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BAYES SEQUENTIAL ESTIMATION PROCEDURES
FOR EXPONENTIAL-TYPE PROCESSES

Abstract. The Bayesian sequential estimation problem for an exponential
family of processes is considered. Using a weighted square error loss and
observing cost involving a linear function of the process, the Bayes sequential
procedures are derived.

1. Introduction. The paper deals with Bayesian sequential estimation
for continuous time stochastic processes whose likelihood functions have the
exponential form exp[ϑZ(t) + Φ(ϑ)S(t)], where (Z(t), S(t)), t ≥ 0, is a
two-dimensional observed process, ϑ is a parameter with values in an open
interval Θ ⊂ R and Φ(ϑ) is a real deterministic function. It is assumed that
Z(0) = 0, S(0) = 0 and S(t), which may be nonrandom as well, is strictly
increasing and continuous as a function of t and S(t) → ∞ as t → ∞.
One has to estimate the mean parameter µ = −Φ′(ϑ). The loss due to
estimation error is assumed to be of the form L(µ, d) = V −1(µ)(d − µ)2,
where d is the chosen estimate and V (µ) = −Φ′′(ϑ) denotes the variance
parameter. The cost of observation is defined by a linear function of the
observed process. Assuming that V (µ) is a quadratic function of µ, Bayes
sequential procedures are derived explicitly in two cases: when the cost is
a linear function of S(t) and when it is a linear function of both S(t) and
Z(t) providing that Z(t) is nondecreasing as a function of t.

The problem of finding Bayes sequential procedures has been studied in
some special cases of the exponential statistical model considered in this
paper. Much attention in the literature is devoted to Bayes sequential es-
timation of the arrival rate µ of a Poisson process. Shapiro and Wardrop
(1978) considered the procedures restricted to rules terminating at arrivals.
Using the loss µ−2(µ− d)2 and sampling costs involving cost per unit time
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and cost per arrival, they derived a Bayes sequential procedure and studied
its large sample properties. El-Sayyad and Freeman (1973) considered the
same cost and loss structure in a continuous time approach. Assuming the
loss to be of the form µ−p(µ− d)2, where 0 ≤ p ≤ 3, Shapiro and Wardrop
(1980a) also solved the problem in continuous time applying the notion of
“monotone case” for continuous time problems and employing Dynkin’s for-
mula. Novic (1980) considered the problem for the same total loss using
a discrete time approach. For a class of loss functions, Rasmussen (1980)
studied the Bayes sequential estimation problem for the gamma process as
a continuous time analogue of the problem of sequential estimation of the
mean of a normal distribution when the variance is unknown. The class of
loss functions considered by her does not include the loss considered in the
present paper. In finding Bayes sequential procedures for sampling from
a one-parameter exponential family of distributions Shapiro and Wardrop
(1980b) considered the cost function involving only one component—the
sample size cost.

The exponential statistical model considered in the present paper in-
cludes a large class of stochastic processes. If the cost involves a linear
function of Z(t) the results of the paper are applicable, in particular, to
Poisson-type processes (comprising the Poisson, Weibull, pure birth and
some other counting processes), and to gamma and negative binomial proc-
esses. If the cost involves only a linear function of S(t), then the derived
results apply, moreover, to some diffusion processes (Wiener processes with
linear drift and Ornstein–Uhlenbeck processes, for example).

In the sense of Barndorff-Nielsen (1980), the exponential statistical model
considered in the present paper is a (2,1)-curved exponential family. If the
cost involves a linear function of Z(t), then the optimal stopping time τ∗r,α

has a form (see formula (14)) such that the canonical statistics Z(τ∗r,α) and
S(τ∗r,α) are not affinely dependent. This implies that the optimal stopping
times derived do not reduce the model to a noncurved exponential family—
in contrast to efficient stopping times. For the problem of reducing curved
exponential families of stochastic processes to noncurved ones, see Stefanov
(1988).

2. An exponential family of processes and conjugate priors. Let
X(t), t ≥ 0, be a continuous or discrete time stochastic process defined on
a probability space (Ω,F , Pϑ), where ϑ is a parameter with values in an
open interval Θ ⊂ R. Denote by Pϑ,t the restriction of Pϑ to the σ-algebra
Ft = σ{X(s) : s ≤ t}. Suppose that for each t the family Pϑ,t, ϑ ∈ Θ, is
dominated by a measure Qt which is the restriction of a probability measure
Q to Ft. Moreover, assume that the density functions (likelihood functions)
have the form
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(1)
dPϑ,t

dQt
= exp[ϑZ(t) + Φ(ϑ)S(t)],

where Z(t), t ≥ 0, and S(t), t ≥ 0, are real-valued stochastic processes
adapted to the filtration Ft, t ≥ 0, and Φ(ϑ) is a twice continuously differen-
tiable real-valued function with −Φ′′(ϑ) > 0 for all ϑ ∈ Θ. It is also assumed
that Z(0) = 0, S(0) = 0; that Z(t) is right continuous as a function of t,
Pϑ-a.s.; and that S(t) is strictly increasing and continuous as a function of
t, and S(t) →∞ as t →∞, Pϑ-a.s.

Define µ = −Φ′(ϑ) and V (µ) = −Φ′′(ϑ). The problem of estimating
the parameter µ will be considered using a Bayes sequential approach. Let
(M,BM) denote the parameter space for µ ∈ M, where M is an open
interval (µ, µ) (µ and/or µ possibly infinite). An exponential family of
conjugate prior distributions on (M,BM) will be considered. Denote by Y
the interior of the convex hull of the set of all possible values of the process
(Z(t), S(t)), t ≥ 0. Let ϑ(µ) be the inverse function of µ = −Φ′(ϑ). Suppose
that the following condition is satisfied:

(i) there exists a constant γ such that∫
M

exp[rϑ(µ) + αΦ(ϑ(µ))] dµ < ∞

for every (r, α) ∈ Y and α > γ.

Let us define a family πr,α, (r, α) ∈ Y, α > γ, of prior distributions of
the parameter µ on (M,BM) according to the following form of densities
(with respect to the Lebesgue measure dµ):

(2) g(µ; r, α) = C(r, α) exp[rϑ(µ) + αΦ(ϑ(µ))].

From condition (i) it follows that there exists a norming constant C(r, α)
such that πr,α is a probability distribution on (M,BM). The expectation
evaluated with respect to this distribution will be denoted by E.

The following two lemmas, which follow from the paper of Magiera
(1992), will be used in the next sections.

Lemma 1. Suppose that EV −1(µ) and Eµ2V −1(µ) exist for every (r, α)
∈ Y, α > γ, and both

exp[rϑ(µ) + αΦ(ϑ(µ))] and µ exp[rϑ(µ) + αΦ(ϑ(µ))]

tend to zero as µ → µ or µ. Then

(3) αEµV −1(µ) = rEV−1(µ)

and

(4) E(αµ− r)2V −1(µ) = α.
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Lemma 2. Suppose that in the exponential statistical model for stochastic
processes, defined by (1), the function V (µ) has the quadratic form

(5) V (µ) = η2µ
2 + η1µ + η0,

where η2, η1, η0 are some constants. Then (i) and all the conditions of
Lemma 1 hold for γ = η2 and , moreover ,

EV −1(µ) =
α− η2

αV (r/α)

for (r, α) ∈ Y and α > η2, and

(6) Eµ =
r + η1

α− 2η2

for (r + η1, α− 2η2) ∈ Y.

3. The (rt, αt) process and statement of the problem. Let us
consider the process (rt, αt), t ≥ 0, with rt = r + Z(t), αt = α + S(t), where
(Z(t), S(t)), t ≥ 0, is a continuous time process belonging to the exponential
family considered. The process (rt, αt), t ≥ 0, is a right continuous Markov
process with Euclidean topological space (E, T ,BE), E ⊂ R×R+, with the
natural Euclidean topology T on E. Moreover, the process (rt, αt), t ≥ 0,
is a Feller process (see Shiryaev (1973), p. 18, for the definition), since for
every bounded, BE-measurable, continuous function f on (E,BE) and for
every t ≥ 0, the function Er,α[f(rt, αt)] is continuous in (r, α). Er,α denotes
expectation when the prior distribution on µ is the πr,α, defined by (2).
Thus, the process (rt, αt), t ≥ 0, is a strongly measurable strong Markov
process, since, by Dynkin (1965), pp. 98, 99, so is every right continuous
Feller process on the topological space (E, T ,BE).

Sequential estimation procedures of the form (τ, d) will be considered
where τ is a stopping time with respect to Ft, t ≥ 0, and d = d(rτ , ατ ) is
an Fτ -measurable function.

The loss associated with estimation, when µ is the true value of the
parameter and d is the chosen estimate, is of the form

L(µ, d) = V −1(µ)(d− µ)2.

If the prior distribution over µ has the density g(µ; r, α), given by (2),
then the posterior density of µ given Fτ is g(µ; rτ , ατ ). The formulae for
expectations in Lemmas 1 and 2 also hold for this posterior distribution
upon substituting rτ and ατ for r and α.

It follows from Lemma 1 that for any stopping time τ , the Bayes esti-
mator of µ given Fτ is

d∗ =
rτ

ατ
,
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by (3), and the posterior expected loss is

E[L(µ, d∗)/Fτ ] =
1
ατ

(from (4)), which is independent of rτ . Thus, the procedure is identified
with the stopping time. The Bayes estimation problem then reduces to the
following optimal stopping problem. The total loss (cost) of observing the
process up to time τ is defined to be

(7) L(rτ , ατ ) =
1
ατ

+ c1ατ + c2rτ ,

where c1 and c2 are nonnegative constants. One has to find an optimal
stopping time which will determine the moment when to stop observing,
so as to minimize the expected total loss Er,αL(rτ , ατ ) over all stopping
times τ . Such a stopping time is called a Bayes sequential procedure or
optimal stopping time.

The problem of finding Bayes sequential procedures for our processes
will be solved in two steps. First, the solution will be given for an exponen-
tial class of processes with stationary independent increments. Next, the
general case will be reduced to that special case by using a random time
transformation.

4. Bayes sequential procedures for an exponential class of pro-
cesses with stationary independent increments. In this section we
consider the exponential statistical model defined by (1) with continuous
time parameter and with S(t) ≡ t. It is well known that in that case the
exponential family of processes reduces to processes with stationary inde-
pendent increments.

We take for Bayes sequential procedures the infinitesimal look-ahead
procedures which are derived from the infinitesimal operator at L(r, α) for
the process (rt, αt), t ≥ 0, where rt = r + Z(t), αt = α + t.

Let f(r, α) be a measurable real-valued function defined on E and con-
tinuous in α. The infinitesimal operator of the process (rt, αt), t ≥ 0, is
defined by (see Shiryaev (1973), p. 19, for a general definition)

(8) Af(r, α) = lim
t→0

Er,α[f(rt, αt)]− f(r, α)
t

provided this limit exists. Of particular interest is the infinitesimal operator
at L(r, α) where L(r, α) is defined by (7).

In the sequel it will be assumed that the exponential-type processes
have a quadratic function V (µ) given by (5). Contrary to appearances, this
assumption is practically not restrictive. The class considered contains all
known processes with stationary independent increments. It follows from
the results of Morris (1982) for natural exponential families of distributions



316 R. Magiera

that there are exactly six processes with stationary independent increments
and V (µ) quadratic, namely, the Poisson process (η2 = η0 = 0, η1 = 1),
negative binomial process (η2 = η1 = 1, η0 = 0), gamma process (η2 = 1,
η1 = η0 = 0), Wiener process with linear drift (η2 = η1 = 0, η0 = 1),
generalized hyperbolic secant process (η2 = η0 = 1, η1 = 0), and binomial
process (η2 = −1, η1 = 1, η0 = 0).

Lemma 3. The infinitesimal operator at L(r, α) is

(9) AL(r, α) = − 1
α2

+ c1 + c2
r + η1

α− 2η2
,

for α > 2η2. If c2 = 0, then AL(r, α) = −α−2 + c1 is defined for α > η2.

P r o o f. Since L(r, α) = α−1 + c1α + c2r, taking into account (6) yields

Er,αL(rt, αt)− L(r, α) =
1

α + t
− 1

α
+

(
c1 + c2

r + η1

α− 2η2

)
t,

which, in view of (8), gives formula (9).

Just as in Shapiro and Wardrop (1980a), the loss L is said to be in
the monotone case if and only if AL(rs, αs) ≥ 0 for some s ≥ 0, and
AL(rs, αs) ≥ 0 implies AL(rt, αt) ≥ 0 for all t > s. This is a modified
definition of the monotone case given by Chow, Robbins and Siegmund
(1971) for discrete time problems and it is interpreted in a similar way.
Namely, if AL(rt, αt) > 0, then the “infinitesimal” prospect for the future
(proceeding from state (rt, αt)) is bad since, in view of (8), the expected
value of the incremental change in L is positive. If the loss is in the monotone
case, then once the infinitesimal prospect becomes bad, it remains bad.
Thus, if L is well behaved, the infinitesimal look-ahead procedure which
stops the first time AL(rt, αt) is nonnegative, should be optimal.

For L in the monotone case, define the stopping time

(10) τr,α = inf{t ≥ 0 : AL(rt, αt) ≥ 0}.

Theorem 1. If c2 = 0, then the Bayes sequential procedure is the fixed
time procedure

τr,α = τ0
α = max{0, c

−1/2
1 − α}

for α > η2.

P r o o f. If c2 = 0 and α > η2, then by Lemma 3, AL(rt, αt) =
−(α + t)−2 + c1 is independent of rt. Thus, AL(rt, αt) ≥ 0 if and only
if c1(α + t)2 ≥ 1. It is then obvious that the loss L is in the monotone case
and the Bayes sequential procedure reduces to the fixed time procedure
determined by τ0

α.
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For c2 > 0 the process Z(t), t ≥ 0, will be assumed to have nondecreasing
sample functions. Note that η1 is nonnegative (and equals 1 or 0) for all
the processes considered (and not only the ones with nondecreasing sample
functions).

Lemma 4. If c2 > 0, then L is in the monotone case for all r > 0 and
α > 4η2.

P r o o f. Note that AL(rt, αt) ≥ 0 if and only if

r + Z(t) + η1 ≥
α + t− 2η2

c2

[
1

(α + t)2
− c1

]
.

The left hand side is nondecreasing in t (by the assumption that Z(t) has
nondecreasing sample functions) and increasing in r. The right hand side is
decreasing in both t and α, for t and α satisfying (α+t)[c1(α+t)2+1] > 4η2,
and consequently for t ≥ 0 and α > 4η2. Hence the result follows.

In view of Lemma 4 and formula (10), if c1 ≥ 0 and c2 > 0 the following
stopping time will be considered:

(11) τr,α = inf
{

t ≥ 0 : r + Z(t) + η1 ≥
α + t− 2η2

c2

[
1

(α + t)2
− c1

]}
for r > 0 and α > 4η2.

Lemma 5. If c1 > 0 and c2 > 0, then

(12) τr,α ≤ c
−1/2
1

and

(13) Z(τr,α) ≤ α− 2η2

c2α2
.

If c1 = 0, then the bound on τr,α is infinite.

P r o o f. The form of the infinitesimal operator AL implies that any
stopping time τr,α with both costs c1 and c2 positive is bounded by the
corresponding τr,α with only one cost positive. Thus it suffices to bound
the τr,α and Z(τr,α) defined with one nonzero cost. Theorem 1 yields the
bound on τr,α. Assuming c1 = 0,AL(rt, αt) < 0 implies that

Z(t) < r + Z(t) + η1 <
α + t− 2η2

c2(α + t)2
≤ α− 2η2

c2α2

for r > 0 and α > 4η2. This implies the bound on Z(τr,α).

Now (7), (12) and (13) yield the following corollary.

Corollary. If c1 ≥ 0 and c2 > 0, then

Er,αL(rτr,α , ατr,α) ≤ 2(α− η2)
α2

+ c1(α + c
−1/2
1 ) + c2r.
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Theorem 2. If c1 ≥ 0 and c2 > 0, then the stopping time τr,α defined
by (11) is optimal , i.e., Er,αL(rτr,α , ατr,α) ≤ Er,αL(rτ , ατ ) for all stopping
times τ .

P r o o f. The proof is based on Dynkin’s identity for the infinitesimal
operator at L(r, α) of the process (rt, αt), t ≥ 0. Suppose τ is a stopping
time such that Er,ατ < ∞. It then follows from Wald’s identity that also
Er,αZ(τ) < ∞. Observe that if either Er,ατ = ∞ or Er,αZ(τ) = ∞, then
the expected loss Er,αL(rτ , ατ ) is infinite. Moreover, note that the identity

Er,αf(rτ , ατ )− f(r, α) = Er,α

τ∫
0

Af(rt, αt) dt,

due to Dynkin, holds with f(r, α) = L(r, α), where L(r, α) is the loss func-
tion considered. It follows from the Corollary that Er,αL(rτr,α , ατr,α) < ∞.
Thus, just as in Shapiro and Wardrop (1980a), Dynkin’s identity yields

Er,αL(rτ , ατ )− Er,αL(rτr,α
, ατr,α

)

= Er,α

τ∫
0

AL(rt, αt) dt− Er,α

τr,α∫
0

AL(rt, αt) dt

= Er,α1{τ≥τr,α}

τ∫
τr,α

AL(rt, αt) dt− Er,α1{τ<τr,α}

τr,α∫
τ

AL(rt, αt) dt,

which is nonnegative by definition of τr,α and the monotone property
of L.

5. Bayes sequential procedures for exponential-type processes.
Let (Z(t), S(t)), t ≥ 0, be the exponential-type process defined in Section 2.
It is well known (see, for example, Stefanov (1986)) that after the random
time transformation ts = inf{t : S(t) ≥ s}, Z̃(s) = Z(ts), s ≥ 0, the process
Z̃(s), s ≥ 0, is an exponential-type process with stationary independent
increments.

In this section we exhibit Bayes sequential estimation procedures for
those continuous time processes (Z(t), S(t)), t ≥ 0, for which V (µ) has the
quadratic form (5).

Define

(14) τ∗r,α

=


τ∗α = inf{t ≥ 0 : S(t) ≥ c−1/2 − α}, α > η2, if c2 = 0,

inf
{

t ≥ 0 : r + Z(t) + η1 ≥
α + S(t)− 2η2

c2

[
1

(α + S(t))2
− c1

]}
,

r > 0, α > 4η2, if c2 > 0.
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Since S(t) is strictly increasing and continuous we do not lose any part
of the sample functions of the original process after the random time trans-
formation given above. Thus,

c2[r + Z(t) + η1] ≥ [α + S(t)− 2η2][(α + S(t))−2 − c1]

if and only if

c2[r + Z̃(t) + η1] ≥ [α + t− 2η2][(α + t)−2 − c1].

This implies the equivalence of the optimal stopping problems we are inter-
ested in for both processes (Z(t), S(t)), t ≥ 0, and (Z̃(t), t), t ≥ 0. Thus, the
results of the previous section yield the following theorems.

Theorem 3. The following bounds hold :

S(τ∗r,α) ≤ c
−1/2
1 , Z(τ∗r,α) ≤ α− 2η2

c2α2
,

where the bounds are infinite if the cost involved is zero, and

Er,αL(rτ∗r,α
, ατ∗r,α

) ≤

{
α−1 + c1(α + c

−1/2
1 ) if c2 = 0;

2(α− η2)α−2 + c1(α + c
−1/2
1 ) + c2r if c2 > 0.

Theorem 4. The stopping time τ∗r,α is optimal.

Example (a family of counting processes). Let X(t), t ≥ 0, be a count-
ing process and let X(t) = M(t) + A(t) denote its Doob–Meyer decom-
position, where M(t) is the martingale part and A(t) is the compensator.
Assume that A(t) = µB(t), where µ > 0 and B(t) is continuous. It is
well known (Liptser and Shiryaev (1978)) that under certain conditions the
likelihood function is given by

dPϑ,t

dQt
= exp[ϑ(X(t)− x0) + Φ(ϑ)B(t)],

where X(0) = x0, ϑ = log µ and Φ(ϑ) = − expϑ. In this case V (µ) = µ.
An example is obtained by taking B(t) =

∫ t

0
H(s) ds, where H(t) is a

positive, predictable stochastic process. In particular, H(t) ≡ 1 for the
Poisson process, H(t) = btb−1 for the Weibull process (b being a known
value), H(t) = X(t−) for the pure birth process and H(t) = X(t−)[M −
X(t−)]+ for the logistic birth process, where M is a known constant.

According to Theorem 4, for c1 ≥ 0 and c2 > 0, the Bayes sequential
estimation procedure is (τ∗r,α, d(τ∗r,α)), where

τ∗r,α = inf
{

t ≥ 0 : r + X(t)− x0 + 1 ≥ α + B(t)
c2

[
1

(α + B(t))2
− c1

]}
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for r > 0 and α > 0, and

d(τ∗r,α) =
r + X(τ∗r,α)− x0

α + B(τ∗r,α)
.
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