
APPLICATIONES MATHEMATICAE
22,3 (1994), pp. 331–337
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Abstract. The problem of estimating the number, n, of trials, given a
sequence of k independent success counts obtained by replicating the n-trial
experiment is reconsidered in this paper. In contrast to existing methods it
is assumed here that more information than usual is available: not only the
numbers of successes are given but also the number of pairs of consecutive
successes. This assumption is realistic in a class of problems of spatial
statistics. There typically k = 1, in which case the classical estimators
cannot be used. The quality of the new estimator is analysed and, for
k > 1, compared with that of a classical n-estimator. The theoretical basis
for this is the distribution of the number of success pairs in Bernoulli trials,
which can be determined by an elementary Markov chain argument.

1. Introduction. The standard statistical problem associated with the
binomial distribution is that of estimating its probability, p, of success.

A much less well studied and considerably harder problem is that of
estimating the number, n, of trials. The papers by Olkin, Petkau and Zidek
[6] and Carroll and Lombard [3] study this problem for the case where k
independent success counts s1, . . . , sk are given. Their methods cannot be
applied if only one count is considered, k = 1. But just this case appears in
some problems of spatial statistics.

An important application consists in estimating the fraction of chips on
a silicon wafer which are faulty because of technological reasons. In a gen-
eral setting the spatial problem is as follows. A rectangle is divided into
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M × N cells. A fraction, f , of these cells has a property F . For example,
these cells are chips which are technologically faulty, or these cells repre-
sent areas in a forest where certain mushrooms cannot live. The other cells
have independently from one another a property R or not. The probability
that a cell which does not have the F -property has property R is p. Cells
which have this property are considered to be “successes”. Cells which do
not belong to the R-class cannot be discriminated from the cells with prop-
erty F .

In our examples, “successes” represent chips free of failures or areas in
which mushrooms are detected. Our problem is estimating the number
n = M × N × (1 − f). If n is estimated, then we determine p by dividing
the total number of successes by the estimated n.

We assume that the union of all cells with property F forms an unknown
connected subarea of perhaps elliptical shape in the rectangle.

The estimation method bases on a success count procedure in the whole
rectangle. We count all successes and all pairs of consecutive successes which
appear in the same horizontal line of cells in the rectangle; see Fig. 1.

F F F F F F F F F F F F F F F F
F F F F F F F F ∗ F F F F F F F
F F F F F F ∗ F F F F F
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F F F ∗ F F
F F F ∗ ∗ ∗ ∗ F
F F F ∗ ∗ ∗ ∗ ∗
F F F ∗ ∗ ∗ F F F
F F F F ∗ ∗ F F F F F
F F F F F ∗ F F F F F F
F F F F F F F F F F F F

Fig. 1. Cells with property F (F), R (empty), and not-R (∗). The aim of the statistical
procedure is the estimation of the number of cells without “F”, where F -cells and ∗-cells
cannot be discriminated

In the following we do not continue the discussion of the spatial statistical
problem. Of course, for it our estimation procedure is an approximation only
because of edge effects at the boundary of the subregions of cells with and
without property F . Probably, methods for restoring dirty images could
yield an adequate solution, in particular Bayesian inference methods; see
Besag and Green [1] and Besag, York and Mollié [2]. For further discussion
of the chip problem we refer to Kühne [5].
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Here we discuss the problem for the binomial distribution assuming that
information about pairs of successes is available.

2. The number of pairs of successes. It is well known that the num-
ber of successes in n trials has a binomial distribution. But what about the
number of consecutive pairs in n trials? (We repeat that in a series of three
successes we count two pairs and in a series of four successes three pairs.
In contrast, in the probabilistic literature usually “runs” are considered,
i.e. series of consecutive successes. But see also Janson [4].) It seems to be
difficult to give a simple formula for the probabilities pn,l of having l pairs of
successes in n trials, l = 0, 1, . . . , n−1. But, nevertheless, these probabilities
can be calculated analytically by means of a simple iteration procedure.

For this purpose, let us consider the following Markov chain. It has the
states El and Ml, l = 0, 1, . . . , where

El = l success pairs and the last trial was a success,
Ml = l success pairs and the last trial was not a success.

Let en,l be the probability that after the nth trial the chain is in El and
mn,l the corresponding one for Ml. For these probabilities the following
recurrence relation is true:

en+1,l = pen,l−1 + pmn,l, en,−1 ≡ 0,(2.1)
mn+1,l = (1− p)en,l + (1− p)mn,l, l = 1, 2, . . .(2.2)

For n = 3 we have
e3,0 = p(1− p), m3,0 = (1− p)3 + 2p(1− p)2,

e3,1 = p2(1− p), m3,1 = p2(1− p).

e3,2 = p3,

The other probabilities are zero.
Clearly,

pn,l = en,l + mn,l.

Analogously, the joint distribution of the numbers of successes and pairs
of successes can be determined. The states of the corresponding more com-
plicated Markov chain describe both numbers. This distribution is useful
for the investigation of the estimator n̂ in the next section.

Of particular importance for the investigation of this estimator is the
probability, pn,0, that in n trials there is no pair of successes. It can be
separately determined, without using the formulae (2.1) and (2.2).

Consider for this purpose a Markov chain which describes the behaviour
before first appearance of a pair of successes. It has the states E,M and
D. E means that the last Bernoulli trial was a success, M that it was not
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a success, and D that it was a success following a success. If D is entered,
then the first pair of successes is obtained. This state is an absorbing state.
The one-step transition probabilities pij are

i j E M D

E 0 1− p p
M p 1− p 0
D 0 0 1

Let the state probabilities of this Markov chain be en, mn and dn. Then

pn,0 = 1− dn.

The recursive relations

(2.3)
en+1 = p ·mn, e1 = p,

mn+1 = (1− p)(en + mn), m1 = 1− p,

lead to

(2.4) mn+1 = (1− p)(mn + pmn−1), n = 2, 3, . . .

By means of (2.4), (2.3) and

en + mn + dn = 1,

pn,0 can be easily calculated. The problem considered here is equivalent
to the problem of finding the distribution of the waiting time to the first
success-run of length two. For its solution also generating functions are used.

3. The estimation procedures. Consider a series of n independent
Bernoulli trials with success probability p. Let n1 be the number of successes
and n2 the number of pairs of consecutive successes. Then the mean of n1

is

(3.1) En1 = np.

The mean of n2 is

(3.2) En2 = (n− 1)p2.

The proof of (3.2) is easy. Let X1, . . . , Xn be i.i.d. random variables which
take only the values 0 and 1, with P (X1 = 1) = p. Furthermore, let Z be
the number of pairs with Xi = 1 and Xi+1 = 1. Then

Z =
n−1∑
i=1

XiXi+1.

Hence, the mean En2 of Z is

EZ =
n−1∑
i=1

EXiXi+1 = (n− 1)p2.
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The formulas (3.1) and (3.2) suggest the n-estimator

(3.3) n̂ =
n2

1

n2
.

Since n is an integer, in practice instead of n̂ the nearest integer to n̂ is
taken as the estimator.

By simulation and numerical experiments we learned that it was better
than an estimator originally used by the first author. This estimator had
used the number of success pairs without overlappings. That means, in
an isolated sequence of three consecutive successes only one pair is counted,
while in a series of four successes two pairs are counted. Clearly, the number
of pairs in our counting procedure is greater than in the original counting.
This may explain the better quality. “Better” means mainly “smaller vari-
ance of estimation”; the biases are similar for both methods.

Table 1 shows parameters which characterize the quality of n̂.

TABLE 1. Means and standard deviations of n̂

p n 10 20 50 100 200

0.3 211.3
39.9

0.5 103.3 203.0
12.2 14.9

0.7 22.0 51.7 101.6 200.9
3.6 3.6 4.8 6.1

0.9 11.3 21.2 51.2 101.2 200.6
1.1 0.9 1.0 1.2 1.6

The values of n and p are such that pn,0 = P (n2 = 0) is very small.
The values of mean and standard deviation for n < 50 result from an exact
iteration procedure such as mentioned in Section 2. The other values were
obtained by Monte Carlo simulation. (In the simulations the case n2 = 0
did not appear; the calculated means and standard deviations are under the
condition that n2 > 0.)

It is not surprising that the biases (mean of n̂ − true value) and the
standard deviation decrease with increasing p for fixed n. In our opinion,
the estimator n̂ seems to be a good estimator for p not too small.

If we have to consider k success counts (for example, k silicon wafers or
k forest areas), then the estimator (3.5) in [6] could be an alternative. This
estimator is a stabilized method of moments estimator:

(3.4) ñ = max{s2φ2/(φ− 1), smax}

where s is the sample variance to the success counts s1, . . . , sk and smax is
the maximum of the k counts. Furthermore,
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φ =
{

x/s2 if x/s2 ≥ 1 + 1/
√

2,
max{(smax − x)/s2, 1 +

√
2} if x/s2 < 1 + 1/

√
2.

If information about success pairs is available, then (3.3) can be used for
constructing two further estimators in the case k > 1:

(3.5) n̂ = (n̂(1) + . . . + n̂(k))/k

where n̂i is the result of (3.3) for the ith success count and

(3.6) n̂(k) =
(number of all successes in all k counts)2

number of all success pairs in all k counts
.

We have compared the estimators (3.4)–(3.6) by a Monte Carlo experi-
ment.

It was carried out as in [6]. The whole procedure consisted in 1000 steps.
At each step, values of n, p, and k were generated at random and then k
sequences of n trials. All three estimators were used and the winner (smallest
absolute difference between n and the n-estimator) was determined.

Clearly, such a comparison only makes sense for great values of p. We
restricted the p-values to

p ≥ 1.033− 0.0133n for n ≤ 40

and

p ≥ 0.633− 0.0033n otherwise.

For these values pn,0 is smaller than 0.001. (If n2 became zero, n̂ was of
course the looser estimator.) The values for n and k were taken uniformly
between 10 and 100 and 3 and 25, as in [6].

The result of this comparison was clear: In 652 cases n̂ was the winner,
in 348 the winner was ñ; n̂(k) was never the winner.
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WOLFGANG KÜHNE DIETRICH STOYAN

BEILSTR. 11 HELMUT STOYAN

01277 DRESDEN, GERMANY TU BERGAKADEMIE FREIBERG

FACHBEREICH MATHEMATIK

09596 FREIBERG, GERMANY

PETER NEUMANN

TECHNISCHE UNIVERSITÄT DRESDEN
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