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INTEGRABLE SYSTEMS IN THE PLANE
WITH CENTER TYPE LINEAR PART

Abstract. We study integrability of two-dimensional autonomous systems
in the plane with center type linear part. For quadratic and homogeneous
cubic systems we give a simple characterization for integrable cases, and we
find explicitly all first integrals for these cases. Finally, two large integrable
system classes are determined in the most general nonhomogeneous cases.

1. Introduction. We consider two-dimensional autonomous systems
of differential equations of the form

(1.1) ẋ = −y + X(x, y), ẏ = x + Y (x, y) ,

where X(x, y) and Y (x, y) are analytic functions without linear terms de-
fined in a certain neighbourhood of the origin. In the local study of these
systems we find three problems closely related to one another: the deter-
mination of the origin’s stability, existence and number of local limit cycles
around the origin and the determination of first integrals when they exist.
Poincaré developed an important technique for the general solution of those
problems: it consists in finding a formal power series of the form

(1.2) H(x, y) =
∞∑

n=2

Hn(x, y) ,

where H2(x, y) = (x2 +y2)/2 and Hn(x, y) are homogeneous polynomials of
degree n, so that

(1.3) Ḣ =
∞∑

k=2

V2k(x2 + y2)k ,

where V2k are real numbers called Lyapunov constants. The determination
of these constants allows the solution of the three mentioned problems.
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In order to solve the problem of stability of the origin, it is sufficient to
consider the sign of the first Lyapunov constant different from zero. If it is
positive we have asymptotic stability for negative times, and if it is negative
we have asymptotic stability for positive times. If all Lyapunov constants
are zero, then the origin is stable for all times, but there is no asymptotic
stability for any time. In this last case, we have a center at the origin.

The vanishing of all Lyapunov constants is a necessary condition for the
integrability of the system (1.1); in this case the series H(x, y) will be a first
integral of the system if it were convergent, which is an open question today.
On the other hand, it is not always possible to express this first integral (if
it exists) by means of elementary functions.

Lyapunov constants are polynomials whose variables are the coefficients
of the terms of the development in power series of X(x, y) and Y (x, y). If
X(x, y) and Y (x, y) are polynomials of degree n, then the ideal generated by
V2k has a finite number of generators by Hilbert’s theorem; we let M(n) be
the minimum number of generators. It was shown by Shi Songling [7] that
under certain hypotheses about Lyapunov generator constants, the number
of limit cycles around the origin is at least M(n).

In this work, we study the integrability of the system (1.1) in the case
that X(x, y) and Y (x, y) are homogeneous polynomials.

We will call a function V (x, y) a null divergence factor for the system
(1.1) if the divergence of the vector field

C =
(
−y + X(x, y)

V (x, y)
,
x + Y (x, y)

V (x, y)

)
is zero. In Proposition 1, we show that the existence of a null divergence
factor yields the integrability of the system. For quadratic systems (see
appendix) and cubic homogeneous systems and for all possible integrability
cases there exist null divergence factors which are trigonometric polynomials
when expressed in polar coordinates. The main results are as follows:

Theorem 1. Consider the system

(1.4) ẋ = −y + X3(x, y), ẏ = x + Y3(x, y) ,

where X3(x, y) and Y3(x, y) are homogeneous polynomials of degree 3. In
polar coordinates the system (1.4) becomes

(1.5) ṙ = P3(ϕ)r3, ϕ̇ = 1 + Q3(ϕ)r2 ,

where

(1.6)
P3(ϕ) = R4 cos(4ϕ + ϕ4) + R2 cos(2ϕ + ϕ2) + R0 ,

Q3(ϕ) = −R4 sin(4ϕ + ϕ4) + R2 sin(2ϕ + ϕ2) + R0 .

If the first five Lyapunov constants V4, V6, V8, V10 and V12 are null , the



Integrable systems in the plane 287

system (1.4) is integrable. There are only the following three cases of inte-
grability :

(i) R0 = 0, ϕ2 = ϕ2 and R2 = −2R2. Then H(r, ϕ) = r2/2+Q3(ϕ)r4/4
is a first integral. In this case, the divergence of the system is zero.

(ii) R0 = 0, ϕ2 = ϕ2 and ϕ4 = 2ϕ2 + π/2. Then

V (r, ϕ) = 2R4 + (2R4(2R2 + R2) sin(2ϕ + ϕ2) + R2R2(1.7)
+ 4R4(R0 −R4))r2 + ∆Q3(ϕ)r4,

where ∆ = (R2 + R2)R2 + 2R4(R0 −R4), is a null divergence factor. First
integrals are the following.

(ii.1) If ∆ = 0 and R2 6= 0 then

H(r, ϕ) = (2R4 sin(2ϕ + ϕ2) + (R2 + R2))r2(1.8)

− 2R4

2R2 + R2

ln
(

(R2 − 2R4 sin(2ϕ + ϕ2))r2 − 2R4

2R2 + R2

)
.

(ii.2) If ∆ 6= 0 and ∆1 = R2
2 + R4(R4 −R0) > 0 then

(1.9) H(r, ϕ) =(
(2(R0 −R4) + (R2 −

√
∆1) sin(2ϕ + ϕ2))r2 + (R̄2−

√
∆1)(2R2+R̄2+

√
∆1)

2∆

)K1(
(2(R0 −R4) + (R2 +

√
∆1) sin(2ϕ + ϕ2))r2 + (R̄2+

√
∆1)(2R2+R̄2−

√
∆1)

2∆

)K2
,

where K1 = 2R2 + R2 +
√

∆1 and K2 = 2R2 + R2 −
√

∆1.
(ii.3) If ∆ 6= 0 and ∆1 < 0 then

(1.10) H(r, ϕ) =
1
2

ln(∆Q3(ϕ)r4 + ((2∆−R2(2R2 + R2))

+2R4(2R2 + R2) sin(2ϕ + ϕ2))r2 + 2R4) +
2R2 + R2√

−∆1

× arctan
∆(2(R0 −R4) + R2 sin(2ϕ + ϕ2))r2 + (2∆−R2(2R2 + R2))√

−∆1(∆r2 sin(2ϕ + ϕ2) + R2)
.

(ii.4) If ∆ 6= 0, ∆1 = 0 and R2 6= 0, then

H(r, ϕ) = ln
(

4
√

(R0 −R4)Q3(ϕ)r2 +
R2

2R2 + R2

)
(1.11)

−

4R2

2R2 + R2

+ (2R2 + R2) sin(2ϕ + ϕ2) · r2

2
√

(R0 −R4)Q3(ϕ)r2 +
R2

2R2 + R2

.

(ii.5) If ∆ 6= 0, ∆1 = 0 and R2 = 0, then
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(1.12) H(r, ϕ) = 2R4 ln(∆r2 sin(2ϕ + ϕ2) + R2) +
R2(2R4 + ∆r2)

R2 + ∆r2 sin(2ϕ + ϕ2)
.

(iii) R0 = 0, ϕ2 = ϕ2, R0 = 0, R2 = 2R2 and |R4| = |R2|. Set

W4(r, ϕ) = 1 + 2R4(sin(ϕ4 − 2ϕ2) + sin(2ϕ + ϕ2))r2

+ 4R2
4 sin4

(
ϕ +

ϕ4 − ϕ2

2

)
r4 if R4 = R2 ,

W4(r, ϕ) = 1 + 2R4(sin(ϕ4 − 2ϕ2)− sin(2ϕ + ϕ2))r2

+ 4R2
4 cos4

(
ϕ +

ϕ4 − ϕ2

2

)
r4 if R4 = −R2 ,

W6(r, ϕ) = sin(ϕ4 − 2ϕ2) + 3R4(1 + sin(2ϕ + ϕ2) sin(ϕ4 − 2ϕ2))r2

+ 12R2
4 sin3

(
ϕ +

ϕ4 − ϕ2

2

)
cos

(
ϕ +

3ϕ2 − ϕ4

2

)
r4

+ 8R3
4 sin6

(
ϕ +

ϕ4 − ϕ2

2

)
r6 if R4 = R2 ,

W6(r, ϕ) = sin(ϕ4 − 2ϕ2) + 3R4(1− sin(2ϕ + ϕ2) sin(ϕ4 − 2ϕ2))r2

+ 12R2
4 cos3

(
ϕ +

ϕ4 − ϕ2

2

)
sin

(
ϕ +

3ϕ2 − ϕ4

2

)
r4

+ 8R3
4 cos6

(
ϕ +

ϕ4 − ϕ2

2

)
r6 if R4 = −R2 .

Then V (r, ϕ)=W4(r, ϕ)W6(r, ϕ) is a null divergence factor. A first integral is
H(r, ϕ) = (W6(r, ϕ))2/(W4(r, ϕ))3 .

The first five Lyapunov constants have been determined by Lloyd [3] as
functions of the coefficients of the system written in cartesian coordinates.
The novelty of our Theorem 1 is, first of all, the characterization of the
integrable cases by means of polar coordinates, which is simple and gener-
alizable as we will see in the following theorem, and on the other hand, an
explicit form of first integrals and null divergence factors for all cases.

Theorem 2. Consider the system (1.1) written in polar coordinates,

(1.13) ṙ =
∞∑

s=2

Ps(ϕ)rs, ϕ̇ = 1 +
∞∑

s=2

Qs(ϕ)rs−1 .

In the following two cases, the system (1.13) is integrable (in the sense of
vanishing of all Lyapunov constants):

(i) if

(1.14)
∞∑

s=2

(s + 1)Ps(ϕ) + Q′s(ϕ) = 0 ;
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(ii) if Ps(ϕ) and Qs(ϕ) are of the form

(1.15)

Ps(ϕ) = Rs
s+1 sin(s + 1)ω + Rs

s−1 sin(s− 1)ω + . . .

. . . +
{

Rs
1 sin ω for s even,

Rs
2 sin 2ω for s odd ,

Qs(ϕ) = Rs
s+1 cos(s + 1)ω + Rs

s−1 cos(s− 1)ω + . . .

. . . +
{

Rs
1 cos ω for s even,

Rs
2 cos 2ω + Rs

0 for s odd ,

where ω = ϕ + ϕ0 with ϕ0 arbitrary , and the coefficients Rs
j and Rs

j are
undetermined.

Theorem 2 is the extension of cases (i) and (ii) for quadratic systems
(see appendix) and of cubic homogeneous systems to the most general case,
independently of the homogeneity of X(x, y) and Y (x, y). Systems corre-
sponding to (i) have null divergence, and those corresponding to (ii) have a
certain resonance at the angles.

2. Expression in polar coordinates. From now on, we assume that
the nonlinear parts X(x, y) and Y (x, y) of the system (1.1) are given by

(2.1) X(x, y) =
∞∑

s=2

Xs(x, y), Y (x, y) =
∞∑

s=2

Ys(x, y),

where Xs(x, y) and Ys(x, y) are homogeneous polynomials of degree s, with
s ≥ 2, that is,

(2.2) Xs(x, y) =
s∑

k=0

as
kxkys−k, Ys(x, y) =

s∑
k=0

bs
kxkys−k ,

where as
k and bs

k, k = 0, . . . , s, are arbitrary coefficients.

Lemma 2.1. In polar coordinates (r, ϕ), we can write the system (1.1) as

(2.3) ṙ =
∞∑

s=2

Ps(ϕ)rs, ϕ̇ = 1 +
∞∑

s=2

Qs(ϕ)rs−1 ,

where Ps(ϕ) and Qs(ϕ), s = 2, 3, . . . , are trigonometric polynomials of the
form

Ps(ϕ) = Rs
s+1 cos((s + 1)ϕ + ϕs

s+1)

+ Rs
s−1 cos((s− 1)ϕ + ϕs

s−1) + . . . +
{

Rs
1 cos(ϕ + ϕs

1) for s even,
Rs

0 for s odd,
Qs(ϕ) = −Rs

s+1 sin((s + 1)ϕ + ϕs
s+1)

+ Rs
s−1 sin((s− 1)ϕ + ϕs

s−1) + . . . +
{

Rs
1 sin(ϕ + ϕs

1) for s even,
Rs

0 for s odd.
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P r o o f. Differentiating x=r cos ϕ and y=r sin ϕ with respect to t gives

ṙ = ẋ cos ϕ + ẏ sin ϕ, ϕ̇ =
ẏ cos ϕ− ẋ sin ϕ

r
,

and from (1.1) and (2.1) we obtain

ṙ =
(
− r sin ϕ +

∞∑
s=2

Xs(r cos ϕ, r sin ϕ)
)

cos ϕ

+
(
r cos ϕ +

∞∑
s=2

Ys(r cos ϕ, r sin ϕ)
)

sin ϕ ,

ϕ̇ = r−1
(
− r cos ϕ +

∞∑
s=2

Ys(r cos ϕ, r sin ϕ)
)

cos ϕ

− r−1
(
r sin ϕ +

∞∑
s=2

Xs(r cos ϕ, r sin ϕ)
)

sin ϕ .

By homogeneity of Xs and Ys and grouping terms, we obtain

ṙ =
∞∑

s=2

[Xs(cos ϕ, sin ϕ) cos ϕ + Ys(cos ϕ, sin ϕ) sin ϕ]rs ,

ϕ̇ = 1 +
∞∑

s=2

[Ys(cos ϕ, sin ϕ) cos ϕ−Xs(cos ϕ, sin ϕ) sin ϕ]rs−1 ,

that is, we get (2.3), where, by (2.2),

Ps(ϕ) =
s∑

k=0

as
k cosk+1 ϕ sins−k ϕ +

s∑
k=0

bs
k cosk ϕ sin(s+1)−k ϕ ,

Qs(ϕ) =
s∑

k=0

bs
k cosk+1 ϕ sins−k ϕ−

s∑
k=0

as
k cosk ϕ sin(s+1)−k ϕ ,

or

(2.4)

Ps(ϕ) =
s+1∑
k=0

As
k cosk ϕ sin(s+1)−k ϕ ,

Qs(ϕ) =
s+1∑
k=0

Bs
k cosk ϕ sin(s+1)−k ϕ ,

where
As

0 = bs
0, As

k = bs
k + as

k−1, k = 1, . . . , s, As
s+1 = as

s,

Bs
0 = −as

0, Bs
k = bs

k−1 − as
k, k = 1, . . . , s, Bs

s+1 = bs
s .

If (s + 1)− k is even, we can write

cosk ϕ sin(s+1)−k ϕ = (−1)((s+1)−k)/22−s
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×
(

cos(s + 1)ϕ + αk
s−1 cos(s− 1)ϕ + . . . +

{
αk

1 cos ϕ for s + 1 odd
αk

0 for s + 1 even

)
and if (s + 1)− k is odd, then we have

cosk ϕ sin(s+1)−k ϕ = (−1)(s−k)/22−s

×
(

sin(s + 1)ϕ + αk
s−1 sin(s− 1)ϕ + . . . +

{
αk

1 sin ϕ for s + 1 odd
αk

0 for s + 1 even

)
,

where k = 0, . . . , s+1 and αj
i are integers. Putting these values in (2.4) and

grouping terms, we have

Ps(ϕ) = (βs
s+1 cos(s + 1)ϕ + βs

s+1 sin(s + 1)ϕ)

+ (βs
s−1 cos(s− 1)ϕ + βs

s−1 sin(s− 1)ϕ)

+ . . . +
{

βs
1 cos ϕ + βs

1 sin ϕ if s + 1 is odd,
βs

0 if s + 1 is even,
Qs(ϕ) = (γs

s+1 cos(s + 1)ϕ + γs
s+1 sin(s + 1)ϕ)

+ (γs
s−1 cos(s− 1)ϕ + γs

s−1 sin(s− 1)ϕ)

+ . . . +
{

γs
1 cos ϕ + γs

1 sin ϕ if s + 1 is odd,
γs
0 if s + 1 is even,

with

2sβs
s+1 = As

s+1 −As
s−1 + . . . +

{
(−1)s/2As

1 if s + 1 is odd,
(−1)(s+1)/2As

0 if s + 1 is even,

2sβs
s+1 = As

s −As
s−2 + . . . +

{
(−1)s/2As

0 if s + 1 is odd,
(−1)(s−1)/2As

1 if s + 1 is even,

2sγs
s+1 = Bs

s+1 −Bs
s−1 + . . . +

{
(−1)s/2Bs

1 if s + 1 is odd,
(−1)(s+1)/2Bs

0 if s + 1 is even,

2sγs
s+1 = Bs

s −As
s−2 + . . . +

{
(−1)s/2Bs

1 if s + 1 is odd,
(−1)(s−1)/2Bs

0 if s + 1 is even,

where βs
j , βs

j , j = 0, . . . , s−1, and γs
j , γs

j , j = 0, . . . , s−1, are linear functions
of the coefficients As

k, k = 0, . . . , s + 1, respectively Bs
k, k = 0, . . . , s + 1. By

(2.5), it is easily shown that in all cases βs
s+1 = −γs

s+1 and βs
s+1 = γs

s+1.
On the other hand,

βs
k cos kϕ + βs

k sin kϕ = Rs
k cos(kϕ + ϕs

k) ,

γs
k cos kϕ + γs

k sin kϕ = Rs
k sin(kϕ + ϕs

k) ;

in particular, if

βs
s+1 cos(s + 1)ϕ + βs

s+1 sin(s + 1)ϕ = Rs
s+1 cos((s + 1)ϕ + ϕs

s+1) ,

then
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γs
s+1 cos(s + 1)ϕ + γs

s+1 sin(s + 1)ϕ = βs
s+1 cos(s + 1)ϕ− βs

s+1 sin(s + 1)ϕ
= −Rs

s+1 sin((s + 1)ϕ + ϕs
s+1) .

This completes the proof.

3. Homogeneous systems. From now on, we assume that the nonlin-
ear parts, X(x, y) and Y (x, y), of the system (1.1) are homogeneous poly-
nomials of degree s, with s ≥ 2, that is,

(3.1) ẋ = −y + Xs(x, y), ẏ = x + Ys(x, y) ,

where

Xs(x, y) =
s∑

k=0

akxkys−k, Ys(x, y) =
s∑

k=0

bkxkys−k ,

with ak and bk, k = 0, . . . , s, being arbitrary coefficients. By applying
Lemma 1 we can write the system (3.1) in polar coordinates as

(3.2) ṙ = Ps(ϕ)rs, ϕ̇ = 1 + Qs(ϕ)rs−1 ,

where Ps(ϕ) and Qs(ϕ) are trigonometric polynomials of the form

Ps(ϕ) = Rs+1 cos((s + 1)ϕ + ϕs+1)
+ Rs−1 cos((s− 1)ϕ + ϕs−1)

+ . . . +
{

R1 cos(ϕ + ϕ1) if s is even,
R0 if s is odd,

Qs(ϕ) = −Rs+1 sin((s + 1)ϕ + ϕs+1)
+ Rs−1 sin((s− 1)ϕ + ϕs−1)

+ . . . +
{

R1 sin(ϕ + ϕ1) if s is even,
R0 if s is odd.

Proposition 3.1. A Poincaré series for the system (3.1) is H(r, ϕ) =∑∞
m=0 Hm(ϕ)rm(s−1)+2, where H0(ϕ) = 1/2 and Hm(ϕ), m = 0, 1, . . . , are

homogeneous trigonometric polynomials of degree m(s−1)+2 satisfying the
differential equations

(3.3)
dHm+1

dϕ
+ (m(s− 1) + 2)Hm(ϕ)Ps(ϕ) +

dHm

dϕ
Qs(ϕ)

=
{

0 if (m + 1)(s− 1) + 2 is odd ,
V(m+1)(s−1)+2 if (m + 1)(s− 1) + 2 is even,

with V(m+1)(s−1)+2, m = 0, 1, . . . , being the Lyapunov constants.

P r o o f. In polar coordinates, the series (1.2) takes the form

(3.4) H(r, ϕ) =
∞∑

n=2

Hn(ϕ)rn ,
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with H2(ϕ) = 1/2 and Hn(ϕ) homogeneous trigonometric polynomials of
degree n, that is,

Hn(ϕ) =
n∑

k=0

Cn
k cosk ϕ sin(n+1)−k ϕ, n = 3, 4, . . .

In this case, (1.3) reads

(3.5) Ḣ(r, ϕ) =
∞∑

k=2

V2kr2k .

The evaluation of Ḣ(r, ϕ) from the system (3.2) yields

Ḣ(r, ϕ) =
∂H

∂r
ṙ +

∂H

∂ϕ
ϕ̇

=
( ∞∑

n=2

nHn(ϕ)rn−1
)
rsPs(ϕ) +

( ∞∑
n=2

H ′
n(ϕ)rn

)
(1 + rs−1Qs(ϕ)) ,

where the prime stands for ϕ-derivative. If we group the powers of r we find

Ḣ(r, ϕ) =
s∑

n=2

H ′
n(ϕ)rn

+
∞∑

n=2

(H ′
n+s−1(ϕ) + nHn(ϕ)Ps(ϕ) + H ′

n(ϕ)Qs(ϕ))rn+s−1 .

By (3.5), we obtain

(3.6)
s∑

n=2

H ′
n(ϕ)rn +

∞∑
n=2

(H ′
n+s−1(ϕ) + nHn(ϕ)Ps(ϕ)

+H ′
n(ϕ)Qs(ϕ))rn+s−1 =

∞∑
k=2

V2kr2k .

Equating the coefficients of the powers of r, we find in particular for n =
2, . . . , s,

H ′
n(ϕ) =

{
0 if n is odd,
Vn if n is even.

But since the Hn(ϕ) are trigonometric polynomials, V2k have to be null for
0 ≤ 2k ≤ s, so dHn/dϕ = 0 for n = 2, . . . , s and V2k = 0 for 0 ≤ 2k ≤ s. If
we integrate the polynomials Hn(ϕ) with respect to ϕ and take into account
their homogeneity, then we get

(3.7) Hn(ϕ) =
{

0 if n is odd,
Cn if n is even, n = 2, . . . , s ,
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where the Cn are constants (in particular, C2 = 1/2). For the other terms
of (3.6) we have the differential equations

(3.8) H ′
n+s−1(ϕ) + nHn(ϕ)Ps(ϕ) + H ′

n(ϕ)Qs(ϕ)

=
{

0 if n + s− 1 is odd,
Vn+s−1 if n + s− 1 is even, n = 2, 3, . . . ,

where initial conditions are given in (3.7). These equations can be considered
as a system of s−1 independent differential equations: take n = m(s−1)+k,
k = 2, . . . , s in (3.8) and separate the equations and the initial conditions
following the values of k, that is,

(3.9)
H ′

(m+1)(s−1)+k(ϕ)+(m(s−1)+k)Hm(s−1)+k(ϕ)Ps(ϕ)+H ′
m(s−1)+k(ϕ)Qs(ϕ)

= V m+1 =
{

0 if (m + 1)(s− 1) + k is odd,
V(m+1)(s−1)+k if (m + 1)(s− 1) + k is even,

where k = 2, . . . , s, m = 0, 1, . . . , with

Hk(ϕ) =
{

0 if k is odd,
Ck if k is even, k = 2, . . . , s .

It is obvious that all equations of (3.9) are equal, and only the initial condi-
tions change (which are constant functions). Thus, for each of the equations
(3.9) the Lyapunov constants Vk that we will find will be the same up to con-
stant multiplicative factors. We can assume, without any loss of generality,
that the functions Hm(s−1)+k(ϕ) are zero for k = 3, . . . , s− 1; if we denote
Hm(s−1)+2(ϕ) by Hm(ϕ), the system (3.9) will take the form (3.3) with
Hm(ϕ) homogeneous trigonometric polynomials of degree m(s− 1) + 2.

4. Null divergence factors. We call a function V (x, y) a null diver-
gence factor for the system (1.1) if the divergence of the vector field

C =
(
−y + X(x, y)

V (x, y)
,
x + Y (x, y)

V (x, y)

)
is null, that is, if

∂

∂x

(
−y + X(x, y)

V (x, y)

)
+

∂

∂y

(
x + Y (x, y)

V (x, y)

)
= 0 .

If the system (1.1) is written in polar coordinates (see (2.3)), then the func-
tion V (r, ϕ) will be a null divergence factor if

(4.1)
1
r

∂

∂r

(∑∞
s=2 Ps(ϕ)rs+1

V (r, ϕ)

)
+

∂

∂ϕ

(
1 +

∑∞
s=2 Qs(ϕ)rs−1

V (r, ϕ)

)
= 0 .
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Proposition 4.1. If the system (2.3) has a null divergence factor V (r, ϕ)
then the system is integrable, and its first integral is given by

(4.2) H(r, ϕ) =
∫ r(1 +

∑∞
s=2 Qs(ϕ)rs−1)
V (r, ϕ)

dr +
∫ ∑∞

s=2 Ps(ϕ)rs+1

V (r, ϕ)
dϕ .

P r o o f. The differential equation for the trajectories of the system (2.3)
is

(4.3)
(

1 +
∞∑

s=2

Qs(ϕ)rs−1
)
dr −

∞∑
s=2

Ps(ϕ)rsdϕ = 0 .

If V (r, ϕ) is a null divergence factor, then r/V (r, ϕ) is an integrating factor
for (4.3) since, by (4.1), we have

∂

∂ϕ

(
r(1 +

∑∞
s=2 Qs(ϕ)rs−1)
V (r, ϕ)

)
+

∂

∂r

(∑∞
s=2 Ps(ϕ)rs+1

V (r, ϕ)

)
= r

∂

∂ϕ

(
1 +

∑∞
s=2 Qs(ϕ)rs−1

V (r, ϕ)

)
+

∂

∂r

(∑∞
s=2 Ps(ϕ)rs+1

V (r, ϕ)

)
= 0 .

Thus the solution of (4.3) is given by the integral (4.2).

In the particular case that the system (2.3) is homogeneous (see (3.2)),
the condition (4.1) becomes

(4.4)
1
r

∂

∂r

(
Ps(ϕ)rs+1

V (r, ϕ)

)
+

∂

∂ϕ

(
1 + Qs(ϕ)rs−1

V (r, ϕ)

)
=

((s + 1)Ps(ϕ) + Q′s(ϕ))rs−1

V (r, ϕ)
− Ps(ϕ)rs

(V (r, ϕ))2
∂V

∂r
− (1 + Qs(ϕ)rs−1)

(V (r, ϕ))2
∂V

∂ϕ
= 0 .

Corollary 4.2. The function

(4.5) V (r, ϕ) = (1 + V1(ϕ)rs−1 + V2(ϕ)r2(s−1) + . . . + Vp(ϕ)rp(s−1))α ,

where Vk(ϕ) are trigonometric polynomials of degree k(s − 1) and α is a
real number , is a null divergence factor for the system (3.2) if the Vk(ϕ),
k = 1, . . . , p, satisfy the system

(4.6)

αV ′
1 − (s + 1)Ps −Q′s = 0 ,

V ′
2 + V ′

1Qs + (s− 1)V1Ps = V1V
′
1 ,

V ′
3 + V ′

2Qs + 2(s− 1)V2Ps = V2V
′
1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V ′
p + V ′

p−1Qs + (p− 1)(s− 1)Vp−1Ps = Vp−1V
′
1 ,

V ′
pQs + p(s− 1)VpPs = VpV

′
1 .
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In this case, a first integral is given by

H(r, ϕ) =
∫ r(1 + Qsr

s−1)
(1 + V1rs−1 + . . . + Vprp(s−1))α

dr(4.7)

+
∫ Psr

s+1

(1 + V1rs−1 + . . . + Vprp(s−1))α
dϕ .

P r o o f. It is sufficient to substitute (4.5) in (4.4) and develop with
respect to the powers of r.

5. Cubic systems

P r o o f o f T h e o r e m 1. A computer calculation of the first five Lya-
punov constants gives

V4 = R0 ,

2V6 = R2R2 sin(ϕ2 − ϕ2) ,

8V8 = (2R2
2 cos(2ϕ2 − ϕ4)− 3R2R2 cos(ϕ2 + ϕ2 − ϕ4)

− 2R2
2 cos(2ϕ2 − ϕ4))R4 − (10R2

4 + 24R2
2)R0

+ (8R0 cos(ϕ2 − ϕ2) + 4R0 sin(ϕ2 − ϕ2))R2R2 .

8V10 = (30R2
4 + 80R2

2)R0R0

+ (−6R2
2 cos(2ϕ2 − ϕ4) + 5R2R2 cos(ϕ2 + ϕ2 − ϕ4)

+ 4R2
2 cos(2ϕ2 − ϕ4))R4R0

+ (26R2
2 sin(2ϕ2 − ϕ4) + 60R2R2 sin(ϕ2 + ϕ2 − ϕ4)

− 8R2
2 sin(2ϕ2 − ϕ4))R4R0

+ (17R2
2 −R2

2 + 24R2
0 − 4R2

0)R2R2 sin(ϕ2 − ϕ2)
− 20R0R0R2R2 cos(ϕ2 − ϕ2)− 2R2

2R
2
2 sin(2ϕ2 − 2ϕ2) ,

192V12 = 84R0R
4
4 + (−4R2

2 cos(2ϕ2 − ϕ4) + 38R2R2 cos(ϕ2 + ϕ2 − ϕ4)
+ 20R2

2 cos(2ϕ2 − ϕ4))R3
4

+ (−576R2
2 + 1008R2

0 − 1512R2
0 − 1240R2

2)R0R
2
4

− (80R0 cos(ϕ2 − ϕ2) + 108R0 sin(ϕ2 − ϕ2))R2R2R
2
4

+ (−288R2
2 − 473R2

2) cos(2ϕ2 − ϕ4)R2
2R4

+ (530R2
2 − 16R2

2) cos(ϕ2 + ϕ2 − ϕ4)R2R2R4

+ (721R2
2 − 24R2

2) cos(2ϕ2 − ϕ4)R2
2R4

− (66R2
2 cos(ϕ4 + ϕ2 − 3ϕ2) + 60R2

2 cos(ϕ4 + ϕ2 − 3ϕ2))R2R2R4

+ (3936R2
2 cos(2ϕ2 − ϕ4)− 1392R2R2 cos(ϕ2 + ϕ2 − ϕ4)

+ 840R2
2 cos(2ϕ2 − ϕ4))R2

0R4

+ (−2832R2
2 sin(2ϕ2 − ϕ4)− 6324R2R2 sin(ϕ2 + ϕ2 − ϕ4)
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+ 696R2
2 sin(2ϕ2 − ϕ4))R0R0R4

+ (288R2
2 cos(2ϕ2 − ϕ4)− 144R2R2 cos(ϕ2 + ϕ2 − ϕ4)

− 144R2
2 cos(2ϕ2 − ϕ4))R2

0R4

+ (3600R2
2 − 1212R2

2 + 11520R2
0 − 4320R2

0)R0R
2
2

+ (408R0 cos(2ϕ2 − 2ϕ2) + 168R0 sin(2ϕ2 − 2ϕ2))R2
2R

2
2

+ (−1200R2
2 + 180R2

2 − 2304R2
0 + 864R2

0)R2R2R0 cos(ϕ2 − ϕ2)
+ (−1812R2

2 + 72R2
2 − 2496R2

0 + 96R2
0)R2R2R0 sin(ϕ2 − ϕ2) .

From the vanishing of the first two constants V4 and V6, we get

8V8 = (2R2
2 cos(2ϕ2 − ϕ4)− 3R2R2 cos(ϕ2 + ϕ2 − ϕ4)

− 2R2
2 cos(2ϕ2 − ϕ4))R4 ,

8V10 = (−6R2
2 cos(2ϕ2 − ϕ4) + 5R2R2 cos(ϕ2 + ϕ2 − ϕ4)

+ 4R2
2 cos(2ϕ2 − ϕ4))R4R0 ,

192V12 = (−4R2
2 cos(2ϕ2 − ϕ4) + 38R2R2 cos(ϕ2 + ϕ2 − ϕ4)

+ 20R2
2 cos(2ϕ2 − ϕ4))R3

4

+ (−288R2
2 − 473R2

2) cos(2ϕ2 − ϕ4)R2
2R4

+ (530R2
2 − 16R2

2) cos(ϕ2 + ϕ2 − ϕ4)R2R2R4

+ (721R2
2 − 24R2

2) cos(2ϕ2 − ϕ4)R2
2R4

− (66R2
2 cos(ϕ4 + ϕ2 − 3ϕ2) + 60R2

2 cos(ϕ4 + ϕ2 − 3ϕ2))R2R2R4

+ (288R2
2 cos(2ϕ2 − ϕ4)− 144R2R2 cos(ϕ2 + ϕ2 − ϕ4)

− 144R2
2 cos(2ϕ2 − ϕ4))R2

0R4 .

If V6 = 0 we have three alternatives: either ϕ2 = ϕ2 + kπ, k ∈ Z, or
R2 = 0, or R2 = 0. In the first case, if we take ϕ2 = ϕ2 and R2R2 6= 0 we
have

8V8 = (2R2
2 − 3R2R2 − 2R2

2)R4 cos(2ϕ2 − ϕ4)
= (R2 − 2R2)(2R2 + R2)R4 cos(2ϕ2 − ϕ4) ,

8V10 = (−6R2
2 + 5R2R2 + 4R2

2)R4R0 cos(2ϕ2 − ϕ4)
= (−3R2 + 4R2)(2R2 + R2)R4R0 cos(2ϕ2 − ϕ4) ,

192V12 = ((−4R2
2 + 38R2R2 + 20R2

2)R3
4

+ (−288R4
2 + 464R3

2R2 + 248R2
2R

2
2 − 76R2R

3
2 − 24R4

2)R4

+ (288R2
2 − 144R2R2 − 144R2

2)R2
0R4) cos(2ϕ2 − ϕ4)

= ((−2R2 + 20R2)R2
4 + (−144R3

2 + 304R2
2R2 − 28R2R

2
2 − 24R3

2)
+ (144R2 − 144R2)R2

0)(2R2 + R2)R4 cos(2ϕ2 − ϕ4) .

From the vanishing of V8 we find three possible cases:
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(a) 2R2 + R2 = 0,
(b) 2ϕ2 − ϕ4 = π/2 + kπ, k ∈ Z,
(c) R2 − 2R2 = 0.

If (a) or (b) holds, then V10 = 0 and V12 = 0. So we have the following
cases of integrability:

(i) R0 = 0, ϕ2 = ϕ2 and 2R2 + R2 = 0.
(ii) R0 = 0, ϕ2 = ϕ2 and ϕ4 = 2ϕ2 + π/2.

In case (c) the values of V10 and V12 are

8V10 = −10R2
2R4R0 cos(2ϕ2 − ϕ4) ,

192V12 = (80R2
4 − 80R2

2)R2
2R4 cos(2ϕ2 − ϕ4) ,

but since we have supposed R2 6= 0, we get either R0 = 0 and R4 = 0, which
is a particular case of (ii), or

(iii) R0 = 0, ϕ2 = ϕ2, R0 = 0, R2 = 2R2 and |R4| = |R2|.
If R2 = 0 then 8V8 = −2R2

2R4 cos(2ϕ2−ϕ4). The vanishing of V8 implies
that either R2 = 0 and R2 = 0, or R2 = 0 and ϕ4 = 2ϕ2 + π/2 + kπ, k ∈ Z,
or R0 = 0, R2 = 0 and R4 = 0, which are particular cases of (ii). In a
similar way, if R2 = 0 we also find particular cases of (ii).

We will find first integrals for the five cases we have exhibited:

C a s e (i): R0 = 0, ϕ2 = ϕ2 and 2R2 + R2 = 0: In this case, the
trigonometric polynomials (1.6) of the system (1.5) are of the form

P3(ϕ) = R4 cos(4ϕ + ϕ4) + R2 cos(2ϕ + ϕ2) ,

Q3(ϕ) = −R4 sin(4ϕ + ϕ4)− 2R2 sin(2ϕ + ϕ2) + R0 .

In this case P3(ϕ) = −Q′3(ϕ)/4, because we can write (1.6) as

ṙ = −Q′3(ϕ)
4

r3, ϕ̇ = 1 + Q3(ϕ)r2 ,

and it is easily proved that

H(r, ϕ) =
(

1
2

+ Q3(ϕ)
r2

4

)
r2

is a first integral. Note that the divergence of C = (P3(ϕ)r3, 1 + Q3(ϕ)r2)
is (4P3(ϕ) + Q′3(ϕ))r2, and its vanishing is equivalent to the conditions of
the present case.

C a s e (ii): R0 = 0, ϕ2 = ϕ2 and ϕ4 = 2ϕ2 + π/2. In this case, the
system (1.5) takes the form

(5.1)
ṙ = (R4 cos(4ϕ + 2ϕ2 + π/2) + R2 cos(2ϕ + ϕ2))r3 ,

ϕ̇ = 1 + (−R4 sin(4ϕ + 2ϕ2 + π/2) + R2 sin(2ϕ + ϕ2) + R0)r2 .
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We consider the function

V (r, ϕ) = 1 + V2(ϕ)r2 + V4(ϕ)r4

= 1 +
(

(2R2 + R2) sin(2ϕ + ϕ2) +
R2R2

2R4
+ 2(R0 −R4)

)
r2

+
∆

2R4
Q3(ϕ)r4 ,

where ∆ = (R2 + R2)R2 + 2R4(R0 − R4) and R4 6= 0; one can easily
prove that the trigonometric polynomials V2(ϕ) and V4(ϕ) of degree 2 and
4 respectively satisfy the system

V ′
2 − 4P3 −Q′3 = 0 ,

V ′
4 + 2P3V2 + Q3V

′
2 = V2V

′
2 ,

4P3V4 + Q3V
′
4 = V4V

′
2 .

Thus, by Corollary 4.2, V (r, ϕ) is a null divergence factor. If R4 = 0 we can
explicitly verify that the function

V (r, ϕ) = (R2 + (R2 + R2)Q3(ϕ)r2)r2

is a null divergence factor. Finally, for all cases, we have the null divergence
factor given by (1.7).

For the integration of the system (5.1) we make the change of variable
R = r2, v = r2 sin(2ϕ + ϕ2) to obtain

(5.2)
Ṙ = 2r2 cos(2ϕ + ϕ2)(R2R− 2R4v) ,

v̇ = 2r2 cos(2ϕ + ϕ2)(1 + (R0 −R4)R + (R2 + R2)v) .

The differential equation of the trajectories of the system (5.2) is

(5.3)
dR

dv
=

R2R− 2R4v

1 + (R2 + R2)v + (R0 −R4)R
,

which is a first order differential equation reducible to a homogeneous equa-
tion. We have the following cases for its integration:

C a s e (ii.1): ∆ = 0. If R2 6= 0 we make the change of variable z =
−2R4v + R2R, v = v, and the equation (5.3) becomes

dz

dv
=

2R4(2R4 − (2R2 + R2)z)
−2R4 + (R2 + R2)z

.

The general solution is given by

(R2 + R2)z + 2R4(2R2 + R2)v − 2R4R2

2R2 + R2

ln((2R2 + R2)z − 2R4) = C ,

where 2R2 + R2 6= 0. (2R2 + R2 = 0 is a particular case of (i).) By
undoing the changes of variable made previously, we can write a first integral



300 J. Chavarriga

of the system (5.1) in this case in the form (1.8). If R2 = 0 then, as
∆ = (R2 +R2)R2 +2R4(R0−R4) = 0, we have either R2 = 0 and R4 = 0, or
R2 = 0 and R0 = R4. In the first case, the equation (5.2) becomes dR/dv =
0, the solution is given by R = C, and its first integral is H(r, ϕ) = r2, which
is a particular case of (1.8). If R2 = 0 and R0 = R4, then (5.2) becomes

dR

dv
=

−2R4v

1 + R2v
,

with general solution

R2(R2R + 2R4v)− 2R4 ln(1 + R2v) = C if R2 6= 0 .

By undoing the changes of variables, we can write a first integral as

H(r, ϕ) = R2(R2 + 2R4 sin(2ϕ + ϕ2))r2 − 2R4 ln(1 + R2r
2 sin(2ϕ + ϕ2)) ,

which is also a particular case of (1.8).

Now consider ∆ 6= 0. In (5.2) we set w = v + R2/∆, z = R + 2R4/∆ to
obtain

(5.4)
dz

dw
=

R2z − 2R4w

(R2 + R2)w + (R0 −R4)z
,

which is a first order homogeneous differential equation. By the usual change
of variable p = z/w, w = w, the equation (5.4) becomes

(5.5)
dw

w
= − (R2 + R2) + (R0 −R4)p

2R4 + R2p + (R0 −R4)p2
dp .

Define ∆1 = R2
2 + 8R2

4 − 8R0R4, the denominator discriminant of this
equation. The general solution of (5.5) is as follows:

C a s e (ii.2): ∆1 > 0. Then

(2(R0 −R4)p + R2 −
√

∆1)R̄2+2R2+
√

∆1

(2(R0 −R4)p + R2 +
√

∆1)R̄2+2R2−
√

∆1
w2
√

∆1 = C .

C a s e (ii.3): ∆1 < 0. Then

1
2

ln(2R4 + R2p + (R0 −R4)p2) + ln w

+
R2 + 2R2√

−∆1

arctan
2(R0 −R4)p + R2√

−∆1

= C .

C a s e (ii.4): ∆1 = 0 and R2 6= 0. Then

ln(2(R0 −R4)p + R2) + ln w − R2 + 2R2

2(R0 −R4)p + R2

= C .
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C a s e (ii.5): ∆1 = 0 and R2 = 0. Then ∆1 = 8R4(R4 −R0), and there
are two possibilities: R4 = 0, which is a particular case of (ii.4), or R4 = R0,
giving 2R4 ln w + R2p = C.

By undoing the variable changes, we find respectively the first integrals
given in (1.9)–(1.12).

There is also a very degenerate case when the denominator in (5.5) is
identically null, that is, R4 = 0, R2 = 0 and R0 = R4 = 0. In this case, the
equation (5.3) reads

dR

dv
=

R2R

1 + R2v
,

with general solution
R

1 + R2v
= C .

By undoing the variable changes, we have

H(r, ϕ) =
r2

1 + R2r2 sin(2ϕ + ϕ2)
,

which is a particular case of (1.12).

C a s e (iii): R0 = 0, ϕ2 = ϕ2, R0 = 0, R2 = 2R2 and |R4| = |R2|. If
R4 = R2 the system (1.5) reads

(5.6)
ṙ = R4(cos(4ϕ + ϕ4) + 2 cos(2ϕ + ϕ2))r3 ,

ϕ̇ = 1 + R4(− sin(4ϕ + ϕ4) + sin(2ϕ + ϕ2))r2 ,

and if R4 = −R2 then we have

(5.7)
ṙ = R4(cos(4ϕ + ϕ4)− 2 cos(2ϕ + ϕ2))r3 ,

ϕ̇ = 1 + R4(− sin(4ϕ + ϕ4)− sin(2ϕ + ϕ2))r2 .

In this last case, setting ϕ = ω + π/2 turns (5.7) into (5.6). Therefore, we
only determine the first integrals of (5.6). We consider the function

W4(r, ϕ) = 1 + V2(ϕ)r2 + V4(ϕ)r4

= 1 + 2R4((sin(2ϕ + ϕ2) + sin(ϕ4 − 2ϕ2))r2

+ 4R2
4 sin4

(
ϕ +

ϕ4 − ϕ2

2

)
r4 .

It is easily proved that the trigonometric polynomials V2(ϕ) and V4(ϕ), of
degree 2 and 4 respectively, satisfy

5
2V ′

2 − 4P3 −Q′3 = 0 ,

V ′
4 + 2P3V2 + Q3V

′
2 = V2V

′
2 ,

4P3V4 + Q3V
′
4 = V4V

′
2 .
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Then, by Corollary 4.2, the function (W2(r, ϕ))5/2 is a null divergence factor,
and a first integral of the system (5.6) is obtained by applying the formula
(4.7):

H(r, ϕ) =
∫

(1 + V2r
2 + V4r

4)−5/2(1 + Q3r
2)r dr

−
∫

(1 + V2r + V4r
4)−5/2P3r

4 dϕ

=
(V2 − 2Q3) + (V4 −Q3V2)r2

3(4V4 − V 2
2 )(1 + V2r2 + V4r4))3/2

+
(8V4 − 4Q3V2)(2V4r

2 + V2)
3(4V4 − V 2

2 )2(1 + V2r2 + V4r4)1/2
.

By substituting the formulas for V2(ϕ), V4(ϕ) and Q3(ϕ) we get

H(r, ϕ) =
W6(r, ϕ)

6 cos2(2ϕ2 − ϕ4)(W4(r, ϕ))3/2
,

where

W6(r, ϕ) = sin(ϕ4 − 2ϕ2)
+ 3R4(sin(2ϕ + ϕ2) sin(ϕ4 − 2ϕ2) + 1)r2

+ 12R2
4 sin3

(
ϕ +

ϕ4 − ϕ2

2

)
cos

(
ϕ +

3ϕ2 − ϕ4

2

)
r4

+ 8R3
4 sin6

(
ϕ +

ϕ4 − ϕ2

2

)
r6 .

We can assume that cos2(ϕ4 − 2ϕ2) 6= 0, because the opposite case has
been studied in (ii). Finally, we can take as first integral the function

(5.8) H(r, ϕ) =
W6(r, ϕ)

(W4(r, ϕ))3/2
.

By squaring both sides of (5.8), the considered first integrals can be
expressed as the quotient of two trigonometric polynomials where the nu-
merator is the square of a squared sixth degree trigonometric polynomial,
and the denominator is the cube of a fourth degree polynomial.

Proposition 6.1. The product W (r, ϕ) = W2(r, ϕ)W3(r, ϕ) is a null
divergence factor for the system (5.6).

P r o o f. It is sufficient to show that

(5.9)
1
r

∂

∂r

(
P3(ϕ)r4

W4(r, ϕ)W6(r, ϕ)

)
+

∂

∂ϕ

(
1 + Q3(ϕ)r2

W4(r, ϕ)W6(r, ϕ)

)
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=
W4W6(4P3 + Q′3)r2 − P3r

3

(
W4

∂W6

∂r
+ W6

∂W4

∂r

)
(W4W6)2

−
(1 + Q3r

2)
(

W4
∂W6

∂ϕ
+ W6

∂W4

∂ϕ

)
(W4W6)2

= 0 .

But (W4(r, ϕ))5/2 is a null divergence factor, so by applying (4.4) we have

(5.10) W4(4P3 + Q′3)r2 − 5
2

(
P3r

3 ∂W4

∂r
− (1 + Q3r

2)
∂W4

∂ϕ

)
= 0 ,

and by differentiating the first integral (5.8) with respect to t, we have

(5.11)
(

3W6
∂W4

∂r
− 2W4

∂W6

∂r

)
P3r

3

+
(

3W6
∂W4

∂ϕ
− 2W4

∂W6

∂ϕ

)
(1 + Q3r

2) = 0 .

Finally, by multiplying the equation (5.10) by 2W6 and adding it to (5.11)
we obtain (5.9).

6. General systems

P r o o f o f T h e o r e m 2. For type (i) systems, it is easily proved that

H(r, ϕ) =
r2

2
+

∞∑
s=3

Qs(ϕ)
rs+1

s + 1

is a first integral of the system (1.14).
For type (ii) systems, let

H(r, ϕ) =
∞∑

n=2

Hn(ϕ)rn, H2(ϕ) =
1
2

,

be the Poincaré series that we already considered before. From (1.15) it
follows that

Ḣ(r, ϕ) =
∂H

∂r
ṙ +

∂H

∂ϕ
ϕ̇

=
( ∞∑

n=2

nHn(ϕ)rn−1
)( ∞∑

s=2

Ps(ϕ)rs
)

+
( ∞∑

n=2

H ′
n(ϕ)rn

)(
1 +

∞∑
s=2

Qs(ϕ)rs−1
)

.
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Grouping powers of r gives

(6.1) Ḣ(r, ϕ) =
∞∑

n=3

(
H ′

n(ϕ) +
n−2∑
k=1

(k + 1)Hk+1(ϕ)Pn−k(ϕ)

+
n−2∑
k=1

H ′
k+1(ϕ)Qn−k(ϕ)

)
rn .

On the other hand,

Ḣ(r, ϕ) =
∞∑

k=2

V2kr2k ,

hence

(6.2) H ′
n(ϕ) +

n−2∑
k=1

(k + 1)Hk+1(ϕ)Pn−k(ϕ) +
n−2∑
k=1

H ′
k+1(ϕ)Qn−k(ϕ)

=
{

0 if n is odd,
Vn if n is even,

where n = 3, 4, . . . , and H2(ϕ) = 1/2.
Using the trigonometric formulas

sin mω = sin ω
{

(2 cos ω)m−1 −
(

m− 2
1

)
(2 cos ω)m−3

+
(

m− 3
2

)
(2 cos ω)m−5 − . . .

}
,

cos mω =
1
2

{
(2 cos ω)m − m

1
(2 cos ω)m−2 +

m

2

(
m− 3

1

)
(2 cos ω)m−4

− m

3

(
m− 4

2

)
(2 cos ω)m−6 + . . .

}
in (1.15) we have

Ps(ϕ)

= sin ω

(
Cs

s+1 coss ω + Cs
s−1 coss−2 ω +. . .+

{
Cs

1 cos ω if s is odd
Cs

0 if s is even

)
,

Qs(ϕ)

= Cs
s+1 coss+1 ω + Cs

s−1 coss−1 ω + . . . +
{

Cs
2 cos 2ω + Cs

0 if s is odd,
Cs

1 cos ω if s is even,

where ω = ϕ + ϕ0, ϕ0 is arbitrary and the coefficients Cs
j , Cs

j are linear
functions of Rs

j , Rs
j respectively, j = 0, . . . , s + 1.

By setting z = cos ω, we can write Ps(ϕ) = sin ω P s(z) and Qs(ϕ) =
Qs(z), where

P s(z) = Cs
s+1z

s + Cs
s−1z

s−2 + . . . +
{

Cs
1z if s is odd,

Cs
0 if s is even,
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Qs(z) = Cs
s+1z

s+1 + Cs
s−1z

s−1 + . . . +
{

Cs
2z

2 + Cs
0 if s is odd,

Cs
1z if s is even,

which are polynomials in z. On the other hand, d/dϕ = − sin ω d/dz and
the differential equation (3.3) becomes

sin ω

(
− dHn

dz
+

n−2∑
k=1

(k + 1)Hk+1(z)Pn−k(z)− dHk+1

dz
Qn−k(z)

)
=

{
0 if s is odd,
Vn if s is even,

where n = 3, 4, . . . , and H2(z) = 1/2. If we set

Hn(z) =
n−2∑
k=1

z∫
0

(
(k + 1)Hk+1(τ)Pn−k(τ)− dHk+1

dτ
Qn−k(τ)

)
dτ, n = 3, 4, . . . ,

then since Pn−k(z) and Qn−k(z) are polynomials in z of degrees n− k − 1
and n − k respectively, it is easy to prove by recurrence that Hn(z) are
polynomials in z of degree n and of the form

Hn(z) = An
nzn + An

n−2z
n−2 + . . . +

{
An

1 z if n is odd,
An

0 if n is even,

where n = 3, 4, . . . , and Ak
n are functions of the coefficients Cj

i and Cj
i ,

0 ≤ i ≤ j+1, 2 ≤ j ≤ n−1, and by setting Vn equal to zero, for n = 3, 4, . . . ,
the Hn(cos ω) are solutions of (6.2). Notice that the polynomials Hn(z) are
Chebyshev polynomials.

Appendix. Consider the system

ẋ = −y + X2(x, y), ẏ = x + Y2(x, y) ,

where X2(x, y) and Y2(x, y) are second degree homogeneous polynomials.
In polar coordinates, this system reads

ṙ = P2(ϕ)r2, ϕ̇ = 1 + Q2(ϕ)r ,

where

P2(ϕ) = R3 cos(3ϕ + ϕ3) + R1 cos(ϕ + ϕ1) ,

Q2(ϕ) = −R3 sin(3ϕ + ϕ3) + R1 sin(ϕ + ϕ1) .

If the first three Lyapunov constants V4, V6 and V8 are null, the system is
integrable. There are the following four possible cases of integrability:

(i) ϕ1 = ϕ1 and R1 = −3R1. Then

H(r, ϕ) =
r2

2
+ Q2(ϕ)

r3

3
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is a first integral. Note that the divergence of the system is null.
(ii) ϕ1 = ϕ1 and ϕ3 = 3ϕ1. Then

V (r, ϕ) = 4R3 + 4R3((3R1 + R1) sin(ϕ + ϕ1))r
+ (R1 + R3)((R1 − 3R3)(R1 −R1 + 4R3)
+ 4R3(3R1 + R1) sin2(ϕ + ϕ1))r2

+ (R1 + R3)(R1 −R1 + 4R3)(R1 + R1 − 2R3)Q2(ϕ)r3

is a null divergence factor. First integrals H(r, ϕ) are the following.

(ii.1) If R3+R1 6= 0, R1+R1−2R3 6= 0, 3R3−R1 6= 0 and 4R3+R1−R1

6= 0 then

H(r, ϕ) =
(1 + (R1 + R1 − 2R3)r sin(ϕ + ϕ1))k

D
,

D = (4R3 + R1 −R1)(4R3 sin2(ϕ + ϕ1)− (3R3 −R1))r2

+ 8R3r sin(ϕ + ϕ1) +
4R3

R3 + R1
,

k =
2(R1 + R3)

R1 + R1 − 2R3

.

(ii.2) If R3 + R1 = 0 then

H(r, ϕ) =
(

1− 4R1 sin2(ϕ + ϕ1)
(3R1 + R1)

)
r2 +

8R1r sin(ϕ + ϕ1)
(3R1 + R1)2

− 8R1 ln(1 + (3R1 + R1)r sin(ϕ + ϕ1))
(3R1 + R1)3

.

(ii.3) If R1 + R1 − 2R3 = 0 and R3 + R1 6= 0 then

H(r, ϕ) = ln
(

2R3

(R1 + R3)3
+

4R3r sin(ϕ + ϕ1)
(R1 + R3)2

+
(

4R3 sin2(ϕ + ϕ1)
(R1 + R3)

− 1
)

r2

)
− 2(R1 + R3)r sin(ϕ + ϕ1) .

(ii.4) If 3R3 −R1 = 0 and R3 + R1 6= 0 then

H(r, ϕ) =
12R3 + 16R3(R3 + R1)r sin(ϕ + ϕ1) + (R3 + R1)3r2

(1 + (R1 + R3)r sin(ϕ + ϕ1))2

+ 8R3 ln(1 + (R3 + R1)r sin(ϕ + ϕ1)) .

(ii.5) If 4R3 + R1 −R1 = 0 and R3 + R1 6= 0 then

H(r, ϕ) =
−R3 + 2R3(R1 + R3)r sin(ϕ + ϕ1)

1 + 2(R3 + R1)r sin(ϕ + ϕ1)
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+
(R3 + R1)2(4R3 sin2(ϕ + ϕ1) + (R1 + R3))r2

1 + 2(R3 + R1)r sin(ϕ + ϕ1)
− 2R3 ln(1 + 2(R3 + R1)r sin(ϕ + ϕ1)) .

(iii) If ϕ1 = ϕ1, R1 = 3R1 and |R3| = |R1|, we consider the functions

W2(r, ϕ)

=


1 + 4R3 sin(ϕ + ϕ1)r + 4R2

3 sin2

(
ϕ +

ϕ3 − ϕ1

2

)
r2 if R3 = R1 ,

1− 4R3 sin(ϕ + ϕ1)r + 4R2
3 cos2

(
ϕ +

ϕ3 − ϕ1

2

)
r2 if R3 = −R1 ,

W3(r, ϕ) = 1 + 6R3 sin(ϕ + ϕ1)r

+ 12R2
3 cos

(
ϕ3 − 3ϕ1

2

)
sin

(
ϕ +

ϕ3 − ϕ1

2

)
sin(ϕ + ϕ1)r2

+ 8R3
3 cos

(
ϕ3 − 3ϕ1

2

)
sin3

(
ϕ +

ϕ3 − ϕ1

2

)
r3 if R3 = R1 ,

W3(r, ϕ) = 1− 6R3 sin(ϕ + ϕ1)r

− 12R2
3 sin

(
ϕ3 − 3ϕ1

2

)
cos

(
ϕ +

ϕ3 − ϕ1

2

)
sin(ϕ + ϕ1)r2

+ 8R3
3 sin

(
ϕ3 − 3ϕ1

2

)
cos3

(
ϕ +

ϕ3 − ϕ1

2

)
r3 if R3 = −R1 .

Then V (r, ϕ) = W2(r, ϕ)W3(r, ϕ) is a null divergence factor, and H(r, ϕ) =
(W3(r, ϕ))2/(W2(r, ϕ))3 is a first integral.

(iv) If ϕ1 = ϕ1 and R1 = R1 then

V (r, ϕ) = 1 + V1(ϕ)r + V2(ϕ)r2 + V3(ϕ)r3

= 1 + 4R1 sin(ϕ + ϕ1)r + (3(R2
1 −R2

3)
− 2R2

1 cos(2ϕ + 2ϕ1)− 2R1R3 cos(2ϕ + ϕ3 − ϕ1))r2

+ 2(R2
1 −R2

3)Q2(ϕ)r3

is a null divergence factor. In order to determine first integrals, we consider
the decomposition of Q2(ϕ) and P2(ϕ) into real or complex linear factors,
that is,

P2(ϕ) = λ cos(ϕ + ω1) cos(ϕ + ω2) cos(ϕ + ω3) ,

Q2(ϕ) = λ sin(ϕ + ω1) sin(ϕ + ω2) sin(ϕ + ω3) ,

where ω1, ω2 and ω3 are real or complex numbers. First integrals are the
following.
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(iv.1) If ωi − ωj 6= kπ/2, k = 0, 1, i < j and i, j = 1, 2, 3, then

H(r, ϕ) = (1 + λ cos(ω2 − ω3) sin(ϕ + ω1)r)tan(ω2−ω3)

× (1 + λ cos(ω1 − ω2) sin(ϕ + ω3)r)tan(ω1−ω2)

(1 + λ cos(ω1 − ω3) sin(ϕ + ω2)r)tan(ω1−ω3)
.

(iv.2) If ω2 = ω3 − π/2 then

H(r, ϕ) = cot(ω1 − ω2) ln(1 + λ sin(ω1 − ω2) sin(ϕ + ω2)r)
+ tan(ω1 − ω2) ln(1 + λ cos(ω1 − ω2) cos(ϕ + ω2)r)
− λ sin(ϕ + ω1)r .

(iv.3) If ω2 = ω3 then

H(r, ϕ) =
1 + λ cos2(ω1 − ω2) sin(ϕ + ω1)r
1 + λ cos(ω1 − ω2) sin(ϕ + ω2)r

+ ln
(

1 + λ cos(ω1 − ω2) sin(ϕ + ω2)r
(1 + λ sin(ϕ + ω1)r)cos2(ω1−ω2)

)
.

The constants V4, V6 and V8 have been determined for the first time
by Bautin [1]. First integrals in different coordinates were given by Lunke-
vich and Sibirskĭı [5]; later on, Li Chengzhi [3], Sibirskĭı [9], Lloyd [4] and
Żo la̧dek [10] have given expressions for the constants V4, V6 and V8 with
different criteria. The originality of the theorem in our formulation lies, on
the one hand, in the characterization of integrable cases by means of polar
coordinates, which is simpler and generalizable, as we have seen in Theo-
rems 1 and 2; on the other hand, in making explicit the first integrals and
null divergence factors in all cases.
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