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A FAST ALGORITHM FOR THE CONSTRUCTION OF
RECURRENCE RELATIONS FOR MODIFIED MOMENTS

Abstract. A new approach is presented for constructing recurrence rela-
tions for the modified moments of a function with respect to the Gegenbauer
polynomials.

1. Introduction. Let w be a weight function on the interval (−1, 1).
We call the integrals

(1.1) mk[w] ≡ mλ
k [w] :=

1∫
−1

w(x)Cλ
k (x) dx (λ > −1/2)

modified moments of w with respect to the Gegenbauer polynomials

Cλ
k (x) :=

(−1)n(2λ)k

2kk!(λ+ 1
2 )k(1− x2)λ−1/2

Dk{(1− x2)k+λ−1/2},

where D = d/dx (see, e.g., [2, Vol. 1, §10.9], or [9, Vol. 1, §8.3]), or the
Gegenbauer moments, for short. Here (a)m is the Pochhammer symbol given
by

(a)0 := 1, (a)m := a(a+ 1) . . . (a+m− 1) (m = 1, 2, . . .).
Modified moments, provided they are accurately computable, are used in
the generation of nonstandard orthogonal polynomials (see [3, 4, 5] and
the references given therein) which have applications in many areas (e.g.
numerical quadrature, summation of series, approximation). The Chebyshev
moments,

(1.2) τk[w] :=
1∫

−1

w(x)Tk(x) dx =
{
m0

0[w] (k = 0),
1
2km

0
k[w] (k ≥ 1)
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are needed in the numerical evaluation of certain difficult integrals by the so-
called modified Clenshaw–Curtis method (see, e.g., [10, 11, 12]). Sometimes,
by a stroke of luck, modified moments are explicitly known. More frequently,
however, they are computed from a recurrence relation of the form

(1.3) Lmk[w] = %(k),

judiciously employed. Here L is a difference operator,

L :=
u+r∑
j=u

λj(k)Ej ,

where λu, λu+1, . . . , λu+r (λu 6≡ 0, λu+r 6≡ 0) are known (rational) functions
in k, u ∈ Z, r ∈ Z+ is referred to as the order of L, and Ej (j ∈ Z) is the
jth shift operator, acting on the variable k:

Ejµ(k) = µ(k + j)

for any function µ : Z → Z. (We write I for E0.)
In the cited references, such recurrence relations are constructed by ad

hoc methods. A systematic way of constructing a recurrence (1.3) under the
assumption that the function w satisfies a linear differential equation

(1.4)
n∑

i=0

pni(x)Diw = q,

where pni are polynomials, and q is a known function, was described in [6].
The first algorithm given therein (which, however, is the most complex) leads
to a recurrence of the lowest possible order. This algorithm seems to be of
great theoretical value. For instance, it helped us to obtain some partial
results on certain hypergeometric sums which were later generalized to the
form given in [7]. Unfortunately, the degree of complexity of the algorithm
grows quickly with n, so that the calculations may be very tedious.

The aim of the present paper is to propose a new algorithm, which in
the author’s belief is equivalent to the best algorithm of [6]. As a final result
we obtain a pair P,L of difference operators and a function ψ(k) such that
the recurrence (1.3) holds with %(k) = Pmk[q] − ψ(k). The order of the
recurrence equals

ord(P ) + 2 max
0≤i≤n, pni 6≡0

(deg pni − i),

where ord(P ) is the order of the operator P .
In applications, the order n of the differential equation (1.4) is usually

not greater than 3. We give the closed-form expressions for P,L and %(k)
for the cases n = 1 and n = 2, and show how the case n = 3 may be treated
with a little effort, using the results given for n ≤ 2.
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Let us remark that the algorithm can be easily extended to the case of
arbitrary n > 3.

It should be noticed that P,L and %(k) are given in terms of certain
basic difference operators (see Section 2). A scalar form of the recurrence
relation (1.3) may be obtained using a language for symbolic manipulation,
as for instance Maple [1].

In Section 2, we give some important properties of the Gegenbauer mo-
ments (1.1). Section 3 contains the main result of the paper—formulae for
P,L and %(k). In Section 4 we give an illustrative example.

2. Basic identities

Lemma 2.1 [6]. The Gegenbauer moments (1.1) satisfy the identities

mk[xw(x)] = Xmk[w],(2.1)
Dmk[Dw] = mk[w] +Dϕk[w],(2.2)

where X and D are the second-order difference operators

X :=
k + 2λ− 1
2k + 2λ

E−1 +
k + 1

2k + 2λ
E,(2.3)

D :=
1

2k + 2λ
{E−1 − E},(2.4)

and

(2.5) ϕk[w] ≡ ϕλ
k [w] := [w(x)Cλ

k (x)]x=1
x=−1.

It is easy to generalize equation (2.1) to the form

(2.6) mk[pw] = p(X)mk[w] (p a polynomial).

In Lemmas 2.2–2.4 we give identities which may be considered as gener-
alizations of (2.2). We shall need some notation.

For i = 0, 1, . . . and σ = ±1 define the difference operator

(2.7) A
(σ)
i := I − σαi(k)E,

where

αi(k) :=
(2k + 2λ+ 1)2

(2k + 2λ+ i+ 1)2
.

Notice that

A
(σ)
0 = I − σE, A

(σ)
1 = I − σ

2k + 2λ+ 1
2k + 2λ+ 3

E.

Further, let

S
(σ)
ij := A

(σ)
i A

(σ)
i−1 · · ·A

(σ)
j ,(2.8)

P
(σ)
j := S

(σ)
j−1,0 (j = 0, 1, . . .).(2.9)
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We adopt the convention that S(σ)
ij = I for i < j.

Also, we will use the notation

κ(k) := (k + 1)(k + 2λ− 1),(2.10)
µi(k) := 2−b(i+1)/2c(2k + 2λ+ 1)i (i = 0, 1, . . .).(2.11)

Finally, let us introduce the differential operators

(2.12)

(2.13)

U := (x2 − 1)D + (3− 2λ)xI, G := UD,

Vσ := (x+ σ)D + (3/2− λ)I, Hσ := VσD (σ = ±1).

Here I is the identity operator.
Now we are able to prove the following.

Lemma 2.2. Let Q1 be any of the following first-order differential oper-
ators:

(2.14) Q1 :=

U (case 1A),
Vσ (σ = ±1) (case 1B),
D (case 1C).

Then the identity

(∗) Q1mk[Q1w] = M1mk[w] + τ
(1)
k [w]

holds with

Q1 :=


I (case 1A),
P

(σ)
1 (case 1B),
D (case 1C),

M1 :=


κ(k)D (case 1A),
µ1(k)P

(−σ)
1 (case 1B),

I (case 1C),

τ
(1)
k [w] :=


0 (case 1A),
P

(σ)
1 ϕk[(x+ σ)w] (case 1B),
Dϕk[w] (case 1C).

P r o o f. C a s e 1A. As mk[(x2−1)Df ] = Hmk[f ], where H := (k+2λ
− 2)2E−1 − (k + 1)2E (cf. [6, Eq. (20)]), we have

mk[Q1w] = mk[Uw] = {H+(3−2λ)X}mk[w] = (k+1)(k+2λ−1)Dmk[w].

Thus identity (∗) holds with Q1,M1 and τ (1)
k [w] given in the lemma.

C a s e 1B. It can be checked that the operator Q := (k + 2λ − 1)I +
σ(k + 2)E satisfies the following equations:

P
(σ)
1 (X + σI) = QD,

Q+ ( 3
2 − λ)P (σ)

1 = 1
2 (2k + 2λ+ 1)P (−σ)

1 .
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Using these identities and (2.2), we obtain

P
(σ)
1 mk[Vσw] = QDmk[Dw] + ( 3

2 − λ)P (σ)
1 mk[w]

= 1
2 (2k + 2λ+ 1)P (−σ)

1 mk[w] +QDϕk[w]

= µ1(k)P
(−σ)
1 mk[w] + P

(σ)
1 ϕk[(x+ σ)w].

Thus, equation (∗) holds with Q1,M1 and τ (1)
k [w] specified in the lemma.

C a s e 1C. Equation (∗) is a disguised form of (2.2).

The next two lemmas can be proved in a similar manner.

Lemma 2.3. Let Q2 be any of the following second-order differential op-
erators:

(2.15) Q2 :=

G (case 2A),
Hσ (σ = ±1) (case 2B),
D2 (case 2C).

Then the identity

Q2mk[Q2w] = M2mk[w] + τ
(2)
k [w]

holds with

Q2 :=


I (case 2A),
P

(σ)
2 (case 2B),
D2 (case 2C),

M2 :=

κ(k)I (case 2A),
µ2(k)E (case 2B),
I (case 2C),

τ
(2)
k [w] :=


0 (case 2A),
µ2(k)EDϕk[w] + P

(σ)
2 ϕk[(x+ σ)Dw] (case 2B),

Dϕk[w] +D2ϕk[Dw] (case 2C).

Lemma 2.4. Let Q3 be any of the following third-order differential oper-
ators:

(2.16) Q3 :=



GU (case 3A),
VσG (σ = ±1) (case 3B),
DG (case 3C),
HσVσ (σ = ±1) (case 3D),
DHσ (σ = ±1) (case 3E),
D3 (case 3F).

Then the identity

Q3mk[Q3w] = M3mk[w] + τ
(3)
k [w]
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holds with

Q3 :=



I (case 3A),
P

(σ)
1 (case 3B),
D (case 3C),
P

(σ)
3 (case 3D),
P

(σ)
2 D (case 3E),
D3 (case 3F).

M3 :=



[κ(k)]2D (case 3A),
µ1(k)P

(−σ)
1 κ(k)I (case 3B),

κ(k)I (case 3C),
µ3(k)EP

(−σ)
1 (case 3D),

µ2(k)E (case 3E),
I (case 3F).

τ
(3)
k [w] :=



0 (case 3A),
P

(σ)
1 ϕk[(x+ σ)Gw] (case 3B),
Dϕk[Gw] (case 3C),
µ2(k)EP

(σ)
1 {ϕk[(x+ σ)w] +Dϕk[Vσw]}

+ P
(σ)
3 ϕk[(x+ σ)DVσw] (case 3D),

µ2(k)EDϕk[w]
+P (σ)

2 {ϕk[(x+ σ)Dw] +Dϕk[Hσw]} (case 3E),
Dϕk[w] +D2ϕk[Dw] +D3ϕk[D2w] (case 3F).

Observe that the difference operators Q1, Q2, Q3 given in the above
lemmas are always of the form

P
(σ)
d De

with d, e ≥ 0 and σ ∈ {−1,+1}. In Section 3.0, we shall need an operator
which is a common multiple of two operators of the above form. Such an
operator is given in Lemma 2.6 below. We must introduce a new family of
difference operators first.

For m = 0, 1, . . . and σ ∈ {−1, 1} define the difference operator

R(σ)
m := (2k + 2λ)−1E−1 + σ%m(k)I,

where

%m(k) :=
2k + 2λ+ 2m+ 1
(2k + 2λ+m)2

.

Further, let

T
(σ)
ij := R

(σ)
i R

(σ)
i+1 . . . R

(σ)
j , U

(σ)
h := T

(σ)
0,h−1 (h = 0, 1, . . .).

By convention, T (σ)
ij = I for i > j.

Lemma 2.5. The identity

(2.17) P (σ)
v Dr = T

(σ)
v,v+r−1P

(σ)
v+r

holds for v, r = 0, 1, . . .

P r o o f. It is easy to verify that

R
(σ)
0 A

(σ)
0 = D, R(σ)

m A(σ)
m = A

(σ)
m−1R

(σ)
m−1 (m = 1, 2, . . .).
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Hence,

Dr = R
(σ)
0 R

(σ)
1 . . . R

(σ)
r−1A

(σ)
r−1A

(σ)
r−2 . . . A

(σ)
0 = U (σ)

r P (σ)
r (r ≥ 0),

P (σ)
v U (σ)

r = A(σ)v − 1 . . . A(σ)
1 A

(σ)
0 R

(σ)
0 R

(σ)
1 . . . R

(σ)
r−1

= R(σ)
v R

(σ)
v+1 . . . R

(σ)
v+r−1A

(σ)
v+r−1 . . . A

(σ)
r+1A

(σ)
r

= T
(σ)
v,v+r−1S

(σ)
v+r−1,r (v, r ≥ 0)

and the result follows in view of S(σ)
v+r−1,rP

(σ)
r = P

(σ)
v+r (cf. (2.8), (2.9)).

Lemma 2.6. Let

(2.18) Q1 := P (σ)
v Dr, Q2 := P (τ)

u Ds,

where v, r, u, s ≥ 0, v + r ≥ u + s and σ, τ ∈ {−1, 1}. Set q := 0 when
σ = τ , and q := u otherwise. Then the operator Q := P

(σ)
d De, where

e := max{r, q + s} and d := v + r − e, is a common multiple of Q1 and Q2,

(2.19) Q = YiQi (i = 1, 2),

where

(2.20) Y1 := T
(σ)
d,v−1, Y2 :=

{
S

(σ)
d−1,hT

(σ)
h,u−1 (σ = τ),

P
(σ)
d D−hU

(τ)
u (σ = −τ),

and where h := u+ s− e.

P r o o f. Let σ = τ . Substitute the expressions for Yi and Qi, given in
(2.18) and (2.20), into the right-hand side of (2.19), and use Lemma 2.5.
We obtain

Y1Q1 = T
(σ)
d,v−1P

(σ)
v Dr = P

(σ)
d Dv−dDr = P

(σ)
d De = Q,

Y2Q2 = S
(σ)
d−1,hT

(σ)
h,u−1P

(σ)
u Ds = S

(σ)
d−1,hP

(σ)
h Du−hDs = P

(σ)
d De = Q.

The case τ = −σ can be treated in an analogous way.

3. Formulae

3.0. Introduction. Let Pn be a differential operator of the form

(3.1) Pn =
n∑

i=0

pni(x)Di

of order n ≤ 3, with polynomial coefficients pni (i = 0, 1, . . . , n). Let the
operator Pn−1 of order n− 1 be defined by

Pn−1w := Pnw −Qn(qnw),

whereQn is an nth-order operator, of the form given in formula (2.{13+n}),
and qn is a polynomial such that Qn(qnw) = pnnD

nw + . . . and that the
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corresponding difference operator Qn (given in Lemma 2.{1 + n}) has the
least order. Repeating this process with n replaced by n− 1, n− 2 etc. we
obtain the representation

(3.2) Pnw =
n∑

i=0

Qi(qiw),

where we set Q0 = I (identity operator), for convenience.
Let w be a solution of the differential equation

Pnw = q (n ≤ 3),

where the differential operator Pn is of the form given in (3.2). Using
Lemmas 2.2–2.4 we obtain difference operators Qi, Mi and functionals τ (i)

k [·]
such that

(3.3) Qimk[Qiw] = Mimk[w] + τ
(i)
k [w] (i = 1, . . . , n).

Now, using Lemma 2.6, a common multiple of the operators Qi can be
obtained in the form

(3.4) P = P
(σ)
d De,

where σ ∈ {−1,+1} and d, e ≥ 0 are integers; let the difference operators
Zi be such that

(3.5) P = ZiQi (i = 1, . . . , n).

Multiplying both sides of the equation (3.3) on the left by Zi, and using Lem-
ma 2.6, (3.5) and (2.6), we obtain the result summarized in the following
theorem.

Theorem 3.1. Let w be a solution of the differential equation

Pnw = q (n ≤ 3),

where the differential operator Pn is of the form given in (3.2) and q is a
known function, and suppose the moments mk[w(i)] (i = 0, 1, . . . , n) and
mk[q] exist. Then we have the recurrence relation

(3.6) Lmk[w] = %(k)

with

L :=
n∑

i=0

ZiMiqi(X),(3.7)

%(k) := Pmk[q]−
n∑

i=1

Ziτ
(i)
k [qiw].(3.8)



Recurrence relations for modified moments 367

The order of the recurrence (3.6) is

ord(P ) + 2 max
0≤i≤n, pni 6≡0

(deg pni − i),

where ord(P ) = d+ 2e is the order of the difference operator P.

The last part of the theorem follows from [6, Eq. (80)].
Now, the form of the operators Qi (i = 1, . . . , n) in the representa-

tion (3.2) can be deduced from the coefficients pni of the operator (3.1).
Thus, we can actually obtain closed-form expressions for P , L and %, at
least for small n. In the next subsections we give such formulae for n = 1
and n = 2, and describe the way the case n = 3 may be treated with a small
effort.

3.1. First-order differential equation. Assume that w satisfies the equa-
tion

P1w ≡ p11(x)w′(x) + p10(x)w(x) = q(x).
C a s e 3.1.1. p11(±1) = 0:

P := I, L := κ(k)Dq1(X) + q0(X), %(k) := mk[q],

where
q1(x) := p11(x)/(x2 − 1), q0(x) := p10(x)−Uq1(x).

C a s e 3.1.2. p11(σ) 6= 0, p11(−σ) = 0 for σ = −1 or σ = 1:

P := P
(σ)
1 , L := µ1(k)P

(−σ)
1 q1(X) + P

(σ)
1 q0(X),

%(k) := P{mk[q]− ϕk[p11w]},
where

q1(x) := p11(x)/(x+ σ), q0(x) := p10(x)− Vσq1(x).

C a s e 3.1.3. p11(±1) 6= 0:

P := D, L := q1(X) +Dq0(X), %(k) := P{mk[q]− ϕk[p11w]},
where

q1 := p11, q0 := p10 −Dq1.
3.2. Second-order differential equation. Assume that w satisfies the

equation

P2w ≡ p22w
′′(x) + p21(x)w′(x) + p20(x)w(x) = q(x).

Define

(3.9) lσ := p21(σ)− 1
2 (3− 2λ)p′22(σ).

C a s e 3.2.1. p22(±1) = 0 and l−1 = l1 = 0:

P := I, L := κ(k){q2 +Dq1(X)}+ q0(X), %(k) := mk[q],
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where
q2(x) := p22(x)/(x2 − 1),

q1(x) := [p21(x)− (3− 2λ)xq2(x)]/(x2 − 1)− 2Dq2(x),
q0 := p20 −Gq2 −Uq1.

C a s e 3.2.2. p22(±1) = 0, l−σ = 0, lσ 6= 0 for σ = −1 or σ = 1:

P := P
(σ)
1 , L := P

(σ)
1 {κ(k)q2(X) + q0(X)}+ µ1(k)P

(−σ)
1 q1(X),

%(k) := P{mk[q]− ϕk[(x+ σ)q1w]},
where

q2(x) := p22(x)/(x2 − 1),
q1(x) := [p21(x)− (3− 2λ)xq2(x)]/(x+ σ)− 2(x− σ)Dq2(x),

q0 := p20 − Vσq1 −Gq2.

C a s e 3.2.3. p22(±1) = 0, l−1 6= 0, l1 6= 0:

P := D, L := q1(X) +D{κ(k)q2(X) + q0(X)},
%(k) := D{mk[q]− ϕk[q1w]},

where
q2(x) := p22(x)/(x2 − 1),

q1(x) := p21(x)− (3− 2λ)xq2(x)− 2(x2 − 1)Dq2(x),
q0 := p20 −Dq1 −Gq2.

C a s e 3.2.4. p22(σ) 6= 0, p22(−σ) = 0, l−σ = 0 for σ = −1 or σ = 1:

P := P
(σ)
2 , L := A

(σ)
1 {µ1(k)P

(−σ)
1 q1(X) + P

(σ)
1 q0(X)}+ µ2(k)Eq2(X),

%(k) := P{mk[q]− ϕk[(x+ σ)((q2w)′ + q1w)]} − µ2(k)EDϕk[q2w],

where
q2(x) := p22(x)/(x+ σ),
q1(x) := [p21(x)− 1

2 (3− 2λ)q2(x)]/(x+ σ)− 2Dq2(x),
q0 := p20 − Vσq1 −Hσq2.

C a s e 3.2.5. p22(σ) 6= 0, p22(−σ) = 0, l−σ 6= 0 for σ = −1 or σ = 1:

P := P
(σ)
1 D, L := Wq2(X) + P

(σ)
1 {q1(X) +Dq0(X)},

%(k) := P{mk[q]− ϕk[q1w + p22w
′]} −WDϕk[q2w],

where W := R
(σ)
1 µ2(k)E = µ1(k − 1)I + σµ1(k + 1)E, and

q2(x) := p22(x)/(x+ σ),
q1(x) := p21(x)− 1

2 (3− 2λ)q2(x)− 2(x+ σ)Dq2(x),
q0 := p20 −Dq1 −Hσq2.
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C a s e 3.2.6. p22(±1) 6= 0:

P := D2, L := q2(X) +Dq1(X) +D2q0(X),
%(k) := P{mk[q]− ϕk[D(q2w) + q1w]} −Dϕk[q2w],

where

q2 := p22, q1 := p21 − 2Dq2, q0 := p20 −Dq1 −D2q2.

3.3. Third-order differential equation. Assume that w satisfies the equa-
tion

(3.10) P3w ≡ p33w
′′′(x) + p32w

′′(x) + p31(x)w′(x) + p30(x)w(x) = q(x).

The list of explicit formulae for the difference operators P , L and the
function % covers ten cases. Thus, it seems too long to be given here. How-
ever, one may obtain a recurrence for the modified moments of w with a
small effort, using the results of Section 3.2. To this end, represent the
left-hand side of (3.10) in the form P3w = Q3(q3w) + P2w, where Q3 is
of the form (2.16) (cf. Section 3.0). Then apply (formally) the results of
Section 3.2 to the equation P2w = q∗ with q∗ := q −Q3(q3w), which will
yield operators P , L and a function ψ such that

(3.11) Lmk[w] = %(k)

with %(k) = Pmk[q∗]− ψ(k). Next, using Lemma 2.4, obtain operators Q3,
M3 and a functional τ (3)

k [·] satisfying Q3mk[Q3w] = M3mk[w] + τ
(3)
k [w].

Using Lemma 2.6 obtain a common multiple P ∗ of P and Q3, i.e. find
difference operators W and Z such that P ∗ = WP = ZQ3. Then multiply
(3.11) from the left by W and observe that

WPmk[q∗] = ZQ3mk[q∗] = P ∗mk[q]− ZQ3mk[Q3(q3w)]

= P ∗mk[q]− Z{M3q3(X)mk[w] + τ
(3)
k [q3w]}.

Now, it is easy to see that the recurrence relation in question has the form

L∗mk[w] = %∗(k)

with

L∗ := WL+ ZM3q3(X), %∗(k) := P ∗mk[q]−Wψ(k)− Zτ
(3)
k [q3w].

4. An example. Consider the numerical evaluation of the integral

(4.1) I =
1∫

0

f(x)xαJp(ωx) dx,

where Jp is the Bessel function of the first kind and of order p, and where
α > −p−1, ω > 0 are real numbers. We assume that f is a smooth function.
If ω is large, the use of standard integration rules is not efficient in view of
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the highly oscillatory character of the integrand. Therefore, special methods
should be used, as, e.g. the method given in [8] or the modified Clenshaw–
Curtis method (see [10] where the case α = 0 is discussed). The latter
method is based on the approximation of f by a polynomial

p(x) =
n∑

k=0

′ckT
∗
k (x) (0 ≤ x ≤ 1).

Here the symbol
∑′ denotes the sum with the first term halved, and T ∗k is

the kth shifted Chebyshev polynomial, T ∗k (x) = Tk(2x− 1). Replacing f by
p in (4.1), we obtain

I ≈
n∑

k=0

′ck

1∫
0

xαJp(ωx)T ∗k (x) dx

= 2−α−1
n∑

k=0

′ck

1∫
−1

(1 + x)αJp( 1
2ω(1 + x))Tk(x) dx

= 2−α−1
n∑

k=0

′ckτk[w],

where
w(x) = (1 + x)αJp(a(1 + x)) (a = 1

2ω).
We show that the Chebyshev moments τk[w] obey a sixth-order recurrence
relation.

The second-order differential equation for the Bessel function Jp implies

(1 + x)2w′′ + (1− 2α)(1 + x)w′ + [a2(1 + x)2 + α2 − p2]w = 0.

We have
lε = −2(1 + α)(1 + ε) (ε = ±1)

(cf. (3.9)). It is easy to see that we have here case 3.2.4 with σ = 1,
P = P

(1)
2 , and

L = P
(1)
2 q0(X) + µ2(k)E[q1D + q2(X)],

%(k) = − P
(1)
2 ϕk[(1 + x)2w′ − (2α+ 3

2 )(1 + x)w]
− µ2(k)EDϕk[(1 + x)w],

where
q2(x) = 1 + x, q1(x) = −2α− 5

2 ,

q0(x) = a2(1 + x)2 + (α+ 3
2 )2 − p2.

Using (2.3), (2.4) and (2.11), we get

L =
1
4
a2 k − 2

k
E−2 + a2 (k + 3)(k − 1)

k(k + 2)
E−1
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+
1
4

{
2[b+ 2(k − 1)(k − 2α− 1)]− a2 k(14k + 31)

(k + 2)(2k + 3)

}
I

+
2(k + 1)
2k + 3

{
3(1− 2α)− b+ 2(k − 1)(k + 3) + a2 2k2 + 4k + 3

k(k + 2)

}
E

+
1

4(2k + 3)

{
2(2k + 1)[b+ 2(k + 3)(k + 2α+ 3)]

− a2 (k + 2)(14k − 3)
k

}
E2

+ a2 (k − 1)(k + 3)
(k + 2)(2k + 3)

E3 +
1
4
a2 (k + 4)(2k + 1)

(k + 2)(2k + 3)
E4,

where
b := 3a2 + 2α2 − 2p2.

From (2.5) we obtain

%(k) = − 2α+3

k(k + 2)(2k + 3)
{[2(k + 1)2 − 3α− 5]Jp(2a) + 6aJ ′p(2a)}.

Now, the Gegenbauer moments m0
k[w] obey the recurrence relation

Lm0
k[w] = %(k).

Substitutingm0
k[w] = 2

k τk[w] (cf. (1.2)), replacing k by k−1 and multiplying
the resulting equation by 2(k2−1)(2k+1), we obtain the desired recurrence
relation

6∑
j=0

Cj(k)τk−3+j [w] = 2α+4{(5 + 3α− 2k2)Jp(2a)− 6aJ ′p(2a)},

where
C0(k) = C6(−k) = a2(k + 1)(2k + 1),

C1(k) = C5(−k) = 4a2(k + 1)(k + 2),
C2(k) = C4(−k)

= 2(k + 1)(2k + 1)[b+ 2(k − 2)(k − 2α− 2)]− a2(k − 1)(14k + 17),

C3(k) = 8(k2 − 1)[2(k2 − 4)− b+ 3(1− 2α)] + 8a2(2k2 + 1).

Note that in [10] an eighth-order homogeneous recurrence relation is
given for the special case α = 0.
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