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UNIFORM CONVERGENCE OF DENSITY ESTIMATORS

ON SPHERES

Non-parametric estimation of a probability density for random variables
taking values on an s-dimensional unit sphere is studied in [1], [5], [6]. The
object of the present paper is to establish new uniform convergence theo-
rems for several estimators: we use successively the histogram method, the
spherical cap and the kernel methods. In part D, we present simulation
results.

Let D be the set of continuous densities, defined on the sphere S; we
estimate f, an element of D, from a sample of size n, denoted by X1, . . . , Xn.
The density f satisfies

∫
S
f(x) dµ(x) = 1, where µ is the Lebesgue measure

on S.

A. The histogram estimator. We are going to describe a partition
of the sphere which will allow us to use the main theorem of [4].

This theorem establishes a necessary and sufficient condition for uniform
convergence—in probability and almost completely—using the histogram
estimator on a metric space, for every f in D. To use it for S, it will be
sufficient to construct a sequence ∆k(n) of partitions ∆k = {∆k,r : r ∈ Rk},
the Borel sets ∆k,r being such that

lim
k→∞

sup
r∈Rk

(diam∆k,r) = 0, lim
k→∞

sup
r∈Rk

(area∆k,r) = 0,

lim sup
k→∞

supr∈Rk
(area∆k,r)

infr∈Rk
(area∆k,r)

<∞.

We choose the integer k(n) such that limn→∞ k(n) = +∞. For r ∈ Rk, let
νn,r be the number of Xi’s belonging to ∆k,r.
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The histogram estimator f̂n is given by

∀r ∈ Rk, ∀x ∈ ∆k,r, f̂n(x) =
νnr

nµ(∆k,r)
,

µ(∆k,r) denoting the area of ∆k,r. With these notations, the main theo-

rem of [4] states that f̂n is uniformly convergent, in probability and almost
completely, if and only if

[ inf
r∈Rk

µ(∆k,r)]
−1 = o(n/ log n) where k = k(n).

First, we are going to construct the partition for s = 3. Then we shall
explain it for any s.

1. Partition for s = 3. A parametric representation of S is

x1 = cos θ1, θ1 ∈ [0, π],

x2 = sin θ1 cos θ2,

x3 = sin θ1 sin θ2, θ2 ∈ [0, 2π[.

The “poles” of S, corresponding to θ1 = 0 and θ1 = π, must belong to a
unique element of the partition, so we define the Borel sets ∆k,r = ∆k,r1,r2

in the following manner:

∆k,0 = [0, arccos(1 − 1/k2)[ × [0, 2π[,

∆k,1,r2
= [arccos(1 − 1/k2), arccos(1 − 2/k)[ × [(r2 − 1)π/k, r2π/k[

for r2 = 1, . . . , 2k,

∆k,r1,r2
= [arccos(1 − 2(r1 − 1)/k), arccos(1 − 2r1/k)[ × [(r2 − 1)π/k, r2π/k[

for r1 = 2, . . . , k − 1; r2 = 1, . . . , 2k,

∆k,k,r2
= [arccos(−1 + 2/k), arccos(−1 + 1/k2)[ × [(r2 − 1)π/k, r2π/k[

for r2 = 1, . . . , 2k,

∆k,k+1 = [arccos(−1 + 1/k2), π] × [0, 2π[,

these intervals being closed when necessary. Then we can easily see that,
for each ∆k,r, µ(∆k,r) is equivalent to 2π/k2, and that there are 2k2 + 2
elements in the partition. The necessary and sufficient condition is then

k2 = o(n/ log n).

2. Construction for arbitrary s. A parametric representation of S is: for
θi ∈ [0, π] when i = 1, . . . , s− 2 and θs−1 ∈ [0, 2π[,

x1 = cos θ1,

xi =
i−1∏

j=1

sin θj cos θi, i = 2, . . . , s− 1,
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xs =

s−1∏

j=1

sin θj .

In R
s, the distance between two points M and M ′ belonging to the

sphere, associated with (θi)i=1,...,s−1 and (θ′i)i=1,...,s−1, is

d2(M,M ′) = 4
s−1∑

i=1

i−1∏

j=1

sin θj sin θ′j sin2 θi − θ′i
2

.

We notice that, for i = 1, . . . , s−2, sin θi = 0 implies that θi+1, . . . , θs−1 are
arbitrary.

The area of a part S ′ ⊂ S is

µ(S′) =
∫

S′

s−1∏

i=1

sinmi θi dθi with mi = s− 1 − i; i = 1, . . . , s− 1.

For positive integers q ≥ 0, define

Iq =

π/2∫

0

sin2q+1 θ dθ, Jq =
π∫

0

sin2q θ dθ.

First, let us construct the elements which do not contain the poles—i.e.
the points such that, for one index i = 1, . . . , s−2, sin θi = 0. These elements
can be written as

∆k,r =

s−1∏

i=1

[αri−1, αri
[, r ∈ R′

k.

We choose the values αri
, i = 1, . . . , s−1, in the following manner. Consider

the integral
αri∫

αri−1

sinmi θi dθi.

If mi = 2qi + 1 with qi ∈ N, then define

Fqi
(α) =

α∫

0

sin2qi+1 θi dθi for α ∈ [0, π].

Then Fqi
(α) is increasing from 0 to Fqi

(π) = 2Iqi
; we define αri

from

Fqi
(αri

) =
2ri
k
Iqi

for ri = 1, . . . , k.

Then
αri∫

αri−1

sin2qi+1 θi dθi =
2

k
Iqi
.
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If mi = 2qi with qi ∈ N
∗, then define

Gqi
(α) =

α∫

0

sin2qi θi dθi for α ∈ [0, π].

Then Gqi
(α) is increasing from 0 to Jqi

; we define αri
from

Gqi
(αri

) =
ri
k
Jqi

for ri = 1, . . . , k.

Then
αri∫

αri−1

sin2qi θi dθi =
1

k
Jqi
.

For mi = 0, i.e. i = s− 1, we choose

[αrs−1−1, αrs−1
[ = [(rs−1 − 1)π/k, rs−1π/k[, rs−1 = 1, . . . , 2k.

Using the values of Iqi
and Jqi

, we can easily see that for ri = 2, . . . , k−1;
i = 1, . . . , s− 2; and rs−1 = 1, . . . , 2k,

µ(∆k,r) =
C(s)

ks−1
,

where C(s) is a constant; its value follows from the preceding formulations.
The whole partition is constructed by generalization of the method explained
for s = 3. When, for an index i = 1, . . . s− 2, sin θi = 0, the associated ele-
ment of the partition satisfies: θi+1, . . . , θs−2 are in [0, π], and θs−1 in [0, 2π[;
the intervals for θ1, . . . , θi are chosen to make the area of ∆k,r equivalent to
the preceding expression.

Example (for s = 4). For r1 = 2, . . . , k − 1; r2 = 2, . . . , k − 1; and
r3 = 1, . . . , 2k,

∆k,r = [αr1−1, αr1
[

× [arccos(1 − 2(r2 − 1)/k), arccos(1 − 2r2/k)[ × [(r3 − 1)π/k, r3π/k[,

µ(∆k,r) = π2/k3,

αr1
being given from

1

2
αr1

− 1

4
sin2 αr1

=
r1
2k
π,

and

∆k,0 = [0, (3π/4)1/3/k[ × [0, π] × [0, 2π[,

∆k,k+1 = [π − (3π/4)1/3/k, π] × [0, π] × [0, 2π[,

∆k,1,0 = [(3π/4)1/3/k, α1[ × [0,
√

2/k[ × [0, 2π[,

∆k,1,k+1 = [(3π/4)1/3/k, α1[ × [π −
√

2/k, π] × [0, 2π[,
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∆k,1,1,r3
= [(3π/4)1/3/k, α1[ × [

√
2/k, arccos(1 − 1/k)[

× [(r3 − 1)π/k, r3π/k[, r3 = 1, . . . , 2k,

and so on.
The number of elements in the partition is

Kn,4 = 2 + k(2k2 + 2) = 2k3 + 2k + 2.

Coming back to the general case, we have

Kn,s = 2ks−1 + 2
ks−2 − 1

k − 1
.

The necessary and sufficient condition is then

ks−1 = o(n/ log n).

B. The spherical cap estimator. For the sphere S in R
s, the spherical

cap estimator is defined as in [6].
With each x ∈ S, we associate the spherical cap with pole x and radius

hn, denoted by Bn,x; here hn is a sequence of positive real numbers such
that

lim
n→∞

hn = 0.

The area of Bn,x is

µ(Bn,x) = Csh
s−1
n + o(hs−1

n ), where Cs =
2π(s−1)/2

(s− 1)Γ ((s− 1)/2)
.

We estimate the density f in the following manner. Let νn,x be the
number of Xi’s belonging to Bn,x. Define

∀x ∈ S, f̃n(x) =
νnx

nCsh
s−1
n

.

We are going to prove the following theorem:

For each element f ∈ D, f̃n is uniformly convergent—in probability and

almost completely—if and only if

h1−s
n = o(n/ log n).

P r o o f o f t h e “i f” p a r t. We suppose that

h1−s
n = o(n/ log n),

and we are going to prove that, for every f in D, f̃n converges almost
completely to f, uniformly on S.

Let x be an element of S, and f̃n(x) the associated estimator. We choose
0x1 = 0x. Let kn = [1/hn]. Then

kn

kn + 1
< knhn ≤ 1.
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Now, kn being chosen, we construct the partition as in part A; x belongs to
∆kn,0, and the corresponding histogram estimator is

f̂n,kn
(x) =

νn,0(kn)

nµ(∆kn,0)
, where νn,0(kn) is the number of Xi’s in ∆kn,0.

We do the same construction with the integer kn + 1:

f̂n,kn+1(x) =
νn,0(kn + 1)

nµ(∆kn+1,0)
.

Since ∆kn,0 (resp. ∆kn+1,0) is (by part A) the spherical cap of pole x and
radius 1/kn (resp. 1/(kn + 1)), we can write

νn,0(kn + 1)

nµ(∆kn,0)
≤ f̃n(x) ≤ νn,0(kn)

nµ(∆kn+1,0)
,

or
µ(∆kn+1,0)

µ(∆kn,0)
f̂n,kn+1(x) ≤ f̃n(x) ≤ µ(∆kn,0)

µ(∆kn+1,0)
f̂n,kn

(x).

From the choices of hn and kn, we claim that f̂n,kn
and f̂n,kn+1 converge to

f uniformly almost completely.
Choosing a positive η, we suppose that the events {d(f̂n,kn

, f) < η} and

{d(f̂n,kn+1,f) < η} are realized. For large n

−η +

[
µ(∆kn+1,0)

µ(∆kn,0)
− 1

]
f(x) ≤ f̃n(x) − f(x) ≤

[
µ(∆kn,0)

µ(∆kn+1,0)
− 1

]
f(x) + 2η.

Let H be such that f < H. Then, for large n,
∣∣∣∣
µ(∆kn+1,0)

µ(∆kn,0)
− 1

∣∣∣∣H < η.

Thus, for large n,

P [d(f̃n, f) > 3η] ≤ P [d(f̂n,kn
, f) > η] + P [d(f̂n,kn+1, f) > η].

The choices of hn and kn imply the convergence of the series on the right-
hand side.

The uniform and almost complete convergence of f̃n to f follows imme-
diately.

P r o o f o f t h e “o n l y i f” p a r t. We suppose that, for every f in D,
f̃n converges to f uniformly in probability. First, we show h1−s

n = o(n).
We choose a coordinate system and we consider the spherical cap with

radius 1/4 and pole x (θ1 = 0); we choose f to be an element of D such
that, on this cap, f is an arbitrary positive number α.

From this choice of f, and from the hypothesis, we get

lim
n→∞

P [νnx = 0] = 0,
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that is,
lim

n→∞
(1 − αCsh

s−1
n )n = 0,

so that limn→∞ n log(1 − αCsh
s−1
n ) = −∞ and thus h1−s

n = o(n).
Now, we show that h1−s

n = o(n/ log n). Let β be fixed in ]0, π/2[, and
let S′ be the part of S defined by β ≤ θi ≤ π − β for i = 1, . . . , s − 2, and
0 ≤ θs−1 < 2π.

Let kn be an integer to be defined later; we construct the corresponding
partition (as in part A), and let {∆kn,r : r ∈ R′

kn
} be the set of its elements

included in S′.
For each ∆kn,r, we define its center xkn,r as follows. For large n, ∆kn,r

can be written as
∏s−1

i=1 [αri−1, αri
[ for every r ∈ R′

kn
. Then xkn,r = αri−1/2,

i = 1, . . . , s− 1, with

αri−1/2∫

0

sinmi θi dθi =





2ri − 1

k
Iqi

or
2ri − 1

2k
Jqi

for i = 1, . . . , s− 2,

and

αrs−1−1/2 =
2rs−1 − 1

2k
π.

Consider the distance (in R
s) from xkn,r to the boundary of ∆kn,r. Using

the expression for d(M,M ′) (part A), we can easily see that there exists a
positive constant C(s, β) such that

inf
r∈R′

kn

d(xkn,r, boundary of ∆kn,r) ≥ C(s, β)1/2/kn.

This implies that, for each r in R′
kn
, ∆kn,r contains the spherical cap with

pole xkn,r and radius C(s, β)1/2/kn. Choose kn = [C(s, β)1/2/hn]. Then, for
each r in R′

kn
, ∆kn,r contains the spherical cap with pole xkn,r and radius

hn, i.e. Bn,x̄kn,r
.

Moreover, by definition of S ′, R′
kn

has [C ′(s, β)ks−1
n ] elements, where

C ′(s, β) is a positive number depending only on s and β.
We choose f in D with f = α on S ′, α being an arbitrarily small positive

number. From the hypothesis, f̃n converges to f uniformly in probability,
so

lim
n→∞

P [d(f̃n, f) > α/2] = 0.

If one of the ∆kn,r included in S′ contains no Xi, then neither does the cap

Bn,x̄kn,r
and f̃n(xkn,r

) = 0, so d(f̃n, f) ≥ α. The convergence hypothesis
implies

lim
n→∞

P
[ ⋃

r∈R′

kn

{νn,r(kn) = 0}
]

= 0,
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νn,r(kn) being the number of Xi’s belonging to ∆kn,r. That is,

lim
n→∞

P
[ ⋂

r∈R′

kn

{νn,r(kn) ≥ 1}
]

= 1.

Here, we remind that two events A and B of positive probability are in

negative correlation if

P (A|B) ≤ P (A), that is, P (A ∩B) ≤ P (A)P (B).

More generally, the events A1, . . . , An of positive probability are in negative

correlation if

∀I ⊂ {1, . . . , n}, P
[ ⋂

i∈I

Ai

]
≤

∏

i∈I

P (Ai),

that is, the realization of one of the Ai diminishes the probability that the
others are realized.

The events in the intersection several lines above are in negative corre-
lation, thus

lim
n→∞

∏

r∈R′

kn

P [νn,r(kn) ≥ 1] = 1.

Then, remembering that f = α on S ′, we have

lim
n→∞

∏

r∈R′

kn

[1 − (1 − αµ(∆kn,r))
n] = 1.

From part A, µ(∆kn,r) = C(s)/ks−1
n ; taking the logarithm, we obtain, for

large n,

∀α > 0, 1 − nαC(s)

ks−2
n log[C ′(s, β)ks−1

n ]
< 0,

thus

lim
n→∞

ks−1
n log[C ′(s, β)ks−1

n ]

n
= 0.

Using the definition of kn from hn, and h1−s
n = o(n), we obtain the desired

result.

C. The kernel estimator. Let K be a positive function, defined on
R

+, such that
∞∫

0

K(u)u(s−3)/2 du <∞.

For this function K and for a sequence of positive numbers hn with
limn→∞ hn = 0 the kernel estimator of f is

f̃n(x) =
1

nhs−1
n CK,s(hn)

n∑

i=1

K

(
1 − 〈x,Xi〉

h2
n

)
,
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where 〈x,Xi〉 is the scalar product and

CK,s(hn) = h1−s
n

∫

S

K

(
1 − 〈x, y〉

h2
n

)
dµ(y),

dµ(y) being the area element on S.
The constant CK,s(hn) does not depend on x and can be written as

CK,s(hn) =
2π(s−1)/2

Γ ((s− 1)/2)

2/h2
n∫

0

(2u− u2h2
n)(s−3)/2K(u) du

with

lim
n→∞

CK,s(hn) =
2π(s−1)/2

Γ ((s− 1)/2)

∞∫

0

(2u)(s−3)/2K(u) du.

Notice first that if we choose

K(u) = 1[0,1/2](u),

then

CK,s(hn) =
2π(s−1)/2

Γ ((s− 1)/2)

1/2∫

0

(2u− u2h2
n)(s−3)/2 du,

that is,

CK,s(hn) = h1−s
n

2π(s−1)/2

Γ ((s− 1)/2)

2 arcsin hn/2∫

0

sins−2 θ dθ.

From part B, we see that hs−1
n CK,s(hn) is the area of the cap Bn,x, and thus

the estimator f̃n defined from that functionK is the spherical cap estimator.
We are going to prove two uniform convergence theorems for the ker-

nel estimator: a necessary condition for convergence in probability, and a
sufficient condition for almost complete convergence. In the proofs, we will
follow the method used in [3]. Thus, we do not give all the details; we just
indicate how these methods can be adapted for S.

1. Necessary condition for convergence. The theorem is:

Suppose that

lim
y→∞

y
∞∫

y

K(u)(2u)(s−3)/2 du = 0.

Then, for every f in D, if f̃n converges to f uniformly in probability , then

h1−s
n = o(n/ log n).

First, we show that

h1−s
n = o(n).
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As in [3], we suppose that this condition is not satisfied, and we show that,

for an element f in D, f̃n does not converge in probability.

If h1−s
n is not o(n), there exists a positive α and an infinite subset N1 of

N such that

∀n ∈ N1, h1−s
n > αn.

We define a parametric representation of S, and we choose f in D equal to
α on C defined by

C = {x ∈ S : 0 ≤ θ1 ≤ π/4; θi ∈ [0, π], i = 1, . . . , s− 2; θs−1 ∈ [0, 2π]}.
Let H be an upper bound of f.

We choose a positive number M such that
∞∫

M

K(u)(2u)(s−3)/2 du < inf

(
1

4
,
α

4H

) ∞∫

0

K(u)(2u)(s−3)/2 du.

Let

%n = hn

√
2M

and let Qn be the cap with pole ξ (θ1 = 0) and radius %n. Let Hn be the
event: no one of the Xi’s belongs to Qn.

We get

P (Hn) = [1 − αµ(Qn)]n.

We use the hypothesis on hn and the choice of %n to obtain

P (Hn) > e−2(2M)(s−1)/2Cs > 0 for large n in N1.

Let fHn be the density of X conditioned by Hn:

fHn(x) =





0 on Qn,
f(x)

1 − αCs(2M)(s−1)/2hs−1
n

on S −Qn.

Then we bound the mean of f̃n(ξ) conditioned by Hn; as in [3], we obtain

E[f̃n(ξ) | Hn]

≤ [2π(s−1)/2/Γ ((s− 1)/2)]H

(1 − αCs%
s−1
n )CK,s(hn)

2/h2
n∫

%2
n/(2h2

n)

K(u)(2u − u2h2
n)(s−3)/2 du.

For large n, using %2
n/(2h

2
n) = M , we get

E[f̃n(ξ) | Hn] ≤ [2π(s−1)/2/Γ ((s− 1)/2)]H

(1 − αCs%
s−1
n )CK,s(hn)

∞∫

M

K(u)(2u)(s−3)/2 du,

and, from the definition of M ,
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E[f̃n(ξ) | Hn]

≤ α

4(1 − αCs%
s−1
n )

2π(s−1)/2/Γ ((s− 1)/2)]
∫ ∞

0
K(u)(2u)(s−3)/2 du

CK,s(hn)
.

Remembering that limn→∞ %n = 0 and

lim
n→∞

CK,s(hn) =
2π(s−1)/2

Γ ((s− 1)/2)

∞∫

0

K(u)(2u)(s−3)/2 du

we obtain, for large n, E[f̃n(ξ) | Hn] ≤ 1
4α(1 + ε).

The proof is then as in [3], using the Markov inequality, and the fact
that, for large n in N1, P (Hn) is strictly positive.

Now we show

h1−s
n = o(n/ log n).

We suppose that h1−s
n = o(n), but that the condition h1−s

n = o(n/ log n) is
not satisfied. Then there exists a positive β and an infinite subset N1 of N

such that

∀n ∈ N1, h1−s
n > βn/ log n.

Let α be a positive number, to be made precise further, and let us choose f :

f(x) =

{
f(θ1, . . . , θs−1) = α on C = [0, π/2] × [0, π]s−3 × [0, 2π[,
a sin θ1 + b on [π/2, 2π/3] × [0, π]s−3 × [0, 2π[,
H elsewhere.

The constants a, b,H are well known from α, using the continuity con-
dition, and

∫
S
f dµ = 1. More precisely, we get

H =
ds − asα

bs
,

ds, as, bs being positive numbers, known from the choice of s.

We choose β0 = β/(12Cs), decreasing the value of β if necessary to get
β0 < ds/as. Using the hypothesis on K:

lim
y→∞

y
∞∫

y

K(u)(2u)(s−3)/2 du = 0,

that is, ∀ε > 0, ∃M0, ∀M >M0,

M
∞∫

M

K(u)(2u)(s−3)/2 du < ε
∞∫

0

K(u)(2u)(s−3)/2 du,

we choose ε = inf(β0bs/(4ds), 1/4); then M0 is known.

Next, we choose a positive M such that

M > max(M0, asβ0/ds, β0, 1)
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and

α =
β0

M
.

Then H is known and
α

4H
=

β0bs
4(dsM − asβ0)

;

thus,
α

4H
>

β0bs
4Mds

,

and from the choices of ε and M,
∞∫

M

K(u)(2u)(s−3)/2 du <
α

4H

∞∫

0

K(u)(2u)(s−3)/2 du.

We shall use this inequality at the end of the proof.
We choose the integer

kn =

[
h−1

n√
2M (Cs2s)1/(s−1)

]

and let

%n =
k−1

n

(Cs2s)1/(s−1)
.

Then, for large n, 2sks−1
n > 1/(3MCs).

For large n in N1, we have ks−1
n > β′n/ log n, where β′ = β/(3MCs) =

4α. This inequality is valid if β is chosen small enough.
We make a partition of C, similar to the partition defining f̂n on S:

without going into details, we simply note that we divide [0, π/2] for θ1 and
the partition is associated with the integer 2kn.

Let Kn be the number of elements in this partition; Kn is equivalent to
2sks−1

n . For each element, the area is equivalent to Cs%
s−1
n .

We obtain a similar result to Proposition 1 of [3]:
Let Jn be the exact number of ∆n,t, t = 1, . . . ,Kn, containing no element

of the sample. Then for every ε > 0,

lim
n→∞

P [1 ≤ Jn ≤ εKn] = 1.

We can also state (cf. [3]):
Let j an integer in {1, . . . ,Kn} and integers t1, . . . , tj be such that

1 ≤ t1 < . . . < tj ≤ Kn.

Let Vn(t1, . . . , tj) be the event: each ∆n,t, t = t1, . . . , tj , is empty, while each
among the others contains at least a point of the sample; the hypothesis
h1−s

n = o(n) implies Kn = o(n). Let α′ and α′′ be the positive numbers
defined in [3]; suppose n is so large that Kn < α′n, and let ν be an integer
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such that [α′n]+ 1 ≤ ν ≤ α′′n; let νn be the number of Xi’s belonging to C.
Then the distribution of each Xi (i = 1, . . . , n) conditioned by the event

En(ν; t1, . . . , tj) = {νn = ν} ∩ Vn(t1, . . . , tj)

admits the density

f∗(x) =





n− ν

n

f(x)

1 − αKnCs%
s−1
n

if x ∈ S − C,

ν

nα

f(x)

(Kn − j)%s−1
n Cs

if x ∈ C −
j⋃

r=1

∆n,tr
,

0 if x ∈
j⋃

r=1

∆n,tr
.

We now conclude as in [3]. Let

ψ(x) = E[f̃n(x) | En(ν; t1, . . . , tj)].

Then

ψ(x) =
1

hs−1
n CK,s(hn)

∫

S−C

K

(
1 − (x, u)

h2
n

)
n− ν

n(1 − α)
f(u) dµ(u)

+
1

hs−1
n CK,s(hn)

×
∫

C−∪j
r=1∆n,tr

K

(
1 − 〈x, u〉

h2
n

)
ν

nα(Kn − j)%s−1
n Cs

f(u) dµ(u).

Let ε be in ]0, 1[, and suppose 1 ≤ j ≤ εKn. Then, for large n,

(Kn − j)%s−1
n Cs > 1 − ε,

and we can bound

ψ(x) ≤ 1

hs−1
n CK,s(hn)

∫

S−C

K

(
1 − 〈x, u〉

h2
n

)
1 − α′

1 − α
f(u) dµ(u)

+
1

hs−1
n CK,s(hn)

∫

C−∪j
r=1∆n,tr

K

(
1 − 〈x, u〉

h2
n

)
α′′

α(1 − ε)
f(u) dµ(u).

If α′ and α′′ are chosen such that

1 − α′

1 − α
< 1 + 2ε and

α′′

α(1 − ε)
< 1 + 2ε

then

ψ(x) ≤
∫

S−∪j
r=1∆n,tr

1 + 2ε

hs−1
n CK,s(hn)

K

(
1 − 〈x, u〉

h2
n

)
f(u) dµ(u).
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Let us choose x = ξ, corresponding to θ1 = 0, a pole of ∆n,t1 = ∆kn,0. We
obtain

ψ(ξ) ≤ 1 + 2ε

hs−1
n CK,s(hn)

∫

S−∪j
r=1∆n,tr

K

(
1 − 〈ξ, u〉

h2
n

)
f(u) dµ(u),

that is,

ψ(ξ) ≤ 1 + 2ε

hs−1
n CK,s(hn)

∫

S−∪j
r=1∆n,tr

K

(
1 − cos θ1

h2
n

)
f(θ1, . . . , θs−1) dµ(θ).

Let D′′ be the image of the integration domain under the change of variable
u = (1 − cos θ1)/h

2
n. Then

ψ(ξ) ≤ 1 + 2ε

CK,s(hn)

2π(s−1)/2

Γ ((s− 1)/2)
(sup f)

∫

D′′

K(u)(2u)(s−3)/2 du.

The image of the cap ∆n,t1 has no common point with D′′ and is the interval
[0, %2

n/(2h
2
n)]. Thus

ψ(ξ) ≤ (1 + 2ε)(sup f)
2π(s−1)/2

Γ ((s− 1)/2)CK,s(hn)

∞∫

%2
n/(2h2

n)

K(u)(2u)(s−3)/2 du.

Remembering that

%2
n

2h2
n

=
1

(Cs2s)2/(s−1)2h2
nk

2
n

and k2
n ≤ 1

2Mh2
n(Cs2s)2/(s−1)

we have %2
n/2h

2
n ≥M and

ψ(ξ) ≤ (1 + 2ε)(sup f)
2π(s−1)/2

Γ ((s− 1)/2)CK,s(hn)

∞∫

M

K(u)(2u)(s−3)/2 du.

Recall also that
∞∫

M

K(u)(2u)(s−3)/2 du < inf

(
α

4H
,
α

4M

) ∞∫

0

K(u)(2u)(s−3)/2 du

and, from the definition of M ,

∞∫

M

K(u)(2u)(s−3)/2 du < inf

(
α

4H
,
1

4

) ∞∫

0

K(u)(2u)(s−3)/2 du.

But sup f = sup(α,H) and thus

ψ(ξ) <

(
1

2
+ ε

)
[2π(s−1)/2/Γ ((s− 1)/2)]

∫ ∞

0
K(u)(2u)(s−3)/2 du

CK,s(hn)
α
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and for large n,

ψ(ξ) <

(
1

2
+ ε

)
α

1 − ε′
.

Choosing ε = ε′ = 1/10, for large n, we get ψ(ξ) < 2
3α, and the end of the

proof is similar to [3].

2. Sufficient condition for convergence. In this part, too, we proceed as
in [3].

We recall that a function defined on R
+ is called πm-simple if, for a fixed

integer m, it is constant on each element of the partition πm, where

πm = {Im,j = [j/2m, (j + 1)/2m[ : j ∈ N}.
We suppose that K is chosen such that there exist two sequences ϕ+

m and
ϕ−

m of R
+-integrable πm-simple functions with

ϕ−
m ≤ ϕ−

m+1 ≤ K ≤ ϕ+
m+1 ≤ ϕ+

m for large m.

For instance, every function K of bounded variation in the neighboorhood
of infinity satisfies this condition.

We suppose, moreover, that u(s−1)/2K(u) is decreasing for large u, and
that

∫ ∞

0
u(s−1)/2K(u) du exists, with

lim
m→∞

∞∫

0

u(s−3)/2ϕ+
m(u) du = lim

m→∞

∞∫

0

u(s−3)/2ϕ−
m(u) du

=
∞∫

0

u(s−3)/2K(u) du.

We are going to prove the following theorem:

If K satisfies the above hypotheses and if h1−s
n = o(n/ log n), then for

each element f of D, f̃n converges to f uniformly almost completely.

We set

ϕ+
m =

∞∑

j=0

αmj
1Imj

, ϕ−
m =

∞∑

j=0

α′
mj

1Imj
.

We can write

1

nhs−1
n CK,s(hn)

n∑

i=1

∞∑

j=0

α′
mj

1Imj

(
1 − 〈x,Xi〉

h2
n

)

≤ f̃n(x) ≤ 1

nhs−1
n CK,s(hn)

n∑

i=1

∞∑

j=0

αmj
1Imj

(
1 − 〈x,Xi〉

h2
n

)
.
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Consider the event
{
1Imj

(
1 − 〈x,Xi〉

h2
n

)
= 1

}
,

that is,
{
j

2m
≤ 1 − 〈x,Xi〉

h2
n

<
j + 1

2m

}
,

or

{Xi ∈ Bn,m,j+1,x −Bn,m,j,x = Cn,m,j,x},

where Bn,m,j,x (resp. Bn,m,j+1,x) is the spherical cap with pole x and radius
an = (j/2m−1)1/2hn (resp. bn = ((j + 1)/2m−1)1/2hn). Let

f̃n,m,j(x) =
νn,m,j,x

nCsa
s−1
n

and f̃n,m,j+1(x) =
νn,m,j+1,x

nCsb
s−1
n

be the spherical cap estimators corresponding to these two caps. When
j and m are chosen, the hypothesis about hn implies the uniform almost
complete convergence of these two estimators. For the chosen j and m,

(2m−1)(s−1)/2

nhs−1
n CK,s(hn)

m∑

i=1

1Imj

(
1 − 〈x,Xi〉

h2
n

)

=
(2m−1)(s−1)/2

nhs−1
n CK,s(hn)

(νn,m,j+1,x − νn,m,j,x)

=
Cs

CK,s(hn)
[(j + 1)(s−1)/2 f̃n,m,j+1(x) − j(s−1)/2 f̃n,m,j(x)].

So the preceding bounds allow us to write

Cs

CK,s(hn)

∞∑

j=0

α′
mj

1

(2m−1)(s−1)/2

× [(j + 1)(s−1)/2 f̃n,m,j+1(x) − j(s−1)/2 f̃n,m,j(x)] − f(x)

≤ f̃n(x) − f(x)

≤ Cs

CK,s(hn)

∞∑

j=0

αmj
1

(2m−1)(s−1)/2

× [(j + 1)(s−1)/2 f̃n,m,j+1(x) − j(s−1)/2 f̃n,m,j(x)] − f(x).
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Consider, first, the upper bound of f̃n(x) − f(x). We can write it as

Cs

CK,s(hn)

∞∑

j=0

αm,j

2(m−1)(s−1)/2

× {(j + 1)(s−1)/2[f̃n,m,j+1(x) − f(x)] − j(s−1)/2[fn,m,j(x) − f(x)]}

+ f(x)

{
Cs

CK,s(hn)

∞∑

j=0

αm,j

2(m−1)(s−1)/2
[(j + 1)(s−1)/2 − j(s−1)/2] − 1

}
.

Recall that

lim
n→∞

CK,s(hn) =
2π(s−1)/2

Γ ((s− 1)/2)

∞∫

0

(2u)(s−3)/2K(u) du,

Cs =
2π(s−1)/2

(s− 1)Γ ((s− 1)/2)
.

Moreover,

(s−1)
∞∫

0

ϕ+
m(u)(2u)(s−3)/2 du =

∞∑

j=0

αmj

2(m−1)(s−1)/2
[(j+1)(s−1)/2 −j(s−1)/2].

From the hypotheses about K, there exists an integer m0 such that, for
m > m0,

∞∫

0

ϕ+
m(u)(2u)(s−3)/2 du < (1 + ε)

∞∫

0

K(u)(2u)(s−3)/2 du.

Thus, for n > n0 and m > m0, the coefficient of f(x) is smaller than an
arbitrary positive number η.

Let us choose m > m0. The hypotheses about u(s−1)/2K(u) imply that,
for each ε > 0, there exists a finite subset J of N such that

∑

j 6∈J

αmj [j
(s−1)/2 + (j + 1)(s−1)/2] < ε.

Let H be an upper bound for f. For n > n0, f̃n(x) − f(x) is smaller than

Cs

CK,s(hn)

∑

j∈J

αmj

2(m−1)(s−1)/2
(j + 1)(s−1)/2|f̃n,m,j+1(x) − f(x)|

+
Cs

CK,s(hn)

∑

j∈J

αmj

2(m−1)(s−1)/2
j(s−1)/2|f̃n,m,j(x)−f(x)|+2Hε

Cs

CK,s(hn)
+H.

The end of proof is similar to [3].

The lower bound for f̃n(x) − f(x) is obtained analogously.
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f(θ1, θ2) =
1

π2
sin θ1

The histogram estimator



Density estimators on spheres 445

The kernel estimator

D. Simulation results. We now study the performance of these esti-
mators by simulation methods, for the density

f(θ1, θ2) =
1

π2
sin θ1

with s = 3.
The histogram estimate is calculated from a sample of size n = 5000,

with k =
√
n/ log n.

The kernel estimate is calculated from a sample of size n = 1000, with
K(u) = 1

2e
−u (u ≥ 0) and hn = (log n)/

√
n.
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