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Abstract. This paper is concerned with the existence of BV and right continuous solutions
for some classes of multivalued differential equations on closed moving sets in Banach spaces.

1. Introduction. Let E be a Banach space, p a positive Radon measure on
[0,7] CR (T > 0). A multifunction ¢ — C(t) is given, defined on [0, 7] and with
values in E such that the sets C'(¢) are nonempty closed, and a multifunction
F from the graph of C' to F such that the sets F(¢,xz) are nonempty convex
and compact. The following problem arises from the sweeping (or Moreau) pro-
cess [M2] and the calculus of variations, see Brandi-Cesari-Salvadori [BCS] and
Moussaoui [Mo].

Given zg € C(0), the problem is to find a BV and right continuous X :
[0,7] — E such that X(0) = xo, X(t) = z¢ + f}o,t} X'(s)u(ds), ¥t € [0, T], where
X’ belongs to LL([0,T], 1), and

X(t) e C(t), Vtelo,T],
{X’(t) € F(t,X(t)) p-ae. on[0,T].

In this paper we given several sufficient conditions for the existence of BV and
right continuous (briefly BVRC) solutions of (1.1). When p is the Lebesgue mea-
sure, the existence of absolutely continuous solutions of (1.1) will receive a par-
ticular treatment. After the preliminary paper by Nagumo [N], there were many
results in the literature concerning absolutely continuous solutions of (1.1). We
refer to Aubin-Cellina [AC], Bony [Bo], Brezis [Br], Deimling [De2], Larrieu [L],
Martin [Ma], Methlouthi [Me]. For the complete bibliography of the subject, we
refer to [AC] and [De2].

(1.1)

1991 Mathematics Subject Classification: 49A50, 34A60.
The paper is in final form and no version of it will be published elsewhere.

[53]



54 H. BENABDELLAH ET AL.

When p is a Radon measure, the second author [Ca2] stated the existence
of BVRC solutions of (1.1) in the case where F' is upper semicontinuous for the
right topology on the right closed graph of a multifunction C' under a suitable
tangential condition and proved that the existence of BVRC solutions for the
sweeping process (see [M2])

{X(O) = 20 € C(0),

(SW) X'(t) € =New)(X(t)) p-ae.,

where N ;) (X (t)) is the normal cone of the moving closed convex set C(t) in R?
at X (t) with t — C(t) bounded variation and right continuous for the Hausdorff
distance, can be deduced from the existence of BVRC solutions of (1.1) by taking
for F' the subdifferential of the function x + d(x,C(t)). Further, the existence
of BVRC solutions for (1.1) has applications in the calculus of variations. See
Brandi-Cesari-Salvadori [BCS| and Moussaoui [Mo] and the references therein.
So the previous considerations show the interest of finding BV solutions of (1.1).
We also refer to Moreau’s paper [M2] for the importance of the replacement of the
Lebesgue measure in the sweeping process by a Radon measure for the treatment
of an elastoplastic mechanical system.

This paper is organized as follows. In Section 3 some basic differential and
integral inequalities are presented. In Section 4 some useful compactness results
and lower semicontinuity of integral functionals are recalled. Section 5 is con-
cerned with several new existence results for BVRC (resp. absolutely continuous)
solutions of (1.1).

The main difficulties which arise in the investigation of BVRC solutions of
(1.1) are important because dim(FE) is infinite and the replacement of the Le-
besgue measure by Radon positive measures possibly possessing some atoms,
requires nonclassical techniques involving recent results concerning the differential
measures of vector valued BV functions developed by Moreau—Valadier [MV3].

2. Notations and preliminaries. We introduce the following notation.

e F is a separable Banach space.

e B(x,7) is the closed ball of center  and radius 7, Bg the closed unit ball.

e ¢(FE) (resp. k(E), ck(E), ckw(E), b(E)) is the set of all nonempty closed
(resp. compact, convex compact, convex weakly compact, bounded) subsets of E.

e Ri(E) (resp. Ryw(F)) is the set of all nonempty closed convex subsets of E
such that their intersections with any closed ball of E are compact (resp. weakly
compact).

e ¢o(A) is the closed convex hull of a subset A of E.

o |K| :=sup{||z| : x € K} where K is a subset of E.

e o« is the Kuratowski measure of noncompactness defined on bounded subsets
of E.

See e.g. [Mal, p. 16.
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o A subdivision of I := [0,T] is a finite sequence (to,...,t,) such that 0 =
to<thi <...<t,=T.

e The wariation of a function u : [0,7] — E is the supremum over the
set of subdivisions of I of the numbers >, [lu(¢;) — u(ti—1)||. The variation
of u is denoted by var(u;0,7). The function u has bounded variation (BV) if
var(u; 0,T) < oo. If u is BV, its left hand limit u™(¢) exists at any ¢ > 0. By
convention v~ (0) = 0. When u is BV and right continuous, then there is a vector
measure denoted by Du (differential measure) such that

Va <b, Du([a,b]) =u(b) —u(a)

with Du({0}) = 0 and V¢, u(t) = u(0) + Du([0, t]).

e 11 is a positive Radon measure on [0,7]. If for some u’ € L([0,T], i), one
has u(t) = u(0) + f]&ﬂ u'(s)u(ds), Vt € [0,T], then u is BVRC with Du/du = v’
where Du/dy is the Radon—Nikodym derivative of the differential measure Du
with respect to the scalar measure u.

e A multifunction C' from a topological space U to ck(E) is upper semicon-
tinuous (usc) at xq if for each € > 0, there is a neighbourhood V. (xg) of 2y such
that C(x) C C(x¢) + eBg whenever x € V.(xg).

¢ [0,T)q (resp. [0,T]4) denotes [0, T] equipped with the right (resp. left) topo-
logy

e B(X) denotes the o-algebra of borelian subsets of a topological space X.

3. Basic inequalities. In this section we establish some basic differential and
integral inequalities that occur in later sections.
The following result is due to M. D. P. Monteiro Marques [MM].

LEMMA 3.1. Let g € Ly, (I, 1) and 8 > 0 be such that, Vt, 0 < g(t)u({t}) <
< 1. Let p € L5 (I, ju) satisfy

v, et) <at [ g(s)p(s) u(ds)
10,¢]
where a s a positive constant number. Then
1
W el <aen (115 [ ol ua@))
-
10,¢]
Proof. Let € > 0. The function
to () =a+et+ [ gls)pls)u(ds)
10,¢]

is increasing, right continuous and we have ¢ > o+ ¢ > 0. It follows that the
function t — Log(t) is increasing and BVRC. Since D1 is absolutely continuous
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with respect to p and %(Log x) = %, thus by virtue of a result due to Moreau—
Valadier ([MV2], Theorem 8, p. 16-18)

DLt e 100 ) o e e} e

du z du
Since 1) is increasing, we obtain
D Log 1 L Dy g(t)e(t)
0< < —_— = -a.e.
S T T O O B O PO M
By our assumption on g and ¢, we then have
DLogy git)et) gt )
i VE s 15
Consequently,
1
Vi, Logy(t) < Log(a+e) + 1— [ 9(s) u(ds).
10,]
Therefore
1
Vtel, (t) <y(t) < (a+e)exp <l—ﬂ f g(s) u(ds)).
10,]

Since ¢ is arbitrary, it follows that

1
el ol <aen (g [ o).
10,t]
Remark 3.2. If uis the Lebesgue measure A on [0, 7], the previous inequal-
ity reduces to Gronwall’s inequality by taking 8 = 0.

Now we introduce the function

vreR, O ={ ("~ D/r 70,
1 if z =0.
Then 6 is increasing, continuous and 0(] — 0o, 0]) = ]0, 1]. The following inequality
is concerned with BVRC functions.

PROPOSITION 3.3. Let o : I — R be a BVRC function such that |Do| < p
and that the Radon-Nikodym density Do/du of its differential measure Do with
respect to p belongs to L (I, ). Let a and b in L (I, u) be such that

(+) 220 < On({tNal)alte®) + 1) o

Then
vt ot) < o(0)exp ([ a(s) p(ds))

10,¢]

+ f exp( fa(r)u(dr))b(s)u(ds).

10,t] [s,t]



BV SOLUTIONS 57

Proof. Set ¢(t) = exp( — f]o,t] a(s) pu(ds)) and f(t) = _f]O,t] a(s) p(ds),
Viel.

By virtue of a result due to Moreau—Valadier ([MV2], Theorem 3.7, p. 16-15)
the function ¢ is BVRC and

fj:f (1) [ exp(ri (1) + (1 —r)f* (1))dr

1
() [ exp(£(t) +ru({t)a(t))dr.
0

If u({t})a(t) =0, then %f(t) = —a(t)p~(t). If p({t})a(t) # 0, then

—DSD = —a 71 ex r a -
o (t)[u({t})a(t) p(f(t) + ru({t})a(t)) L
—alt) () —ex
Thal) [exp f7(t) — exp f(t)]

— —a(tyexp(f~ (1) e}if)(({lﬁi{é];)a“”

— —0(—p({tha®)al)p™ (t).

Finally, for all £ we get

(33.1) 220 = ~0(-n({tha)aie™ (1)
Since ¢~ is > 0, by our assumption (*) we have
p (1) ?5( ) < 0(=p({t})a(t))at)o(t) - ¢~ (t) + b(t)p™ (¢)

for p-a.e. t. By (3.3.1) it follows that

_. Do Dy _

3.2 — — < _
(3.3.2) (1) o ) +—— 0 (o) —p~ (t)b(t) <0 p-ae
Let us introduce the function

t— D(t) f 0 (8)b(s) u(ds).

Since ¢ and p are BVRC, the function ¢p is BVRC too. Moreover, by a formula
due to Moreau ([M1], Proposition 5.b) concerning the differential measure of the
product g, we have

D(po) = ¢~ Do+ oDep.
It follows that

D(po) DQ+ Do
du d du d,u

(3.3.3)
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Further the function ¢ — Jio " (s)b(s) p(ds) is BVRC and the Radon-Nikodym
density of its differential measure with respect to p is ¢~ b. So by (3.3.3) we get

Dé  Dpo) ., Do Dp
— = —@ b= — 40— —p b
m i ¢ i mial
so that inequality (3.3.2) is equivalent to
Do
(3.3.4) @(t) <0 prae.
Integrating we get
Do
veel, ot)-®0)= [ ——(s)u(ds).
dp
10,t]
Hence
veel, (o) — [ ¢ (s)b(s) u(ds) — 0(0) <0,
10,t]
that is,
1 1 _
VEel,  ot) < ——0(0) + —— [ ¢~ (s)b(s) pu(ds)
o) 5%

1 _
vVt eI, o0 f 0 (s)b(s) pu(ds) = f exp( f a(r)u(dr))b(s)u(ds).

10,¢] 10,¢] [s,t]
Finally, we get
vee L, oft)<o0)exp( [a(s)ulds))+ [ exp( [ a(r)u(dr))bs) p(ds)
10,t] 10,1] [s,1]
as desired.
The following result is an application of Proposition 3.3.

PROPOSITION 3.4. Let o € L (I, ), a € L (I, ) and ¢ € Ly (I, ) be such
that the product ac belongs to Ly (I, 1) and

viel, o) <a(t)+ [ O(—p{s})e(s))e(s)o(s) u(ds).
10,¢]
Then
Viel, o(t) <a(t)+ f exp ( f cdu)9(—u({s})c(s))c(s)a(s) w(ds).
10,t] [s,t]
In particular, if Vt € I, a(t) = ag, then

Vtel, o(t) <apexp ( f c(s) ,u(ds)).
10,t]
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Comment. If p is the Lebesgue measure A on [0,7] and if a is nonnega-
tive, then the inequality in Proposition 3.4 is reduced to the following Gronwall’s
inequality

Viel, o(t) <alt)+ f exp < f c(r)/\(dr))c(s)a(s) A(ds)
10,t] [s,t]
since ¢ is nonnegative and 0 < 0(—u({t})c(t)) < 1for all ¢t € I.
Proof. Set
vtel, q(t f& p({s}H)e(s))e(s)o(s) ds.
10,¢]

Then .
q
2 = 0n{De®)eve(t)  pae.

By our assumption, we have o(t) < a(t) + ¢(t), Vt € I. Therefore, we obtain
Dq
@(75) O(—p({t})e(®))c(t)q(t) +b(t)  p-ae.
where b(t) = 0(—p({t})c(t) ) (t)a(t), Vt € I. Since ¢ is BVRC, a and ¢ belong to
L (I, p), it follows from (3.4.1) and Proposition 3.3 that

Viel, q(t)< f exp ( f c(r) u(dr))b(s) w(ds)
[5,t]
because g is BVRC and ¢(0) = 0. Since for all t € I, o(t) < a(t) + ¢(t), we obtain
the desired inequality

vtel, o) <a(t)+ [ exp ( [ e(r) u(dr))9(—M({s})c(s))c(s)a(s) ((ds).
10,t] [s,t]
If a(t) = ap, Vt € I, we get

o) Sao+ [ exp ([ elr) u(dr))bls) u(ds)

10,¢] [s,t]
—ao+ag [ exp( [edu— [ cdu)o(—p({s))e(s))e(s) u(ds).
10.2] 10,£] 10,s]

Now set, Vt € I, p(t) = exp( — jiOt]cdu). Then by (3.3.1) of the proof of
Proposition 3.3, we have

(3.4.1)

Dy

veel, o M= —0(=p({t})e(®))c()™ (2)-

It follows that for all t € I,

o(t) < ap + apexp ( f cdu) f (— (S)),u(ds)

10,t] 10,t]
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= ag + ap exp ( f cd,u)(l —(t)) = ap exp f cdpu,
10,t] 10,¢]
which the desired inequality.
Here is a useful corollary of Proposition 3.4. Let us introduce the function
0(z) = { Log(i—i—x) if x €] —1,0[U]0, 0],
1 ifx =0.
It is obvious that @ is a strictly decreasing and continuous function such that
0(] —1,0]) = [1,00[.
COROLLARY 3.5. Let p € L(I, ), a € R and g € L, (I, 1) be such that

viel,  p({thy(t) f9 p({tH)g()g(t) p(dt) < oo

Suppose further that

veel, o) <a+ [ g(s)p(s)u(ds).
J0.4]

Then
veel, o) <aexp [ 0(—pu({s})g(s))g(s)u(ds).

10,¢]

Proof. Set c(t) = 6(—u({t})g(t))g(t), Vt € I. Then by our assumptions
c € LL(I, ) and by obvious properties of functions 6 and 6, we have g(t) =
O(—p({t})c(t))e(t), vt € I, so that

viel,  p(t) <at [ O(=n({s})e(s)e(s)p(s) ulds).

10,2]

Then by Proposition 3.4, it is immediate that

veel, () <aexp [ O(—p({s})g(s))g(s) u(ds).

10,]

Remark. Corollary 3.5 generalizes Lemma 3.1 since the condition 0 <
gt)u({t}) < B <1, forallt € I, implies that the function t — 6(—pu({t})g(t))g(t)
is integrable. Indeed, —3 €] — 1, 0] and since 6 :] — 1,0] — [1, 00[ is a decreasing
function, we have

vtel,  O(—u({t}Hg®)g(t) < 0(=B)g(t).
There is another variant of the previous result.

PROPOSITION 3.6. Let ¢ € Ly, (I, 1), p € Lg% (I, ) and a a positive number.
Assume that Vt € I, p(t) < o+ f}o t[p(s)c(s) wu(ds). Then for all t in I, p(t) <

aexp(fi; ols) u(ds)).
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Proof. Assume first that « is strictly positive. Define
veel, ft)=a+ [ c(s)p(s)p(ds),
10,¢]

Vo €]0,00[, 7(z) = —Log(z).

Then f is BVRC and Df/du = ¢p. Since 7 is continuous and convex on |0, 0o,
by Moreau—Valadier ([MV2], Theorem 2.5, p. 16-11), v o f is BV, D(y o f) is
absolutely continuous with respect to u and for p-a.e. t, we have

20202 o { (5. 20 0 050 - (- . 2200}

dp f=(t)" du
el
0 o C(o)p(s) ilds)
Hence
D(’;:f)(t) > —c(t) ifp(t)>0 and D(Zl:f)(t) >0 2> —c(t) ifp(t) =0.
So

P00z —ctt) e

This implies that (yo f)(t) — (yo f)(0) > — jio 1 c(s) u(ds) for all t € I. Hence
we obtain

Log[a™! (a+ [ cls)p(s) u(ds))] < [ e(s) u(ds).
10,¢] 10,¢]
Consequently,
o lp(t) <a M a+ [ els)p(s) pds)) < exp ([ els) ulds)),
10,¢] 10,¢]

which is the stated inequality for o > 0.
If @« = 0, we have p(t) < 5—1—]}0 1 c(s)p(s) u(ds) for any € > 0 and any ¢. Hence

Viel, p(t) <eexp ( f c(s) ,u(ds)).
10,¢]

Then p(t) =0 for all t = 1.
We retain the previous notations. Let ¢ € L, (I, 1) and define w : I x R —
R* by
w(t, x) = O(—p({t})e(t))ct)z.
Further, let 7 : I — R with r(0) = 0 and V¢t €]0,T], r(t) = f}o 7] r'(s) u(ds)
<

where r’ € L (I, i) satisfies r'(t) < w(t,r(t)) p-a.e. Then by Proposition 3.3, we



62 H. BENABDELLAH ET AL.

have

Vtel, r(t) <r(0)exp ( [ e(s) u(ds)).
10,¢]
Hence » = 0. This leads us to the following definition.

DEFINITION 3.7. Let KAM(I, ) be the set of all Carathéodory mappings
w: I xRt — RT such that V¢ € I, w(t,0) = 0 and that the only function
r: I — RT with 7(0) = 0 satisfying r(t) = f]O,t] r'(s) u(ds), Yt €10,T] where
r" € Li(I,p) and r'(t) < w(t,r(t)) p-a.e., is the function identically equal to zero.
The functions w € KAM(I, p) are called Kamke functions.

4. Lower semicontinuity and compactness results. In this section we
recall some useful results on the lower semicontinuity of integral functionals and
on the weak compactness theorems in L.

DEFINITIONS 4.1 ([ACV], p. 174). A subset H of LL(I, i) is Ryw(E)-tight if
for any e > 0 there is a measurable multifunction L. from I to Ry, (F) such that

VueH, pftel:u(t)gL(t)} <e.

THEOREM 4.2 ([Cal, Ca3], [ACV], Théoreme 6). Let H be a bounded uniformly
integrable and Ry, (E)-tight subset of LY,(I, ). Then H is relatively weakly com-
pact and if (up)nen 8 a sequence in H, there is a subsequence of (Up)nen which
1s weakly convergent.

THEOREM 4.3. Let I' be a measurable multifunction from I to ck(E) such that
|I"| is integrable where |I|(t) = |I'(t)| for all t in I. Let

[ I(t) uldt) = { [ otyuldt): o e S}}

where S} is the set of integrable selections of I'. Then [, I'(t) u(dt) is a convex
compact subset of E.

Proof. By Theorem 4.2, Sk is convex weakly compact in L (I, ). Hence
J; I'(t) p(dt) is convex weakly compact in E. For any 2’ in E’, by Strassen’s for-
mula ([CV], Theorem V.14), we have 6*(2/, [, I'(t) p(dt)) = [; 0*(«', I'(t)) pu(dt).
By our assumption, it follows from Lebesgue’s theorem that 0*(-, [; I'(t) u(dt))
is continuous on the unit ball B’ of E’ for the topology of compact convergence.
Hence [; I'(t) u(dt) is convex compact.

Remark. Theorem 4.3 is actually valid if I" is scalarly integrable satisfying
(i) for every g € L (I, 1) and for every scalarly integrable selection f of I', the
weak integral [ fgdu belongs to E and (ii) the set {6*(2/,I") : 2’ € Bp/} is
uniformly integrable in L (1, p1).

The following theorem occurs frequently in the proof of convergence of the
approximated solutions in the last section.
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THEOREM 4.4. Let (un)nen be a bounded uniformly integrable sequence in
LL(I,p). Let (en)nen be a sequence in ]0,1] with lim, &, =0 and I" : I —
ckw(E). Assume that

(%) Vn, wu,(t)€'(t)+e,Bg p-ae.
Then the sequence (uy)nen is relatively o(L, L>)-compact.

Proof. Since lim,_ .o &, = 0, it is immediate by the Grothendieck Lemma
([G], p. 296) that the sequence (uy,(t))nen is relatively weakly compact by our
assumption (x) for almost all ¢. Since (uy, ),en is bounded and uniformly integrable
in LL(1, 1), (un)nen is relatively o(L!, L°°)-compact by Theorem 4.2.

The following lower semicontinuity result will be used later.

THEOREM 4.5 ([V], Theorem 3, p. 3.6). Let (un)nen be a sequence of mea-
surable function from I to E which converges in measure to uo,. Let (Up)nen be
an Ryw(E)-tight sequence in Ly (I, ) which converges o(L', L) to veo. If 9
is a T,(I) ® B(E) ® B(E)-measurable integrand on I x E x E, lower semicon-
tinuous on E x (E,o(E,E")), if ¥(t,ux(t),-) is a.e. convex and if the sequence
(V- un(+), v (+)) " )nen is uniformly integrable then

J 0t use (), vao (D) p(dt) < liminf [ 4p(t, un(t), va(t)) p(dt).
I I

Here is a useful application of Theorem 4.5.

THEOREM 4.6. Let F' be a multifunction from I X E to the set of nonempty
closed convex subset of E satisfying:

(i) F is T,(F) @ B(E)-measurable.

(ii) For any t € I, F(t,-) is scalarly upper semicontinuous.
If (up)nen is a sequence of measurable functions from I to E which converges
in measure 10 Uso, if (Un)nen 8 an Rpyw(E)-tight sequence in LY (I, u) which
converges o (LY, L) to v, if (An)nen is a sequence of measurable sets in I such
that lim,, o (1(Ay) = p(I) and such that for each n € N, v, (t) € F(t,u,(t)) for
a.e. tin A,, and if the sequence (d(v,(-), F (-, un(*))))nen is uniformly integrable,
then

Voo (t) € F(t,ux(t))  p-a.e.

Proof. By our assumption, the integrand v : (t,z,y) — d(y, F(t,z)) is
7,(I)® B(E) ® B(E)-measurable and v (t,-,-) is Ex (E,0(E, E")) lower semicon-
tinuous and (¢, x,-) is convex. For each n, we have

(%) [ d(wn (), F(t, un(t) f d(vn (t), F(t, un (t)) pu(dt)

I

[ d(wa(), F(t un(®))) u(dt).
N\A,
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Since (d(vn(+), F(-,un(-))))nen is uniformly integrable and lim,, . u(I'\ 4,) =0,
we get

lim inf f d(vp,(t), F(t,un(t)) p(dt) <0

n—oo

since the first integral in (*) over A, is equal to zero. Then by Theorem 4.5 we
obtain

[ dvoo(t), F(t, uoo(t)) p(dt) < lim inf f d(vn(t), F(t,un(t)) p(dt) < 0

n—o0

5. Existence theorem
5.a. BV solutions. Let us introduce some notations:
I=[0,7], I*=10,T,
I, =Inftt+e], I,,=IN[t—et] fortelande>0.

Let C : I — ¢(F) be a multifunction and G its graph. Define G* := GN[0,T[x E.
For any 7 € I and any € > 0, denote by JZ ([0,7]) (resp. JF([0,7]) the set of all
increasing right continuous (resp. left continuous) functions 6 : [0, 7] — [0, 7] such
that 6(0) =0, 0(7) = 7 and for all t € [0, 7], 0(t) € [t—¢,t] (vesp. O(t) € [t,t+¢]).
It is obvious that JZ ([0, 7]) and JX([0,7]) are nonempty.

Let us recall the following two functions:

() = { (et — 1)/t ifteR\ {0},

1 ift =0,
¥ = { (Log(1+1t))/t ifte]—1,0[U]0,+o0],
1 ift=0.
Then x : R — R™ and Y :] — 1, +00[ — R™ are continuous, strictly increasing

and strictly decreasing respectively and such that
X(] - 0070]) :]07 1] and Y(] - 170]> = [17+OO['

Let g : I — RT be a measurable function. By obvious properties of y and %, it
can be checked that the following two conditions are equivalent

(a) Vt € 1,0 < p({th)g(t) <1 and [, X[—p({t})g(t)]g(t)n(dt) < oo
(b) There is ¢ in Ly, (I, 1) such that V¢ € I g(t) = x[—p({t})c(t)]e(t).

Indeed, it is enough to note that for any positive measurable function ¢ on I, we
have

veel, o) =X[-p({t}g(®)]g(t) & g(t) = x[=p({t})e(®)]e(?).

Our first result is the basic existence of e-approximated BV and right contin-
uous (BVRC) solutions to the problem (1.1).

PROPOSITION 5.1. Let C : I — ¢(FE) be a multifunction with left closed graph
G, that is, G 1is closed in [O Tly x E. Let ¢ in Ly, (I,p) be such that Vt € I,
0 < p({t})e(t) <1 and [, x[—p({t})c(t)]e(t) p(dt) < co. Let F: I x E — ck(E)
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be such that, Vo € E, F(-,x) is scalarly p-measurable. Suppose also that the
following conditions are satisfied:

(C.1) V(t,x)eIx E, |[F(t,x)] <c(t)(1+ |z|).
(C2) V(t,xz) e, infycor dly, v+ p({t})F(t,x)) = 0.

(C.3)  For each (t,x) in G®, each € > 0, there is (t.,xe) € G such that
0<t. —t<e and that

ve—ae [ P(s,a)p(ds) + p(tt:)eBr.
It te]

Then for any xo € C(0), there exists a constant m > 0 such that for any € €]0, 1],
there are @ € JZ([0,T]) and a BVRC function X : I — E with the following
properties:

() Vtel, X(t) =z + f]O,t] X'(s) u(ds) with X" € LL(I, p).

(i) Vet e I, X~ (0(t)) € C(0(t)).

(i) [[ X' @) < me(t) +1 p-a.e.

(iv) X'(t) € F(t, X~ (6(t)) + eBg p-a.e.

Proof. Let ¢ > 0 and 7 € I. Denote by P.([0,7]) the set of all pairs (6, X)
where 6 belongs to J: ([0, 7]) and X is a mapping from [0, 7] to E such that

vee[0,7], X(t) =m0+ [ X'(s)pu(ds) with X' € Lp(I,p),
10,¢]
Vte[0,7], X (0(t)) € C(6(¢))
X'(t) e F(t,X (0(t))) +eBg  p-a.e. t€|0,7).
Then for establishing our proposition we need to prove the following assertions:

(A)  There is a constant m > 1 such that for any e €]0,1], any T € I and any
(0, X) in P-([0,7]), we have Vt € [0, 7], F(t, X (6(t))) C mc(t)Bg.
(B)  For any € €]0,1], the set P-([0,T)]) is not empty.

Let ¢ €]0,1], 7 € I and (0,X) € P-([0,7]). Clearly X~ (6(-)) belongs to
L% (I, p) and
X @) +1< 1+ lzoll+ [ IX () p(ds) < 1+ ol + [ 1K' ()] a(ds).
10,6(¢)] 10,¢[
By (C.1) and by the definition of P.([0,7]) we have
Vi e [0,7],  IIXTOO)I+1 < L lzol+eu(D)+ [ els)(L+]1X(0s))I]) p(ds).
10,t]
It follows from Proposition 3.4 that

Ve 0,7, X O0)] + 1< (1t ol +en(D)exp ([ gls) u(ds))
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where Vit € I, g(t) = X(—p({t)e(®))e(t). Set m = (1+ [aoll + u(1)) exp(llgly).
Then according to (C.1) we get

vee 0], Pt X (00)) € c(t)(1+ X~ O)I)Br C me(t) By,
This proves assertion (A).

Let ¢ €]0,1] and denote by P. the union of all sets P.([0,7]) for 7 € I.
Clearly P, is not empty. We introduce a partial order in P, as follows. For any
pair (Hz,Xz) in 7)5 with (0,,X,) S ,Pg([O,TZD (’L = 1,2), let (91,X1) < ((92,X2) if
1 S T2, 91 = 92‘[0’71} and X1 = X2|[0,71]' Let C := {(G’Y’X’Y) Ty € D} be a chain
(totally ordered subset) in P.. Let 7 = sup,cp 7. If there is an element 7 in D
such that 7 = 75, then (65, X5) is an upper bound for C. Suppose that, Vy € D,
7y < 7. Define 6 : [0,7] — [0,7] and X : [0,7[— E by

V’}/ S D, 9’[07”] = 97 and 9(7’) =T,
Vy e D, X|[07.,.,Y] = XW'

Then 6 belongs to J- ([0, 7]). Now we prove that C admits an upper bound. Choose
a sequence (ky)nen in D such that Vn € N, 7, < 73,,, and 7 = sup7,. For
any positive integers m < n, we have X; = X p-a.e. on [0,7,]. Let N be a
p-negligible set such that X; = X; for all integers m < nand allt € [0, 7, ]\ V.
Then define a mapping X' : [0, 7[— E by ¥n € N, Vt € [0, 73, ]\ N, X'(t) = X}, (1)
and Vt € N, X'(t) = 0. Clearly X’ is measurable and || X'(¢)| < mc(t) + 1 p-a.e.
thanks to (A). Then we have

vee (0,7,  X(t) =m0+ [ X'(s)p(ds),
10,¢]
vee0o,7[, X (6(t)) € C(O(1)),
X'(t) e F(t,X'(0(t)) +eBr  p-a.e. on [0, 7].

Let

X (t)=z0+ [ X'(s)plds), Vtelo,7].

10,¢[

Then for (¢,¢') in [0, 7[? with ¢t < ¢/, we have

IX= () =X~ < [ (me(s) +1) u(ds).
[t:t']
It follows that the left limit, u, of t — X~ (¢) at 7 exists and we have
u= th—IE (xo + f X'(s) ,u(ds)) = lim (a:o + f X'(s) ,u(ds)).

n—oo

i< 10,¢] 10,7k, [

Since X~ (11,) € C(7, ) and G is left closed, (7,u) € G. Now we extend X’ and
X to [0, 7] (without changing the notations) so that the previous relations hold
for [0,7]. If u({r}) = 0, define X'(7) = 0 and X (7) = w. Then X(7) = x¢ +
f]o,T] X'(s) u(ds) and X~ (1) = u € C(7) and also X'(t) € F(t, X (0(t))) +eBg
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p-a.e. on [0, 7]. Assume now that u({7}) > 0. Thanks to condition (C.2), choose
Y. € C(7) such that

d(Ye, v+ p({TH F(1,u)) < p({T})e.
Define X'(71) := ﬁ(y‘s —wu) and X(7) = y.. Then

X(7) = utp({THX'(7) =20 + [ X'(s) plds) + p({r}) X' (7)
10,7[

—20+ [ X'(s) p(ds),
10,7]

so that X~ (7) = u € C(1). Moreover, we have

d(X'(7), F(r, X~ (1)) = d(zz{;;; F (T, u)>
=Ly ut u(r ) () <6,

p{T})
that is, X'(7) € F(r, X (7)) +eBg. Hence we can extend (6, X) to [0, 7] in such
a way that (6, X') belongs to P.([0,7]). Obviously (6, X) is an upper bound for C.
Then by Zorn’s lemma, (P, <) admits a maximal element (6., X.) € P([0, 7))
with 7. € I.

To finish the proof we need to show that 7. = T. Assume the contrary, that
is, 7. < T'. Choose 0. > 0 with §. < inf(e,T — 7). According to (C.3), there are
(7,Z) € G and an integrable selection Y of the multifunction F(-, X7 (7.)) and
y € eBg such that 7. <7 < 7. + §. and

F-X"(r)= [ Y(s)ulds) + u(re, 7)7-
]7—577:[

According to (C.2) there exists 2 € C(7) such that 2 € T + u({7})F(7,7) +

p({7})eBg. Take w € F(7,z) 4+ eBg such that Z = 7 + p({7})w. Now define

6:10,7] —[0,7], X : [0,7] = FE and X' : [0,7] — E as follows:

0c(t) fort e [0,7],

O(t) =1 7. for t €]r., 7],
T fort =7,
_ X (1) for t € [0, 7],
X(t)=<¢ X: (1) + f]%ﬂ (Y(s) +9y)pu(ds) fort €], 7],
z for t =7,

Y(t)+y forte€lr, 7],

w fort=7.

_ XL(t) for t € [0, 7],
Xﬁ%—{

Then it is easy to check that (6, X) € P-(]0,7]). This contradicts the fact that
(0., Xc) is maximal.
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The main use of e-approximated BVRC solutions to the existence of BVRC
solutions for (1.1) is the convergence of e-approximated solutions by our next
proposition.

PROPOSITION 5.2. Let C : I — c¢(E) be a multifunction with left closed
gmph G. Let ¢ in L, (I, p) be such that ¥Vt € I, 0 < p({t})c(t) < 1 and
Jr X(=u({t}e))e(t) p(dt) < oco. Let I' : I — ck(E) be a scalarly measurable
multzfunctzon such that, for all t, I'(t) C c(t)Bg. Let F : I x E — ck(E) be a
scalarly T, ® B(E)-measurable multifunction such that for each t € I, F(t,-) is
upper semicontinuous. Suppose that the following conditions are satisfied:

(C1) V(t,x)elIxE, F(t,z) C (1+ |z|)L(¢).
(C2) V(t,z) € G, infycow) dly, =+ p({t})F(t,z)) = 0.
(C.3)  For each (t,x) € G* and each € > 0 there is (t.,x:) € G such that
0<t: —t<e and that
ve—z€ [ F(s,2)p(ds) + p(t,t))eBe.

It,te[

Then for any xo € C(0), there isa BVRC X : I — E with the following properties:

viel, X(t)=zo+ [ X'(s)p(ds)
10,¢]

with X' € LL(I,p),Vt € I, X~ (t) € C(t) and X'(t) € F(t, X (t)) p-a.e.

Proof. Let (e,)nen be a decreasing sequence in |0, 1] with lim,, .o €, = 0.
By Proposition 5.1, there are a constant m > 1, a sequence (6,,)nen with 6, €
JZ (I), ¥n, and a sequence (X, )nen of mappings from I to E satisfying V¢ € I,

Xo(t) = w0+ [y X4 (5) lds) with X, € LL(T, ), ¥t € I, X (6a(t)) € C(00 ().
X! (t) € F(t, X, (0,(t)) + enBg p-a.e. with

XL <me(t) +1  pace.,

where m = (1 + [lzo|| + p(I)) exp([lgll1) and g(t) = X(—u({t})e(t))c(t), vVt € I.
Now we prove the following main fact: For any ¢ € I, the sequence (X,,(t))nen is
relatively compact in E and the sequence (X )nen is relatively weakly compact
in LL(I, p).

By (C.1) we have for a.e. t,

X4(1) € F(t, Xy (0u(8)) + 20 B € (14 |X5 (0u(®))I(0) + B
C mI(t) + e, Bg C (me(t) +1)B.

by the proof of (A) in Proposition 5.1. Since lim,,_,~ €, = 0 and mI () is com-
pact, it follows from Theorem 4.4 that the sequence (X)) is relatively weakly
compact. Moreover, by Theorem 4.3, for any ¢ in I, the integral f 0 t] (s) u(ds)
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is convex and compact in £ and

Xo(t) =m0+ [ X}(s)plds) € mo+m [ I'(s)p(ds) + enp(I) B
10,t] 10,¢]
for all n € N. Since lim,,_,o, £, = 0, it is immediate that the sequence (X,,(t))nen
is relatively compact. Without loss of generality we can suppose that (X ),, con-
verges to X' for o(L', L>°). Define X (t) = xo + ji(),t] X'(s) u(ds), Vt. Then for
any t, (X, (t))nen converges to X (t) for o(E, E’). Since the sequence (X, (t))nen
is relatively compact, we have lim,, ., X, (t) = X(¢) for the norm topology. Also
we have lim,, ., X,, (t) = X~ (¢), V¢, for the norm topology. An easy computation
gives
1, (1) = X 0@ < [ (me(s) +1) u(ds)
(0 (£)]
for all t € I. Hence lim,, . || X,, (t) — X,, (6,(t))|| = 0. So

lim X (0,(t) = lim X (¢)

= lim (x0+ f Xé(s)u(ds)) =0+ f X'(s) p(ds).

e 10,¢] 10,¢]
Since X, (0,(t)) € C(0,(t)) and G is left closed, we have X~ (t) € C(t). It
remains to show that X'(t) € F(t, X~ (t)) for a.e. t. Observe that F'is 7, @ B(E)-
measurable, so the previous inclusion follows directly from Theorem 4.6. Indeed,
set for (t,z,y) € I x E x E, ¥(t,x,y) = d(y, F(t,x)). Then it is obvious that
satisfies the assumptions of Theorem 4.5. Since X/ (t) € F(t, X, (0,(t)) + e,Br
p-a.e., this implies that

D(t, X, (0 (1)), X, (1) < en <1
for all n € N and p-a.e t in I. Hence

liminf [ (¢, X, (0n(t)), X}, (1)) pldt) < 0.
I

n—oo

Since lim, o0 X/ (0,(t)) = X (t) for all ¢ € I, and lim, ., X] = X’ for

n
o(Lt, L>), by Theorem 5.4, we obtain

[ (e, X7 (1), X (t) p(dt) < liminf [ (¢, X],(0n(t)), X},(£)) p(dt).
I I

n—oo

Hence d(X'(t), F(t,X(t)) = 0 p-a.e. This ends the proof.

Remark 5.3. The global measurability assumption on F' can be weakened.
Indeed, one can replace this assumption by the following: For any measurable
mapping X : I — E, the multifunction ¢ — F(t, X (t)) is scalarly measurable. In
fact, we only need to show that X'(t) € F(t, X (t)) p-a.e. Let (e}, )ren be a dense
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sequence in E’ for the Mackey topology. For any measurable A in I, and for any
k € N, we have
[ (e X7 (0) p(dt) = Tim [ (e, X7, (1)) p(dt)

n— o0
A n— oo

< lim sup [ 6% (e Xy (B (1)) it

A

n—oo

< [ limsupd*(ef, F(t, X, (6n(1)))) pldt)
A

by Fatou’s lemma because we have the estimate
F(t, X, (0a())) € (L + [ X5, (0a(8)INL(t) C meBE
for all t € I and all n € N. By the upper semicontinuity of F'(t,-), we get

[ (e X' @) n(de) < [ 6 (e F(t, X (1)) u(dt).
A A

Equivalently, X'(¢t) € F(t, X (t)) p-a.e.

Remark 5.4. If Eis R% one can only suppose that I is separately mea-
surable and separately upper semicontinuous. Indeed, by the Mazur lemma and
by the upper semicontinuity of ®(t,-,-) := (z,7) + F(t,z) + rBg from E x [0,1]
to ck(R?) for fixed t in I, it is immediate that X'(¢) € F(t, X ~(t)) p-a.e. since we
have X/ (t) € &(t, X,, (0n(t)),en) pra.e. with lim,,_, X, (0,(t)) = X~ (), Vt € I,
lim,, o0 &, = 0, and X, — X’ for o(L, L>).

Proposition 5.2 considers the existence of BVRC solutions for (1.1) when F is
scalarly 7, ® B(E)-measurable with F'(t,-) upper semicontinuous on E and the
graph of the constraint C' is left closed. Now we present an analogous result for
the case where the graph G of the constraint C' is right closed and F' is globally
upper semicontinuous.

PROPOSITION 5.5. Let C' : I — ¢(FE) be a multifunction such that the graph
G of C is right closed (that is, G is closed in [0,T]; x E). Let ¢ be a positive
number, F': G — ck(E) an upper semicontinuous multifunction and w a Kamke
function. Assume that the following two conditions are satisfied:

(C.1)  For each € > 0, each (t,x) in G*, and each t' € I;"_, there is ' € C(t')

t,e’
such that o o
2 —x e pu(t,t])[(F(t',2")NeBg) +eBgl.
(C.2)  For p-a.e. t in I and for all bounded subsets B of E, one has

(%I;f(;a[F(Gﬂ (Itt; x B))NcBg] < w(t,a(B)).

Then for any xo € C(0) there is a BVRC mapping X : I — E with the following
properties:
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() vtel, X(t)=x0+ f]o,t] X'(s) p(ds) with X' € LL(I, ).
(ii) Vt € I, X(t) € C(t).
(i) X'(t) € F(t, X (t)) p-a-e.

Proof. Let (g,)nen be a decreasing sequence in |0, 1] such that lim, . &,
= 0. For each n € N, consider a subdivision

0=ty <ty <...<t, =T

such that t? — ¢ | <e, fori=1,...,1,. According to (C.1) there is a sequence
(?)o<i<w, such that

(5.5.1) xy =x0, (t7,2)€eG fori=0,... vy,

(5.5.2) 2l —al ;€ u(t?_ |, t'D(F (", 2?) NeBg) +e,Bg]  for 1 <i<uw,.

For each 1 < i < v, there is y? such that y? € (F(t?,27) N Bg) + ,Bgr and

that 2 — 2 ; = p(]t?1,t?])y?. Define the functions 0,, : [ — I, X : I — E
and X, : [ — E by

0,(0) =0, 0,(t)=t" if ¢ttt 7], 1<i< v,

X,/l(O) = y?? lem(t) = y? if ¢ E]t?_l,t?], 1 <4<y,
Xn(0) =20, Xo(t) =iy +p(ti, )y if telti ], 1<i<w,.

Then 6, is increasing with 0 < 6,,(t) — t < &, and X,, is BVRC which satisfies

(5.5.3) Xn(t)=xz0+ [ X}(s)plds), Vtel,
10,1]

(5.5.4) (0n(1), X (0,(1) € G,  Vtel,

(5.5.5) X! (t) € F(0,(t), Xn(6n(t) NcBr  p-ae.

Now to complete the proof we need to show the convergence of the sequence
(X, )nen of approximate BVRC solutions by our basic result in the following
proposition.

PROPOSITION 5.6. Let the assumptions of Proposition 5.5 be fulfilled. Let
zo € C(0). Let (Xn)nen and (X])nen be two sequences of mappings from I to E
satisfying the following three conditions:

() Vte I, X,(t) = zo + f]07t] X! (s) u(ds) with X, € L (I, ).

(b) Vn e N, Vt € I, (6,(t), Xn(6y))) € G.

(c) X/ (t) € [F(0n(t), Xpn(0n(t))) NeBEg| + enBr p-a.e.
Then there are a mapping X : I — E and a mapping X' € LL(I,p), a subse-
quence (X, ) of (Xn), and a subsequence (X, ) of (X;,) such that (X, ) converges

pointwise to X and (X], ) weakly converges to X' in Ly(I,pn). Further X is a
BVRC solution for (1.1).
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Proof. By assumption (a) and (c), we have
(5.6.1) 1X(8) = Xu() < [ 1X7(5)]| 1(ds) < (c+ Du(]t,t'])
Jt.t']
for all n € N and all (¢,t') € I x I with ¢t <t'. For each ¢ € I, define
Ap(t) :={Xn(t) :n e N} and p(t) = a(A(t)).

Then Ap(t) is relatively compact for all ¢ in I if and only if the function p is
identically equal to zero. For (¢,t') € I x I with ¢t <, we have

Ap(t') € Ao(t) +{Xn(t") — X,,(t) : n € N}
Then by (5.6.1) it follows that
Ap(t') € Ao(t) + (¢ + Dp(]t, t']) Be.
Hence we get
a(Ao(t') < a(Ao(t)) + 2(c + Dp(]t, ).
That is, o(t') < o(t) +2(c+ 1)u
o(t) < o) + 2(c+ Du(lt, t']),

so that |o(t) — o(t')| < 2(c+1)u(Jt, t]) for all (¢,¢') in I x I with ¢ < ¢'. Therefore
o0 is a BVRC function on I and its differential measure Dp satisfies Do(]t,t']) <
2(c+ 1)u(]t, t']) and Do({0}) = 07 (0) — 0(0) = 0. Then it follows from Moreau—
Valadier ([MV2], lemme 2.3) that

Dol < 2(c+1)p.

By Radon—Nikodym’s theorem, Dp admits a density ¢ := Do/du € L (1, 1) with
respect to p. Moreover, by virtue of a result due to Jeffery ([J], Theorem 5, p. 655
and Theorem 9, p. 662), see also ([EJ], Theorem 3.2, p. 228) there is a u-negligible
set N such that

(Jt,t']) and analogously

: . Dolt,t+¢]
5.6.2 t)=1 — =, Vtel\N.
(5.6.2) o(t) = lim Attte \
By (C.2) we can suppose that

611;%04[ (Gn (1} 's X B)) NeBg] < w(t, a(B))

whenever t € I \ N and B € b(E). Now we prove the following main fact:
(5.6.3) o(t) <wl(t,o(t)) p-a.e. on I.

If t = 0 and if ©({0}) > 0, then 9(0) = (0(0) —0(0))/u({0}) = 0. Let t €]0, T[\N.
Let € > 0 and h > 0 with [t,¢ + h] C I. Define

Bip=Ao(I5,) = | Ao(s

S€I+
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Then By j, is obviously bounded in E. By (C.2) and (5.6.2) we can choose 6, €
10, h/2[ such that

(5.6.4) a[F(G N (It—i._% X Bt,h)) N CEE)] < w(t, Bt,h) + &,
. ot +3) — o™ ()
(5.6.5) oft) < LS e

whenever § €]0, 0.].

Now fix § €]0, d.] and set
Xi(t+6) =X, (), | n}

lt) = { MRET)

Take p € N such that n > p implies €, < . We have by easy properties of the
measure of noncompactness

o(t+0) <a{Xp(t+0)— X, (t):neN}+a{X, (t)— X,(t') : n € N}
+a{X,(t') :n e N}.
Hence we have the estimate
ot +0) < pu(lt, t + o) Xp (1)) + o(t') + a[{ X, (t) = Xn(t) : m: N}].
Since || X, (t) — X, (t)]] < (c+ 1)p(Jt',t]) for all n € N and for 0 < ' < t, we get
(5.6.6) olt + ) < oft') + p(lt,t + )Xy (8)) + 2(c + (It 1]

for t < t. Then by taking the limit of the second member of (5.6.6) as t’ — ¢~
we obtain

(5.6.7) ot +0) <o (t) + p(Jt, t + ) (X (1))
Therefore it follows from (5.6.5) that
(5.6.8) 0(t) < a(Xy(t)) +e.

Now we estimate a(X),(t)) by the mean value theorem. We have

X, (t) € | X, (t)([t,t + d])

n2p
< @[ U (F(0u(s), Xu(00(5))) N ¢Bg) + £, B
nzp sE[t,t+4]
according to condition (c). Note that for n > p and s € [t,t + 4], we have
en <6 and t<0,(t) < 0,(s) <O (t+6) <t+6+e, <t+26
Hence, for n > p,
U (F(6n(s), Xn(6n(s))) N eBE) + £, B
s€t,t+]
C [F(Gﬂ (It+,2§ X Bt,h)) N CEE] + (5EE
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because X,,(0,,(s)) € By as C By, for all s € [t,t+ ¢]. This shows that
X, (t) C co[(F(G N (I}, 25 X Bi,p)) N cBg) + 6Bg].

Hence

(5.6.9) a(X,(t)) < a[F(G N (I} s X Ben)) N cBg] + 26.
Then by (5.6.4) and (5.6.9) we get

(5.6.10) (X, (1) < w(t,a(Byp)) + e + 26.

Also by (5.6.8) and (5.6.10), we have

(5.6.11) o(t) Sw(t,a(Bip)) + 2 + h.

Now by the definition of By} and (5.6.1), it is easily seen that
Ao(t) C Bep C Ao(t) + (c+ Dp(Jt, t + h])Bg.
Hence
o(t) < a(Bin) < o(t) +2(c + u(]t, t + hl)
so that limy, g+ a(Byp) = o(t). Finally, by (5.6.11) we obtain
o(t) <w(t, o(t))

as e — 07 and h — 07. Now it remains to prove that (5.6.3) is valid for ¢ = T if
w({T}) > 0, that is, 9(T) < w(T, o(T)). By condition (C.2) we have

ggga[F(G N (I}r’é x Ag(T))) NcBg| < w(T,a(Ao(T))).
Since I:,Jfﬁ = {T'} and a(Ao(T")) = o(T), we have
(5.6.12) a[F({T} x Ag(T)) NeBg] < w(T,a(Ao(T))) = w(T, o(T)).
Recall that o(T) = (o(T) — 0~ (T))/u({T}). Moreover, for all t € [0, T[, we have
o(T) <a{X,(T)— X, (T):n €N}
+ao{X, (T)— X,(t) : n € N} + af{ X,,(t) : n € N}
so that
o(T) < ofp({THX,(T) : n € N} +2(c + Dpu(Jt, T]) + o(t).
Then as t — T, it follows that
o(T) < o{p({THX,(T) : n € N} + 0 (T).
This implies
o(T) — o (T)
p({T})

By (c) for any integer m € N, we have
{X,(T) :n>m} C | J[(F(T,Xn(T)) NcBg) + enBaxl.

n>m

(5.6.13) o(T) = < o{X;(T):neN}.
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Set €, = SUpP,,; >, €n- Then
(5.6.14) {X/(T):n>m} C[FET} x Ag(T)) N Bg] + ¢, Bg.
Then by (5.6.12), (5.6.13) and (5.6.14) we obtain

o(T) < a[F({T} x Ao(T)) N eBg| + 2!, < w(T, a(Ao(T))) + 22",

Asel, — 0, 0(T) < w(T,a(Ap(T)) as desired. Since p(0) = a({zp}) = 0 and since
w is a Kamke function, we have ¢ = 0. This shows that Ay (¢t) = {X,,(¢) : n € N}
is relatively compact for all t € I. Now we check that (X ),en is relatively
o(L', L>)-compact. By (5.6.1), we have

X (0(t) € Ao(t) + (¢ + Dpu(]t, 0n(t)] B

foralln € Nand all t € I. Since lim,, o p(]t,0,(t)] =0 for all t € I, and Ap(t) is
relatively compact, it is immediate that {X,, (0, (t)) : n € N} is relatively compact
too, forall t € I. Foreach t € I, set K(t) = {0,(t), X,,(6,(t))) : n € N}. Then the
multifunction ¢ — K (t) is obviously measurable with nonempty compact values
in G. Since F' : G — ck(E) is upper semicontinuous, t — F'(K(t)) is a measurable

multifunction from I to k(E). Now by (c) we have X/ (t) € F(K (t))Nc¢Bg)+e,Bg
u-a.e.; then a fortiori we have

X! (t) €e[F(K(t))NeBg] +e,Bp  p-ae.

Since ¢oF (K (-)) is measurable too, it follows from Theorem 4.4 that (X)) is
relatively o (L, L°°)-compact. Now it is easy to finish the proof. We can suppose
that (X)) converges to X’ for o(L', L>) so that, for all ¢ € I, we have

lim xo + fX’ )ds = xo + fX’(s),u(ds)

S 10,¢] 10,¢]

for o(E, E"). Since Ag(t) = {X,(t) : n € N} is relatively compact for all ¢ € I, it
follows that, Vt € I, lim,,_,, X,,(t) = X(t) for the norm topology where X (¢ )
xo + f]o . X'(s) u(ds) Now for (t,z) in G, set

F(t,z) = F(t,z) N cBg.

Then F is upper semicontinuous on its domain D C G and by (c), for p-a.e. t € I,
K(t) C D. Note that for all ¢ in I, limy, 00 0, (t) = t and lim,, o0 X, (0,,(t)) =
lim,, oo X, (t) = X(¢t) since [|X,(0,(t)) — Xn(t)]] < (¢ + Du(]t,0,(t)]. Then
limy, 00 (00, (t), X0 (01.(t))) = (¢, X (t)) € G since G is right closed. For any mea-
surable set A C I and any =’ € E, we have

J (' X0 () = Jim [ ) ()

n— 00
A

< limsup f5 2!, F (0, (), Xn (6, (1)) u(dt)

n—oo
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IN

[ limsup 6% (2, F(0,(t), X, (0, (1)) pa(dt)
A

n—oo

< [ 0@ F(t X)) pldt).
A

This inequality shows that X’(t) € F/(t, X(t)) pu-a.e. and finishes the proof.

5.b. Absolutely continuous solutions. In this section A is the Lebesgue measure
on I. There are analoguous results for the existence of absolutely continuous
solutions for (1.1). We need first a preliminary lemma.

LEMMA 5.7. Let g : I — R™ be an integrable function and let J be a measurable
subset in I. Then for A-a.e. t in J, one has

.1
61—1>I£l+ 5 f g(s)ds = 0.
[t—3,6N(1\J)

Proof. Let us consider the function f : ¢~ 1p ;(¢)g(t) on I and the measure
v:= fA. In view of a result due to Jeffery [J], for A\-a.e. ¢ in I, we have
dv . v[t—eit] 1
f=FZ0=lm=—="=1m - [ gls)ds
e>0 [t—e,t]N(I\J)
Hence the desired result follows by noting that f(¢) = 0 for all ¢ in J.
PROPOSITION 5.8. Let C' : I — ¢(E) be a multifunction such that its graph
G is left closed. Let F : I x E — ck(E) be a scalarly T)(I) ® B(E)-measurable
multifunction such that for any t € 1, F(t,-) is upper semicontinuous on E. Let
w € Kam(I,\). Suppose that the following three conditions are satisfied:

(C.1)  There is ¢ € Ly, (I, \) such that
V(t,z) e I x E, |F(t,x)] <c(t)(1+ |z])
(C.2)  For each € > 0, there is a closed set J. C I with \(I \ J.) < & such that

for A-a.e. t in J. and for any nonempty bounded subset B of E, one has
inf o[ F(I;; x B)] < w(t,a(B))
where I, 5 = J. N[t —0,t].
(C.3)  For each (t,x) € G* and each € > 0, there is (te,xc) € G such that
0<te—t<eandthatz. —x € ftts F(s,z)ds+ (t. —t)eBg.
Then for any xo € C(0), there is an absolutely continuous solution X of (1.1)
with X (0) = .

Proof. Let (g,)nen be a decreasing sequence in |0, 1] such that lim, . &,
= 0. In view of Proposition 5.1, there are m > 1, a sequence (0,),ecn with
0 € J2 (I) and a sequence (X,,)nen of absolutely continuous functions with the
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following properties:

t
(581) Wtel, X,(t)=zo+ [ (X)(s)ds where X}, € Li(I,\),
0

(5.8.2) Vtel, X,(0.(t) € C(0,(1)),
(5.8.3) X/ (t) € F(t,Xn(0,(t) +€,Bn  Aae.,
(5.8.4) XL @) <me(t)+1  Mae.

Then (X, )nen is an equicontinuous subset of Cx([0,T]. For each t € I, set
Ao(t) = {Xa(t) i n €N} and  o(t) = a(Ao().

We shall prove that (X, )nen is relatively compact in Cg([0,T]). By Ascoli’s the-
orem, it is enough to show that Ag(t) is relatively compact for any ¢ in I. So it is
equivalent to show that the function g is identically equal to zero. For (¢,t') € I xT
with ¢ < ', we have

Ao(t') C Ao(t) +{Xn(t') — X, (t) : n € N}
By (5.8.4), we have
t’ -
{xﬁq_xﬁyneN}c(fg@mgBE
t
where g(t) = mc(t) + 1, ¥Vt € I. Hence Ay(t') C Ao(t) + (ftt/ gsds)Bg. Tt fol-
lows that a(Ao(t) < a(Ae(t)) +2 [/ g(s)ds. Then o(t') < o(t) + 2 [/ g(s)ds.
Consequently,
t/
Vit ) eIx I, t<t, |o(t')—o®t)] <2 [ g(s)ds.
¢
It follows that g is absolutely continuous. Let ¢ be the Radon—Nikodym density of
o with respect to the Lebesgue measure X\. Take n > 0. Then by our assumption
(C.2), Jeffery’s theorem [J] and Lemma 5.7, there are a closed set J,, C I with
A(I — J,) < n and a negligible set N,, C J,, such that

(5.8.5) inf a[F(J, N[t = 6,1] x B))] < w(t,a(B))

whenever (t, B) € (J, \ Ny) X b(E).

. . ot)—e(t—0
LR ()
1
5.8.7 vt e J, \ N, lim — ds = 0.
( ) € Jy \ Ny, 53& f 9(s)ds

[t=38,6]N(I\Jy)

Now let t € J, \ N,, with ¢t # 0. Let h > 0 with [t — h,h] C I. Set B} =
Usept—n,n Ao(s) and note that By, is bounded by (5.8.4). Let € > 0. By (5.8.5),
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(5.8.6) and (5.8.7) there is 0. €]0, h/2] such that
(5.8.8) alF(I; 5 % Bep)] Sw(t,a(Bip)) +e where I 5 = J, N[t — 4,1,

(o(t) —o(t —9)) +e

1
(5.8.10) 5 [ g(s)ds<e
[t=6,t]N(I\Jy)

—~

(5.8.9) o(t) <

whenever 0 < § < d.. Now take § €]0,0.] and choose ng € N such that n > ng
implies €, < §. Set

X, () = {;(Xk(t) CXp(t—0)) k> n} nen.
Then Ay (t) C Ao(t — ) + X (t) and
a(Ao(D)) < a(Ao(t — 8)) + 6a(Xo(t)) = alAo(t — 8)) + 6 Ko (1))-
This implies o(t) < o(t — J) + da (X, (t)). By (5.8.9) we get
(5.8.11) o(t) < a(X, (1)) +e.
Further, by the mean value theorem, we have

Xno(t)c< U mxg([t—a,t]mjn))+{(ls [ X;(s)ds:nzzvo}

n>ng [t=8,¢.]IN(I\Jy)

c ( | @ox, ([t — 6.1 mJ,,)) + (; [ a9 ds)BE.

n>no [t—6,t)N(I\Jy)

Then by (5.8.10), we have
X, (1) C ( | eox, (it - 6.1 ﬂJn)) +eBg.

n>ngo

Hence a(X,0(t)) < a(U, >, ©0X, ([t —0,t] N J;) + 2e.

By (5.8.3) we have
¥n>no, @X.L([t—6,4NJ,)C @[ U F(s, Xu(00(5)) + eu Bl
se[t—6,t]NJy
Note that Vn > ng, Vs € [t — ,t], &, < J and
t—20<t—06—ey < Op(t—05) < 0n(s) <t

s0 O, (s) € [t —26,t] C [t — h,t] and X,,(0,,(s)) € By . Therefore for n > ng we
have

n>n

co X, ([t = 6,t] N J,) C Co[F (I, 5 x Bin) + 0Bgl,
so that, using (5.8.8), we get
(5.8.12) (X, (1)) < a(CoF (I, 5 X Byp)) + 26 + 2¢
= a(F(I 5 X Bep)) +20 + 26 S w(t,a(Bip)) +h+ 3e.
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Further, it easy to check that

Ao(t) C Ben C Ao(t) + (

t

g(s) ds) Bg.

Lo—x

Hence

t
o(t) < a(Bip) < o(t) +2 [ g(s)ds.
t—h
It follows that limy, g+ a(Byp) = o(t).
By using (5.8.11) and (5.8.12), we obtain

0(t) S w(t,a(Byn)) +h + 4e.

Then as h — 0" and ¢ — 07", we get

o(t) < w(t, o(t))
for all t € J,, \ N,, and ¢ # 0.

Let 2 ={t €[0,T]: 0(t) <w(t,o(t))}. Then {2 is measurable and by previous
arguments, for every 1 > 0, there are a closed set J, C I with A(I \ J;;) < n
and a negligible set N,, C I such that J, \ (N, U{0}) C 2. Therefore I\ 2 C
(I\ Jy) UN,U{0} so that A(I\ £2) < AT\ Jy,) + A(N,;) <n. Hence A(I\ 2) =0
and 9(t) < w(t, o(t)) A-a.e. Since p(0) = a({zo}) = 0 and w is a Kamke function,
o0 is identically equal to zero. It follows that (X, )nen is relatively compact in
Cg([0,T]), in particular, for each t€ I, Ay(t) is relatively compact. Since we have

¢
VneN, X (0n(t) € Ao(t) + ([ g(s)ds)Br
0. (1)
and lim,, f@tn(t) g(s)ds = 0, the set Aj(t) := {X,(0,(t)) : n € N} is relatively
compact for all ¢ in I. By our assumption, F'(t,-) is upper semicontinuous with
convex compact values. It follows that F'(¢, Aj(t)) is compact for all ¢ in I. Further,
by (5.8.3), we have
VneN, X (t)€ F(t,Ay(t)) + enBg.

Since (X )nen is uniformly integrable, by Theorem 4.4, we see that (X )nen is
relatively compact for o(L!, L>°) topology. Therefore there are X € Cg(I), X’ €
Li(I,\) and a subsequence (X/, Jren of (X, )nen such that (X, )xen convergs
to X in Cp(I) and (X, )ren converges to X' in Ly (I, \) for o(L', L*°) topology
with Vit € I, X(t) = zo + fot X'(s)ds. But it is already proved that

vtel, lim || X,(t) — X, (0,(t)] = 0.

So that limy_,o0 Xy, (0n, (t)) = X (t) for all ¢ in I. Since the graph G of C is left
closed, by (5.8.2), we have (¢, X(t)) € G. Now the inclusion X'(t) € F(t, X (t))
A-a.e. follows from (5.8.3) and the arguments of the proof of Proposition 5.2. See
also Remarks 5.3 and 5.4.
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