\widehat{c}(n,N) - c^N\|^2 < E\|\widetilde{c}(n,N) - c^N\|^2$$

for sufficiently large n, so that $\widehat{c}(n,N)$, although more complicated in form, has a smaller mean-square error for large values of n than $\widetilde{c}(n,N)$.

3. Conclusions. We now assume that $f \in L^2(0, 2\pi)$. Having determined the estimators $\overline{c}^N = (\overline{c}_1, \dots, \overline{c}_N)^T$ of Fourier coefficients we can form an estimator of the regression function f, called a projection type estimator [3]:

(3.1)
$$\bar{f}_N(x) = \sum_{k=1}^N \bar{c}_k e_k(x) = \langle \bar{c}^N, e^N(x) \rangle,$$

 $N = 2m + 1, m > 0, e^{N}(x) = (1, \sqrt{2}\sin(x), \sqrt{2}\cos(x), \dots, \sqrt{2}\sin(mx), \sqrt{2}\cos(mx))^{T}.$

In case $\overline{c}^N = \widetilde{c}(n, N)$ this estimator is also a kernel type estimator [3], since then formula (3.1) takes the form

$$\bar{f}_N(x) = \frac{1}{n} \sum_{i=1}^n y_i \sum_{k=1}^N e_k(x_i) e_k(x).$$

For such an estimator the following formula for the integrated mean-square error is valid:

(3.2)
$$E \frac{1}{2\pi} \int_{0}^{2\pi} (f(x) - \bar{f}_{N}(x))^{2} dx = E \|c^{N} - \bar{c}^{N}\|^{2} + \sum_{k=N+1}^{\infty} c_{k}^{2}$$
$$= E \|\bar{c}^{N} - c^{N}\|^{2} + p_{N}.$$

In view of the inequality

$$||c^N||^2 = \sum_{k=1}^N c_k^2 \le \sum_{k=1}^\infty c_k^2 = \frac{1}{2\pi} ||f||^2$$

and (2.3) we can obtain the following estimates for the mean-square errors:

(3.3)
$$E\|\widetilde{c}(n,N) - c^N\|^2 \le \frac{1}{n}N(p_N + \sigma_\eta^2) + \frac{1}{n}\frac{N}{2\pi}\|f\|^2,$$

$$E\|\widehat{c}(n,N) - c^N\|^2$$

$$\le \frac{1}{n^2}CN^3\exp(\pi^2N^3/6)\left[\frac{1}{2\pi}\|f\|^2 + N(p_N + \sigma_\eta^2)(1 + \ln n)\right]$$

$$+ \frac{1}{n}N(p_N + \sigma_\eta^2),$$

where N = 2m + 1, m > 0 and $C = \exp(-\pi^2/6)$.

Formula (3.2) and the estimates in (3.3) imply that if we put N(n)=2m(n)+1, $\overline{c}^{N(n)}=\widehat{c}(n,N(n))$ and if

$$\lim_{n \to \infty} N(n) = \infty, \quad \limsup_{n \to \infty} N(n) / (\ln n)^{1/3} < (12/\pi^2)^{1/3},$$

then $\lim_{n\to\infty} E||f-\bar{f}_{N(n)}||^2=0$. The same is true if we put $\bar{c}^{N(n)}=\widetilde{c}(n,N(n))$ with $\lim_{n\to\infty}N(n)=\infty$ and $\lim_{n\to\infty}N(n)/n=0$.

In this way we have obtained sufficient conditions for convergence to zero of the integrated mean-square error of the estimator \bar{f}_N .

If the estimator \bar{c}^N is unbiased then

$$E(f(x) - \overline{f}_N(x))^2 = E\langle c^N - \overline{c}^N, e^N(x) \rangle^2$$

$$+ 2r_N(x)E\langle c^N - \overline{c}^N, e^N(x) \rangle + Er_N^2(x)$$

$$= E\langle c^N - \overline{c}^N, e^N(x) \rangle^2 + r_N^2(x) ,$$

where $r_N = \sum_{k=N+1}^{\infty} c_k e_k$. From the Cauchy–Schwarz inequality it follows that

$$E(f(x) - \bar{f}_N(x))^2 \le E \|\bar{c}^N - c^N\|^2 \|e^N(x)\|^2 + r_N^2(x)$$

and since $||e^N(x)||^2 = N$ for N = 2m + 1, m > 0, we finally have

(3.4)
$$E(f(x) - \bar{f}_N(x))^2 \le NE \|\bar{c}^N - c^N\|^2 + r_N^2(x).$$

If the Fourier series of f converges at a point $x \in [0, 2\pi]$ to f(x) then, of course, $\lim_{n\to\infty} r_{N(n)}(x) = 0$ if $\lim_{n\to\infty} N(n) = \infty$. The estimates in (3.3) and (3.4) imply that if we put N(n) = 2m(n) + 1, $\overline{c}^{N(n)} = \widehat{c}(n, N(n))$ and if

$$\lim_{n \to \infty} N(n) = \infty, \quad \limsup_{n \to \infty} N(n) / (\ln n)^{1/3} < (12/\pi^2)^{1/3},$$

then $\lim_{n\to\infty} E(f(x)-\bar{f}_{N(n)}(x))^2=0$. The same is true if we put $\bar{c}^{N(n)}=$

 $\widetilde{c}(n, N(n))$ and

$$\lim_{n \to \infty} N(n) = \infty, \quad \lim_{n \to \infty} N(n)^2 / n = 0.$$

Sufficient conditions for the point convergence of the Fourier series are described in [4], [5] and together with the conditions for the sequence N(n) given above they are sufficient for the point convergence in the mean-square sense of the regression function estimator \bar{f}_N .

The theory presented above can be extended to the case of functions $f \in L^2(A,\mu)$ defined on subsets $A \subset \mathbb{R}^m, m > 1$, satisfying the conditions $0 < \mu(A) < \infty$, and inequality (2.4) is then also true for certain orthogonal systems of functions (for example, spherical harmonics), if n is large enough.

References

- A. E. Albert and L. A. Gardner, Stochastic Approximation and Nonlinear Regression, Cambridge Univ. Press, 1967.
- [2] J. Koronacki, Stochastic Approximation—Optimization Methods under Random Conditions, WNT, Warszawa, 1989 (in Polish).
- [3] E. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves, Kluwer Acad. Publ., Dordrecht, 1989.
- [4] G. Sansone, Orthogonal Functions, Interscience, New York, 1959.
- [5] A. Zygmund, Trigonometrical Series, Dover, 1955.

WALDEMAR POPIŃSKI RESEARCH AND DEVELOPMENT CENTER OF STATISTICS AL. NIEPODLEGIOŚCI 208 00-925 WARSZAWA, POLAND

Received on 4.3.1993