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Abstract. We consider the problem of constructing the optimal closed loop control in the
time minimal control problem, with terminal constraint belonging to a manifold of codimension
one, for systems of the form v̇ = X+uY , |u| ≤ 1 and v ∈ R2 or R3, under generic assumptions.
The analysis is localized near the terminal manifold and is developed to control a class of chemical
systems.

1. Introduction. Consider a system of the form

(1) v̇ = X(v) + uY (v), v ∈ R
n,

where X and Y are analytic vector fields and admissible controls are measurable
scalar functions with values in [−1,+1]. Let N be a regular analytic submanifold
of R

n of codimension one. We study the following local problem. Let v0 ∈ N,
compute in a sufficiently small neighborhood U of v0 the optimal closed loop

function for the time minimal control problem where the target is N and system
(1) is restricted to U. This analysis is motivated by the control of chemical batch
reactors, see [3]. Our aim is to classify all the syntheses in terms of inequalities
between the coefficients of the analytic expansions of X, Y and f, where N is
locally the image of f. The generic classification is presented for the planar case in
[4]. The aim of this article is to complete this classification in the 3-dimensional

case. We use normal forms in order to evaluate the switching and cut loci. We
restrict our analysis to the generic situations and describe the topological features

of the syntheses.

2. Preliminaries. Consider system (1) written as (X,Y ). Let N̂ = {(v, p);
〈p,w〉=0 ∀w ∈ TvN}, where 〈, 〉 denotes the standard inner product. An extremal
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(v, u) is a trajectory of (1), defined on [T, 0] T < 0 and solution of the maximum

principle for the time minimum problem, when the terminal manifold is reduced
to a point (This problem is called the point to point problem):

v̇ =
∂H

∂p
, ṗ = −∂H

∂v
, H(v, p, u) = Max

|w|≤1

H(v, p, w)

where H(v, p, w) = 〈p,X +wY 〉 is the Hamiltonian and t→ Max|w|≤1H(v, p, w)
is a positive constant. A triplet (v, p, u) is called an extremal lift. It will be
called a BC-extremal lift if it satisfies the boundaries conditions (v(0), p(0)) ∈ N̂
(transversality condition). Let (v, u) be an extremal on [T, 0]; a time s ∈ [T, 0] is
called a switching time if s belongs to the closure of the set of t’s in [T, 0] where
v is not C1 and v(s) will be called a switching point. We shall denote by W the
set of switching points for BC-extremals and K the switching locus of optimal
trajectories. Let (v, u) be a BC-extremal defined on [T, 0]. We call cut point along
v(t) the first point where the extremal ceases to be optimal. We denote by C the
cut locus. Our aim is to stratify K ∪ C and to compute the optimal control as a
feedback v 7−→ u∗(v).

Let v ∈ R
n and let C(v) be the convex set {X(v) + uY (v); |u| ≤ 1}. Let

v0 ∈ N, in our analysis we shall assume that Y (v0) is not zero, moreover it is not
restrictive to suppose that C(v0) lies entirely in one half-space limited by Tv0

N.
Let n(v) be the unit normal to N oriented near v0 as C(v0).

3. Classification. We classify by increasing the codimension of the singular-
ities in the jet-space of (X,Y, f) at (v0, f

−1(v0)). We present the generic classifi-
cation when v ∈ R

2 or R
3. Due to space restrictions, the proofs are only sketched

but we illustrate the techniques used to handle the problem.

3.1. Generic case. Let us assume that both X(v0)±Y (v0) are not tangent to
N. Let n(v0) be the normal to N oriented with the convention 〈n(v0),X(v0) ±
Y (v0)〉 > 0. Let (v, p, u) be a BC-extremal defined on [T, 0]. From the maxi-
mum principle one can set p(0) = n(v(0)), for |v(0) − v0| small. Let us assume
〈n(v0), Y (v0)〉 6= 0, then from the transversality condition, the optimal synthesis
in a sufficiently small neighborhood of v0 is given in Fig. 1,

〈n(v0), Y (v0)〉 > 0 〈n(v0), Y (v0)〉 < 0

Fig. 1
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where γ+ (resp. γ−) are arcs corresponding to u = +1 (resp. u = −1).

3.2. Generic switching point. Let v0 ∈ N such that 〈n(v0), Y (v0)〉 = 0, where
n is the normal to N. In order to analyze this singularity one need preliminary
lemmas.

3.2.1. Lemma. Let v0 ∈ N be such that 〈n(v0), Y (v0)〉 = 0 and let us assume

〈n(v0), [X,Y ](v0)〉 6= 0, the Lie bracket of two vector fields being computed with

the convention

[Z1, Z2](v) =
∂Z2

∂v
(v)Z1(v) −

∂Z1

∂v
(v)Z2(v).

Then (v, p, u ≡ 1) (resp. (v, p, u ≡ −1)) is a BC-extremal lift with v(0) = v0,
p(0) = n(v0) if and only if 〈n(v0), [X,Y ](v0)〉 < 0 (resp.> 0).

P r o o f. We prove the assertion when u ≡ 1. Assume (v, p, u ≡ 1) is a
BC-extremal lift defined on [T, 0] with v(0) = v0, p(0) = n(v0). Let Φ+ be
the switching function 〈p, Y (v)〉 evaluated along the extremal. We have Φ+(t) =
Φ+(0)+ tΦ̇+(0)+o(t) and computing we get Φ̇+ = 〈p, [X,Y ](v)〉. Since Φ+(0) = 0
and u(t) = signΦ+(t) = +1 for t < 0, we must have 〈p(0), [X,Y ](v0)〉 < 0.

3.2.2. Lemma. Let us assume 〈n(v0), [X,Y ](v0)〉 6= 0. Then, the arcs γ+ and

γ− arriving at v0 cannot be sets of input switching points.

P r o o f. For instance, let us assume that (v, p, u ≡ 1) is a BC-extremal on
[T, 0] with v(0) = v0, then p(0) ∈ Rn(v0). Moreover assume that each point
of v is an input switching point. Hence there exists BC-extremals γ = γ−γ+,
where γ+ is any subarc of v(t) and γ−γ+ designs an arc γ− followed by an arc
γ+. Then we have 〈p(t), Y (v(t))〉 = 0, ∀t ∈ [T, 0]. Differentiating with respect to
t and evaluating at t = 0, we get 〈p(0), [X,Y ](v0)〉 = 0. This is absurd since
p(0) ∈ Rn(v0).

3.2.3. Assumptions. From now on, we assume 〈n(v0), Y (v0)〉 = 0 and both
〈n(v0),X(v0)〉 and 〈n(v0), [X,Y ](v0)〉 non zero, n(v0) being oriented with the
convention 〈n(v0), X(v0)〉 > 0. Moreover, we suppose v = (x, y) ∈ R

2, the
generalization being straightforward.

3.2.4. Method of analysis. In order to evaluate near v0 the switching locus K
and the cut locus C it is convenient to make the following normalizations.

First, one may set v0 = (0, 0) and as in [2], since X and Y are transverse at v0,
one may assume locally Y = ∂

∂y
and that the trajectory corresponding to u ≡ 0

is t→ (t, 0). Hence (1) can be written locally:

(2) ẋ = 1 +
+∞∑

i=1

ai(x)y
i, ẏ =

+∞∑

i=1

bi(x)y
i + u.

Moreover, changing if necessary y into −y and u into −u, one can assume a =
a1(0) > 0 where a = −〈n(0), [X,Y ](0)〉, n(0) = (1, 0) being the unit normal to N.
Since Y is tangent to N at 0, the terminal manifold can be locally parametrized by
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s 7→ (c(s), s), where c(s) = ks2 + o(s2) and k represents the curvature of N which
is generically 6= 0. We have n(0) = (1, 0) and for v small, using 〈n(v),X(v)〉 > 0
one can set n(v) = (n1, n2), n1 = 1, n2 = −c′(s) = −2ks + o(s). Hence, for s
small we have: if k < 0, then n2 > 0 if s > 0 and n2 < 0 if s < 0, and conversely
if k > 0. The Hamiltonian is H(v, p, u) = 〈p,X + uY 〉 and if v ∈ N is small,
p = n(v), its maximum over |u| ≤ 1 is obtained as follows: if k < 0, s > 0, then
n2 > 0 and u maximizing H is +1 if s < 0, it is −1 and conversely if k > 0.
Hence, we get the following important geometric behaviors: if k < 0, the arcs γ+

and γ− satisfying the transversality conditions can cut themselves, contrarily to
the case k > 0.

k < 0 k > 0

Fig. 2

The adjoint system associated to (2) with p = (p1, p2) is

(3)

ṗ1 = −p1

+∞∑

i=1

a′i(x)y
i − p2

+∞∑

i=1

b′i(x)y
i,

ṗ2 = −p1

+∞∑

i=1

iai(x)y
i−1 − p2

+∞∑

i=1

ibi(x)y
i−1,

where a′i and b′i are the derivatives of ai and bi with respect to x. If u is a piecewise

analytic control every solution (v, p) of (2), (3) such that (v(0), p(0)) ∈ N̂ , can be

evaluated for t sufficiently small , by analyticity.

3.2.5. Lemma. Near 0, every optimal solution is of the form γ+γ−.

P r o o f. From [5], we know that every BC-extremal is of this form and from [9],
we know that every optimal solution for the point to point problem is of this form.
Now let v1, v2 be two points near 0 and let γ1 = γ+γ− and γ2 = γ−γ+ be two arcs
defined on [0, t1] and [0, t2] joining v1 to v2. To compare t1 and t2 we introduce
the one form ω defined by ω(Y ) = 0 and ω(X) = 1. From Stokes’ theorem we
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have:
∫

γ1

ω −
∫

γ2

ω = t1 − t2 =
∫

D

dω

where D is the domain limited by γ1 ∨ γ2. Computing with dω > 0 and using the
fact that γ1 ∨ −γ2 is clockwise we have t1 < t2.

3.2.6. Lemma. The arc γ− arriving at 0 is not optimal.

P r o o f. n(0) = (1, 0) and computing we have: 〈n(0), [X,Y ](0)〉 = −a < 0.
Hence from lemma 3.2.1, this arc is not a BC-extremal.

3.2.7. Lemma. Assume k 6= 0, then the switching points of BC-extremals

γ+γ− near 0 form an analytic curve W starting from 0 and whose tangent at 0
is R(−2k/a, 1 + 2k/a).

P r o o f. We integrate (2), (3) backwards in time, with initial conditions v(0) ∈
N, p(0) = n(v(0)) = (1,−2ks+o(s)). We get p1(t) = 1+o(1), p2(t) = −2ks−at+
o(|s, t|). If k < 0, we must have s < 0 and if k > 0, s > 0. Hence the BC-extremal
γ− is switching at (x(w), y(w)) = s(−2k/a, 1 + 2k/a) + o(s).

3.2.8. Lemma. Near 0 a BC-extremal γ+γ− is crossing W if k > 0 or −a/4 <
k < 0 and is reflecting on W if k < −a/4.

P r o o f. We compare the respective slopes of W,γ+ and γ− at 0. They are
−1 − a/2k,+1 and −1. Hence if k > 0, the slope of W is less than −1. If k < 0,
−1 − a/2k > 1 if and only if −a/4 < k. Hence the geometric situations are:

k > 0 −a/4 < k < 0 k < −a/4

Fig. 3

3.2.9. Proposition. The optimal syntheses are given in Fig. 4, where K is

an analytic curve with slope at 0,−1− a/2k and in the third case the cut locus C
is an analytic curve with slope at 0 equal to −a/4k.
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k > 0 −a/4 < k < 0 k < −a/4

Fig. 4

P r o o f. In the first two cases, the situation is clear because from each point
near 0, to the left of N, there exists only one BC-extremal γ+γ−. In the third
case, more that one BC-extremal γ+γ− is possible to reach the target. Let us
prove than an optimal policy has no switching. Assume that optimal trajectories
γ+γ− accumulate near 0 (Fig. 5.1). Then we can construct optimal trajectories of
the form γ+γ−γ+γ− which is absurd. The cut locus is constructed as follows. Let
L be subanalytic set {v = (x, y), v small, x < 0, such that both exp t(X ± Y )(v)
intersect N} where exp tZ is the local parameter group associated to the vector
field Z. By computing we get that L is an analytic curve whose tangent at 0 is
−a/4k ∈]0, 1] (Fig. 5.2). Clearly C = L.

Fig. 5.1 Fig 5.2

4.Generic fold case. In this section we analyse the situation when a singular
extremal meets the terminal manifold at a point where Y and [X,Y ] are tangent
to N . It is a generic situation when v ∈ R

n, n ≥ 3. We shall restrict our analysis
to the case n = 3.

4.1. Preliminaries. Consider system (1) where v = (x, y, z) ∈ R
3. An extremal

lift (v, p, u) is called singular on [0, T ] if 〈p(t), v(t)〉 = 0 ∀t ∈ [0, T ]. Let D =
det(Y, [X,Y ], [Y, [X,Y ]]), D′ = det(Y, [X,Y ], [X, [X,Y ]]) and S = {v ; D(v) = 0}.
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4.1.1. Lemma. The singular extremals (v, u) contained in R
3\S are the solu-

tions of

(4) v̇ = X(v) + û(v)Y

where u(t) = û(v(t)) = −D′/D.

P r o o f. By differentiating twice the equation 〈p(t), Y (v(t))〉 = 0, t ∈ [0, T ]
one gets 〈p(t), [X,Y ](v(t))〉 = 〈p(t), [X, [X,Y ]](v(t)) + u(t)[Y, [X,Y ]](v(t))〉 = 0.
Since p 6= 0 this implies D′ + uD = 0 and u can be computed on R

3\S as a
feedback û.

4.1.2. Definition. Let (v, p, u) be a singular extremal lift on [0, T ]. We as-
sume the following.

H0. t → v(t) is a one to one mapping contained in R
3\S (Hence analytic).

H1. For each t ∈ [0, T ], Y (v(t)) and [X,Y ](v(t)) are linearly independent.
The adjoint vector p is oriented with the convention h = H(v(t), p(t), u(t)) =
〈p(t),X(v(t))〉 ≥ 0. The extremal is called hyperbolic if ∀t ∈ [0, T ], h 6= 0 and
〈p(t), ad2Y (X)(v(t))〉 < 0, elliptic if h 6= 0 and 〈p(t), ad2Y (X)(v(t))〉 > 0 and
exceptional if h = 0.

From [2] we have

4.1.3. Proposition. Assume T > 0 enough small. Then (v, u) defined on

[0, T ] is time minimizing (resp. maximizing) with respect to all solutions of v̇=
X + uY, u ∈ R, joining v(0) to v(T ) and contained in a sufficiently small neigh-

borhood of v if it is hyperbolic or exceptional (resp. elliptic).

4.2. Normalizations. Let v0 ∈ N such that Y (v0) and [X,Y ](v0) are tangent to
N. We assume that v0 = 0 and N is the image by an immersion f : q ∈ R

2 7→ R
3

of a neighborhood U of 0. We shall normalize under generic assumptions (1) and
N, near 0, using the action of the pseudo-group G generated by the following
transformations:

(i) Local diffeomorphism ψ : R
2 7→ R

2, ψ(0) = 0 changing the parametriza-
tion q of N.

(ii) Local diffeomorphism ϕ : R3 −→ R
3, ϕ(0) = 0 of the state space.

(iii) Feedback transformation u 7→ −u (the trajectories γ+ and γ− are inter-
changed).

4.2.1. Proposition. Under generic assumptions, and using the action of G,
system (1) can be written near 0 as

(5)

ẋ = 1 + az2 + a′yz + a′′y2 +R1,

ẏ = bz + b′y +R2,

ż = (u− û(0)) + cx+ c′y + c′′z +R3
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where a 6= 0, a′ > 0, b 6= 0, û(0) ≥ 0 and R1 = o(|x, y, z|3), R2, R3 = o(|x, y, z|2).
The singular extremal passing through 0 being indentified to t 7→ (t, 0, 0) and N
is the image of f where f(s,w) = (ks2, w, s) + o(|s,w|2).

P r o o f. We sketch the proof indicating the geometric interpretation of this
result.

First, if Y (0) 6= 0, one may set locally Y = ∂
∂z
. We assume 0 ∈ R

3\S and that
the singular extremal passing through 0 is one to one. Using a diffeomorphism
leaving Y = ∂

∂z
invariant, it can be transformed into t 7→ (t, 0, 0).

Now let d be the set of points where Y is tangent to N. Assume d is a simple
curve transverse to 0z and 0x. Hence using a local diffeomorphism of R

3 pre-
serving Y = ∂

∂z
and each point of the axis 0x, we may apply d onto the axis

0y.
Now, at 0, the tangent space to N is R{ ∂

∂y
, ∂

∂z
}. By assumption [X,Y ] is

tangent to N at 0 and near 0 ∈ S, the two vector fields Y and [X,Y ] are linearly
independent. By computing, one see that there exists a diffeomorphism preserving
the previous normalizations and transforming [X,Y ] along 0x into the constant
vector [X,Y ](0).

Hence we get (5). The singular extremal identified to t −→ (t, 0, 0) is hyper-
bolic (resp. elliptic) if and only if a<0 (resp. a>0). The condition a′ 6= 0 means
that the set d′ where [X,Y ] is tangent to N is a simple curve transverse to 0y,
which corresponds to the set of points where Y is tangent to N. The conditions
a′ > 0 and û(0) ≥ 0 are obtained by changing if necessary y into −y, z into −z
and u into −u.

Now we can normalize f using changes of parametrization. Since at 0, the
tangent space to N is R{ ∂

∂y
, ∂

∂z
}, from the implicit function theorem one may

assume f(s,w) = (Q(s,w), w, s) + o(|s,w|2) where Q is a quadratic form. By
construction N contains the axis 0y and at each point of this line its tangent
space is R{ ∂

∂y
, ∂

∂z
}. This implies Q(s,w) = ks2.

The proposition is then proved.

4.3. Notations. We denote Γε the union of the trajectories corresponding to the
constant control u = ε, ε = ±1, reachingN at (0, w, 0). Let (v, p, u) be an extremal
defined on [0, T ], T ∈ R, with v(0) ∈ N, p(0) = n(v) and let p = (p1, p2, p3). Let
t1 be the first |t| such that p3(t) = 0. Hence on [0, t1], u = ε, ε = ±1 and we shall
denote Kε the union of the points v(t1). By construction Kε contains the locus

of first switching points of BC-extremals.

Using model (5) we shall evaluate Γε and Kε.

4.4. Lemma. The set Γε is given by the equations: x = t+ o(|w, t|2) y = w+
b(ε−û)t2/2+b′wt+o(|w, t|2), z = (ε−û)t+ct2/2+c′wt+c′′(ε−û)t2/2+o(|w, t|2).
Near 0, it is a 2-dimensional analytic manifold whose tangent space is given by

z = [(ε − û) + c′w]x+ o(w2) at (0, w, 0).

P r o o f. Computations.
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4.5. Lemma. The time t1 is given by solving :

(6) p3(t) = −2ks− at2(ε− û) − a′wt+ o(|s,w, t|3) = 0

where the weight of the variables is 1 for t, w and 2 for s, if k 6= 0. The set Kε

is parametrized by x = t1 + o(|t1, w|2), y = w+ b(ε− û)t21/2 + b′wt1 + o(|t1, w|2),
z = (ε − û)t1 + [c + (ε − û)(c′′ − a/k)]t21/2 + (c′ − a/2k) wt1 + o(|t1, w|2). Near

0, it is an analytic manifold whose tangent space is given by z = [(ε − û) + (c′ −
a/2k)w]x + o(w2) at (0, w, 0).

P r o o f. Computations.

4.6. R e m a r k . We observe that at 0 both Γε and Kε are tangent. The syn-
thesis depends of the relative position of Γε and Kε near 0. The easy case is the
case k < 0.

4.7. Proposition. If k < 0, the optimal trajectories are of the form γ+ or

γ− and the synthesis is described in Fig. 6, in each plane y = c, c small.

Fig. 6

P r o o f. In this case the BC-extremals are cutting themselves before to be
allowed to switch. Hence, there exists a cut locus (subanalytic set) whose inter-
section with a plane y = c is homeomorphic to a line.

When k > 0, the situation is intricate. One must distinguish different cases:
a > 0, a < 0, 1 > û(0) ≥ 0, û(0) = 1 (saturating singular control), û(0) > 1 (not
admissible).

4.8. Proposition. Assume k > 0, a < 0 and 1 > û(0) ≥ 0. Then near 0, the

optimal synthesis is homeomorphic to that of Fig. 7, where γs designs a singular

arc.
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y < 0 y = 0 y > 0

Fig. 7

P r o o f. Let m0 = (0, n(0)), where n(0) = (1, 0, 0) (normal to N). Now
using the classification from [5], m0 is an hyperbolic fold point and near m0

the behavior of BC-extremal lifts is as shown in Fig. 8, where m0 belongs to
〈p, Y 〉 = 〈p, [X,Y ]〉 = 0 and the singular extremal lifts are contained in this
surface. This classification is sufficient to compute the optimal synthesis.

Fig. 8

Indeed, we stratify N using the transversality condition and along 0y, lem-
ma 3.2.1, we have the situation of Fig. 9, and from Fig. 8, at 0, a BC-extremal
law can be +1,−1 or û(0).

Fig. 9
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Now, we compute the set of first switching points for BC-extremals. By defi-
nition they are located on manifolds Kε defined by lemma 4.5. A switching time
t1 is approximated by solving:

a(ε− û)t2 + a′wt+ 2ks = 0.

If δ = a′2w2 − 8ka(ε− û)s, we must have δ ≥ 0 and

t1 =
−a′w ±

√
δ

2a(ε− û)
≤ 0.

Moreover from the transversality condition we must have εs ≤ 0 (Fig. 9). Com-
puting and taking the smallest |t1|, which −→ 0 when s → 0, for each w, we get
the set of first switchings points shown in Fig. 10.

Fig. 10

At a switching point such that 〈p, [X,Y ]〉 = 0, an extremal control can be +1,
−1 or singular. Such points form the boundaries ∂+ of K+ and ∂− of K−.

If we flatten everything by homeomorphism we get the synthesis from Fig. 7.
In this case the optimal synthesis is the unique extremal synthesis and we have
represented in Fig. 11 the correspondence between extremal lift and optimal tra-
jectories, in each plane y = constant > 0.

Fig. 11

4.9. Proposition. Assume k > 0, a > 0 and 1 > û(0) ≥ 0. Then the optimal

trajectories have at most one switching and the optimal synthesis is given in each
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plane y = c by Fig. 12, where K+ (resp. K−) is the set of switching points

corresponding to γ− γ+ (resp. γ+γ−) and C is the cut locus where an optimal

control can be u = 1 or u = −1.

c < 0 c = 0 c > 0

Fig. 12

S k e t c h o f p r o o f. Let m0 = (0, n(0)), n(0) = (1, 0, 0) normal to N at
0. Since a > 0, according to [5] the BC-extremals lifts near m0 are of the form
(elliptic case) shown in Fig. 13.

Fig. 13

Here 〈p, Y 〉 = 〈p, [X,Y ]〉 = 0 contains singular extremal lifts which are elliptic,
hence time maximizing, for the point to point time optimal control problem.
Moreover a concatenation between a singular arc γs and an arc γ+ or γ− is not
extremal and there exists no uniform bounds on the number of switchings of
extremals γ− γ+ γ− γ+ · · · . Indeed the number of switchings tends to +∞ when
the initial condition for extremals lifts tends to m0.

Hence, there exists no BC-extremal passing through 0. This suggests the ex-
istence of a cut locus C ∋ 0.

Now we shall evaluate the set K+ and K− of first switching points.

The stratification ofN byBC-controls is as before, see Fig. 9 and the switching
times are approximated by

t1 =
−a′w ±

√
δ

2a(ε− û)
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where δ = a′2w2 − 8ka(ε− û)s. Fix w > 0 and take a point of N . For s > 0, the
optimal law is ε = +1 and a BC-extremal is switching at

t1 =
−a′w +

√
δ

2a(ε− û)
.

If s < 0, the optimal law is ε = −1 and a BC-extremal is switching at

t1 =
−a′w −

√
δ

2a(ε− û)
.

In the first case t1 → 0 when s→ 0 and in the second case t1 is of order w when
s → 0. Hence we get the respective sets of switching points shown in Fig. 14,
where the distance of K+ to N is of order w.

ε = −1 ε = +1

Fig. 14

This phenomenon has the following interpretation. From lemmas 4.4 and 4.5
both manifolds Kε and Γε are tangent at 0. Now, at (0, w, 0) their respective
tangent space are z = [(ε − û) + (c′ − a/2k)w]x and z = [(ε − û) + c′w]x. Hence
for w > 0 and ε = +1, Γε is below Kε and to compute the switching points we
have to know the curvature of Kε, see Fig. 15.

Fig. 15
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The cut locus C is a subanalytic set whose intersections with y = c are de-
scribed in Fig. 12.

4.10. Proposition. Assume k > 0, û(0) > 1. Then if a > 0, the optimal

trajectories have at most two switchings and the optimal synthesis is given in

each plane y = c by Fig. 16, where K2
− represents the set of second switching

points. If a < 0, the situation is similar.

c < 0 c = 0 c > 0

Fig. 16

S k e t c h o f p r o o f. In this case m0 = (0, n(0)) corresponds in [5] to a
parabolic point and near m0 the BC-extremals lifts are of the form shown in
Fig. 17.

Fig. 17

Hence a BC-extremal has near z0 at most two switchings. Since û(0) > 1 the
singular BC-extremal passing through 0 is not admissible. The synthesis follows
by evaluating the set of first and second switching points.

5. Conclusion. In this article we have classified the optimal syntheses for
the time minimal control problem, with terminal manifold of codimension one N ,
near N and under generic assumptions, for scalar affine system (1), when v ∈ R

2

or R
3. Our study is mainly topological. In a forthcoming article we shall complete
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our study in the following directions: give linear estimates of the strata of K ∪C
and more generally find an algorithm to compute all stratum up to a required
precision. In the control of chemical batch reactor [3] the situation is not generic
because Y is everywhere tangent to N, and we have analyzed this situation. Due
to space restriction, this analysis cannot be presented here and will be published
later. Of course the ultimate goal of such a study is to compute the stratification

associated to a singularity theory of the time minimum function v → T (v).
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