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SOME REMARKS ON THE SPACE OF DIFFERENCES
OF SUBLINEAR FUNCTIONS

Abstract. Two properties concerning the space of differences of sublinear
functions D(X) for a real Banach space X are proved. First, we show
that for a real separable Banach space (X, ‖ · ‖) there exists a countable
family of seminorms such that D(X) becomes a Fréchet space. For X = Rn

this construction yields a norm such that D(Rn) becomes a Banach space.
Furthermore, we show that for a real Banach space with a smooth dual every
sublinear Lipschitzian function can be expressed by the Fenchel conjugate of
the farthest point mapping to its subdifferential at the origin. This leads to
a simple family of sublinear functions which contains an exhaustive family
of upper convex approximations for any quasidifferentiable function.

1. Introduction. The class of quasidifferentiable functions introduced
by V. F. Demyanov and A. M. Rubinov [2] is of considerable importance in
nonsmooth optimization. Let us recall some notations as given in [6]:

Let (X, ‖ · ‖) be a real normed vector space, X ′ its topological dual, and
U ⊆ X an open subset of X. The dual norm of X will be denoted by ‖ · ‖∗.
Moreover, let 〈·, ·〉 : X ′×X → R be the dual pairing given by 〈v, x〉 := v(x).

A continuous real-valued function f : U → R is said to be quasidifferen-
tiable at x0 ∈ U if the following two conditions are satisfied:

(a) For every g ∈ X \ {0} the directional derivative

df

dg

∣∣∣∣
x0

= lim
t→0+

f(x0 + tg)− f(x0)
t

exists.
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(b) There exist two sets ∂f |x0 , ∂f |x0 ∈ K(X ′) such that

df

dg

∣∣∣∣
x0

= max
v∈∂f |x0

〈v, g〉+ min
w∈∂f |x0

〈w, g〉.

Here K(X ′) denotes the collection of all nonempty weak*-compact convex
subsets of X ′. We remark that by the Alaoglu theorem (see [11], p. 228)
the elements of K(X ′) are bounded in the dual norm.

A real-valued function p : X → R is called sublinear if

(i) p(tx) = tp(x) for all x ∈ X and t ∈ R+ := {t ∈ R | t ≥ 0},
(ii) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

It was shown by L. Hörmander [5] that a sublinear function p : X → R is
Lipschitzian if and only if its subdifferential at the origin

∂p|0 := {v ∈ X ′ | 〈v, x〉 ≤ p(x), x ∈ X}
is an element of K(X ′). Since every Lipschitzian sublinear function p : X →
R can be expressed as

(1) p(x) = max
a∈A

〈a, x〉

for some set A ∈ K(X ′), the condition (b) is equivalent to the require-
ment that the directional derivative as a function of the direction g can be
expressed as the difference of two sublinear functions. By

P(X) := {p : X → R | p is sublinear}
we denote the convex cone of all real-valued sublinear functions defined on
X and by

D(X) := {ϕ = p− q | p, q ∈ P(X)}
the real vector space of differences of sublinear functions. This space is a
lattice with respect to the pointwise max and min operations (see [2], p. 74).

The representation (1) of sublinear functions yields a representation of
ϕ ∈ D(X) in terms of a pair of compact convex sets (A,B) ∈ K(X ′)×K(X ′).
However, this representation is no longer unique. In fact,

max
a∈A

〈a, x〉 −max
b∈B

〈b, x〉 = max
c∈C

〈c, x〉 −max
d∈D

〈d, x〉

if and only if A + D = B + C, where + denotes the usual Minkowski
addition, i.e. A+ B = {x ∈ X ′ |x = a+ b, a ∈ A, b ∈ B}. This motivates
the introduction of the following equivalence relation ∼ on K(X ′)×K(X ′):

(A,B) ∼ (C,D) if and only if A+D = B + C.

Some recent work deals with minimal pairs of the corresponding equivalence
classes with respect to the natural ordering

(2) (A,B) ≤ (C,D) if and only if A ⊆ C and B ⊆ D
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in locally convex topological vector spaces. It was proved by S. Scholtes and
J. Grzybowski that minimal pairs in the two-dimensional space are unique
up to translation. This is not true for higher dimensions as shown by a
counterexample of J. Grzybowski (see [4], [7]–[9], [13]).

For a real separable Banach space (X, ‖ · ‖) we construct a sequence of
pseudonorms such that the space D(X) becomes complete, i.e. a Fréchet
space. In the case where X = Rn, all these pseudonorms coincide, and
D(Rn) becomes a Banach space. The second section finishes by an in-
vestigation of the compatibility of this norm with the minimality concept
introduced above.

For a real Banach space with a smooth dual we then introduce a simple
family of sublinear functions which contains an exhaustive family of upper
convex approximations for any quasidifferentiable function. Finally, this
result will be expressed in terms of the Fenchel conjugate (see [10], Part III,
§12) of the farthest point mapping to the subdifferential at the origin.

2. The completeness of D(Rn). A result more general than the
following theorem is stated in a paper by U. Cegrell [1]. However, so far it
has not been used within the context of quasidifferentiable functions. We
give an adapted version of the proof.

Theorem 1. Let (X, ‖ · ‖) a real separable Banach space. Then D(X) is
a Fréchet space with the topology defined by the seminorms ‖·‖∆n : D(X) →
R+ given by

‖ϕ‖∆n = min{max{ max
‖x‖≤1
x∈Ln

p(x), max
‖x‖≤1
x∈Ln

q(x)} |ϕ = p− q, p, q are sublinear}

where (Ln)n∈N is an increasing sequence of finite-dimensional spaces whose
union is a dense linear subspace of X.

P r o o f. First, observe that for a real normed vector space (Z, ‖ · ‖) a
sublinear function p : Z → R is continuous if and only if there exists M > 0
such that |p(h)| ≤ M‖h‖ for all h ∈ Z. This implies that for every dense
linear subspace Y ⊆ Z we have P(Y ) = P(Z).

This fact will now be applied. Since X is separable, there exists a se-
quence (Ln)n∈N of finite-dimensional linear subspaces of X, where Ln ⊂
Ln+1 for every n ∈ N, and where Y :=

⋃
n∈N Ln is a dense linear subspace

of X. Let B := {x ∈ Y | ‖x‖ ≤ 1} denote the unit ball of Y in the norm
induced from X. Since ϕ ∈ D(Y ) is uniquely determined by its values in
B, the space D(Y ) can be considered as a linear subspace of the real vector
space

C0(B) := {ψ : B → R |ψ is continuous}.
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Now B =
⋃

n∈N(B ∩ Ln) is a countable union of compact sets. It is shown
in [11], p. 25, that the vector space C0(B) can be endowed with a countable
family of seminorms ‖ · ‖∆n : D(X) → R+ given by

‖ϕ‖∆n
= min{max{ max

‖x‖≤1
x∈Ln

p(x), max
‖x‖≤1
x∈Ln

q(x)} |ϕ = p− q, p, q are sublinear}

such that C0(B) becomes a Fréchet space.
We now show that P(Y ) is a closed subset of C0(B). For this observe

that for every x ∈ B the mapping

δx : C0(B) → R, δx(ψ) = ψ(x),

is a continuous linear functional. Now we consider only x, y ∈ 1
2B and

0 ≤ t ≤ 1 and observe that subadditivity and homogeneity on the unit ball
are sufficient to characterize sublinear functions on the whole space. Thus in
this notation ϕ(tx) = tϕ(x) can formally be expressed as (δtx− tδx)(ϕ) = 0,
and ϕ(x+ y) ≤ ϕ(x) +ϕ(y) as (δx+y − δx − δy)(ϕ) ≤ 0, for every x, y ∈ 1

2B
and 0 ≤ t ≤ 1. Since both

Ht,x = {ϕ ∈ C0(B) | (δtx − tδx)(ϕ) = 0}

and
Sx,y = {ϕ ∈ C0(B) | (δx+y − δx − δy)(ϕ) ≤ 0}

are closed, it follows that

P(Rn) =
⋂

t∈R+

⋂
x∈B

Ht,x ∩
⋂

x,y∈B

Sx,y

is also a closed subset of C0(B). In [12], p. 221, it is proved that if
(E, (‖ · ‖E,n)) is a real Fréchet space and K ⊆ E a closed convex cone,
then the linear space

∆K = {z = u− v |u, v ∈ K}

endowed with the family of seminorms

‖z‖K,n = inf{max{‖u‖E,n, ‖v‖E,n} | z = u− v}

is a Fréchet space as well. This completes the proof.

Since in the finite-dimensional case the unit ball B is compact, the same
proof yields:

Corollary 1. Let ‖ · ‖ : Rn → R+ be a norm on Rn. Then D(Rn)
endowed with the norm ‖ · ‖∆ : D(Rn) → R+ given by

‖ϕ‖∆ = min{max{max
‖x‖≤1

p(x), max
‖x‖≤1

q(x)} |ϕ = p− q, p, q are sublinear}

is a Banach space.
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Note that on P(Rn) the norm ‖ · ‖∆ coincides with the supremum norm.
This norm can also be expressed as

(3) ‖ϕ‖∆

= min{max{max
a∈A

‖a‖∗,max
b∈B

‖b‖∗} |ϕ(x) = max
a∈A

〈a, x〉 −max
b∈B

〈b, x〉},

where ‖a‖∗ = max‖x‖≤1〈a, x〉 denotes the corresponding dual norm. One
might hope that the pair (A,B) ∈ K(Rn)×K(Rn) for which the norm (3) is
attained is minimal in the sense of (2). This, however, is not true in general
as the following example shows:

Example 1. Let ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2 be the Euclidean norm, and

A = conv
{[

2
1

]
,

[
1
2

]}
, B = conv

{[
−2
−1

]
,

[
−1
−1

]
,

[
−1
−2

]}
,

C = conv
(
A ∪

{[
1.5− ε
1.5− ε

]})
, D = conv

(
B ∪

{[
−1.5− ε
−1.5− ε

]})
,

where conv denotes the convex hull operator and ε > 0. The pair (A,B) is
minimal, (C,D) is an equivalent non-minimal pair, but for ε ≤ (

√
10− 3)/2

the minimum in (3) is attained for both pairs.

3. An exhaustive family of upper convex approximations. Let
(X, ‖ · ‖) be a real normed vector space, U ⊆ X an open subset of X, and
X ′ the topological dual endowed with the dual norm ‖ · ‖∗. Moreover, let
f : U → R be directionally differentiable at x0 ∈ U . If p ∈ P(X) satisfies

p(g) ≥ df

dg

∣∣∣∣
x0

for all g ∈ X,

then p is called an upper convex approximation of f at x0. A family Φf,x0 ⊆
P(X) of upper convex approximations of f at x0 which satisfies

inf
p∈Φf,x0

p(g) =
df

dg

∣∣∣∣
x0

is called an exhaustive family of upper convex approximations of f at x0 (see
[2]).

If f is quasidifferentiable at x0, an obvious exhaustive family of upper
convex approximations is given by

(4) Φ̂f,x0 = {p ∈ P(X) | p(g) = max
v∈∂f |x0

〈v, g〉+ 〈w, g〉, w ∈ ∂f |x0}.

Note that Φ̂f,x0 may contain any sublinear function, and thus the union
of all possible Φf,x0 is infinite-dimensional even if X is finite-dimensional.
We want to show that it is sufficient to choose Φf,x0 from a smaller subset
Φ ⊆ P(X) independent of f and x0 which is finite-dimensional for X = Rn.
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From (4) it follows that this requires another representation of sublinear
functions.

Theorem 2. Let (X, ‖·‖) be a real Banach space such that the topological
dual X ′ endowed with the dual norm ‖ · ‖∗ is smooth. For p ∈ P(X) define

Λp = {(κ, l) ∈ R+ ×X ′ |κ = sup
v∈∂p|0

‖l + v‖∗}.

Then, for all x ∈ X,

(5) p(x) = inf
(κ,l)∈Λp

{κ‖x‖ − 〈l, x〉}.

P r o o f. Since for x = 0 the identity (5) is trivial, we may assume that
x ∈ X \ {0}. It follows from the definition of the dual norm that

inf
(κ,l)∈Λp

{κ‖x‖ − 〈l, x〉} = inf
l∈X′

sup
v∈∂p|0

{‖l + v‖∗‖x‖ − 〈l, x〉}

≥ inf
l∈X′

sup
v∈∂p|0

{〈l + v, x〉 − 〈l, x〉}

= sup
v∈∂p|0

〈v, x〉 = p(x).

To prove the reverse inequality, we will show that for every x0 ∈ X \ {0}
and every ε > 0 there exists a (κε, lε) ∈ Λp such that

(6) κε‖x0‖ − 〈lε, x0〉 ≤ p(x0) + ε.

A well-known corollary of the Hahn–Banach theorem states that in any
normed linear space X, max‖w‖∗=1〈w, x0〉 is attained for some w0 ∈ X ′.
This implies that, for every v ∈ X ′,

‖w0 + v‖∗ = sup
‖x‖=1

〈w0 + v, x〉 ≥ 〈w0, x0/‖x0‖〉+ 〈v, x0/‖x0‖〉

= ‖w0‖∗ + 〈v, x0/‖x0‖〉
and therefore x0/‖x0‖ ∈ ∂‖ · ‖∗|w0 . From the assumption that ‖ · ‖∗ is
differentiable, it follows that ∂‖ · ‖∗|w0 has exactly one element, and thus we
obtain

‖w0 + µv‖∗ = ‖w0‖∗ + µ〈v, x0/‖x0‖〉+ o(µ),
where µ ∈ R and limµ→0 o(µ)/µ = 0. Choosing lε = w0/µ, we therefore get

κε‖x0‖ − 〈lε, x0〉 = sup
v∈∂p|0

{‖µ−1w0 + v‖∗‖x0‖ − µ−1〈w0, x0〉}

= sup
v∈∂p|0

{µ−1‖x0‖(‖w0 + µv‖∗ − 1)}

= sup
v∈∂p|0

{µ−1‖x0‖(‖w0‖∗ + µ〈v, x0/‖x0‖〉+ o(µ)− 1)}

= sup
v∈∂p|0

{〈v, x0〉+ o(µ)/µ} = p(x0) + o(µ)/µ.
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Hence the inequality (6) is satisfied for µ small enough. This completes the
proof.

Note that Theorem 2 does not hold for arbitrary norms as the following
example shows:

Example 2. Let p ∈ P(R2) be defined as p(x) = max{x1, x2}. Then for
any Λp ⊆ R+ × R2 it is not possible to express p as

p(x) = inf
(κ,l)∈Λp

{κ‖x‖1 − 〈l, x〉},

since taking x ∈ {(1, 0), (0, 1), (1, 1)}, we obtain

κ− l1 ≥ 1 for all (κ, l) ∈ Λp,

κ− l2 ≥ 1 for all (κ, l) ∈ Λp,

2κε − lε1 − lε2 ≤ 1 + ε for all ε > 0 and some (κε, lε) ∈ Λp,

respectively. Summing up the first two inequalities yields the required con-
tradiction with the third inequality.

Theorem 2 can also be stated in a different way:

Theorem 2′. Let (X, ‖ · ‖) be a real Banach space with (X ′, ‖ · ‖∗)
smooth. Let p ∈ P(X) and let

Π∂p|0 : X ′ → R with Π∂p|0(l) := sup
v∈∂p|0

‖l + v‖∗

be the farthest point mapping with respect to the subdifferential of p at the
origin. Then, for all x ∈ X,

p(x) = −‖x‖Π∗
∂p|0(x/‖x‖),

where Π∗
∂p|0 denotes the Fenchel conjugate of Π∂p|0 .

P r o o f. We have
p(x) = inf

l∈X′
{Π∂p|0(l)‖x‖ − 〈l, x〉} = −‖x‖ sup

l∈X′
{〈l, x/‖x‖〉 −Π∂p|0(l)}

= −‖x‖Π∗
∂p|0(x/‖x‖).

Corollary 2. Let (X, ‖ · ‖) be a real Banach space with (X ′, ‖ · ‖∗)
smooth. Furthermore, let U ⊆ X be an open set and f : U → R be quasid-
ifferentiable at x0 ∈ U . Then the family

Φ = {p ∈ P(X) | p(g) = κ‖g‖ − 〈l, g〉, κ ∈ R+, l ∈ X ′}
contains an exhaustive family of upper convex approximations of f at x0.

P r o o f. This follows immediately by taking the exhaustive family (4)
and expressing the sublinear function maxv∈∂f |x0

〈v, g〉 in terms of (5).

If X = Rn, then Φ is (n+ 1)-dimensional. Note that a reflexive Banach
space is strictly convex if and only if (X ′, ‖ · ‖∗) is smooth (see J. Diestel
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[3], p. 24). Hence in this case the condition of smoothness of ‖ · ‖∗ can be
replaced by the condition of strict convexity of ‖ · ‖.
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