APPLICATIONES MATHEMATICAE
22,4 (1995), pp. 427-446

M. BERTRAND-RETALI and L. AIT-HENNANTI (Rouen)

UNIFORM CONVERGENCE OF DENSITY ESTIMATORS
ON SPHERES

Non-parametric estimation of a probability density for random variables
taking values on an s-dimensional unit sphere is studied in [1], [5], [6]. The
object of the present paper is to establish new uniform convergence theo-
rems for several estimators: we use successively the histogram method, the
spherical cap and the kernel methods. In part D, we present simulation
results.

Let D be the set of continuous densities, defined on the sphere S; we
estimate f, an element of D, from a sample of size n, denoted by X1,...,X,.
The density f satisfies |, s f(x)du(x) =1, where 1 is the Lebesgue measure
on S.

A. The histogram estimator. We are going to describe a partition
of the sphere which will allow us to use the main theorem of [4].

This theorem establishes a necessary and sufficient condition for uniform
convergence—in probability and almost completely—using the histogram
estimator on a metric space, for every f in D. To use it for 5, it will be
sufficient to construct a sequence Ay, of partitions Ay = {Ay, : 7 € R},
the Borel sets Ay, being such that

lim sup (diam Ay ) =0, lim sup (area Ag,) =0,
k—oo rc R, k—oo reR,,
SUP,cR, (area Aky"")

lim sup -
b nfc , (aren Ay, )

We choose the integer k(n) such that lim,, . k(n) = +oo. For r € Ry, let
Uy, be the number of X;’s belonging to Ay ,..
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The histogram estimator fn is given by

Vr c Rk, Vx c Akﬂ«, ﬁ(w) = ﬁ,

p(Ag,) denoting the area of Ay ,. With these notations, the main theo-

rem of [4] states that J/”; is uniformly convergent, in probability and almost
completely, if and only if

[inf p(Ag,)] ' =o(n/logn) where k = k(n).

rE Ry,
First, we are going to construct the partition for s = 3. Then we shall
explain it for any s.

1. Partition for s = 3. A parametric representation of S is

1 = cos by, 0, € [0, 7],

To = sin 1 cos 0o,

x3 =sinfysinfy, Oy € [0, 27
The “poles” of S, corresponding to 8; = 0 and #; = 7, must belong to a

unique element of the partition, so we define the Borel sets Ay . = Ay .\ 1,
in the following manner:

Ago = [0,arccos(1 — 1/k%)[ x [0, 27,
Ag1 ., = [arccos(1 — 1/k?),arccos(1 — 2/k)[ x [(ra — ) /k, rom /K[
forro =1,...,2k,
A ry ey = [arccos(l — 2(rqy — 1)/k), arccos(1 — 211 /k)[ x [(re — 1)7/k, rom/k]
forry=2,...,k—1;ra=1,...,2k,
A gy = [arccos(—1 4 2/k),arccos(—1 + 1/k?)[ x [(ro — )7 /k, rom /K]
forro =1,...,2k,
A ki1 = [arccos(—1 + 1/k%), 7] x [0, 27],
these intervals being closed when necessary. Then we can easily see that,
for each Ay, u(Ay,) is equivalent to 27/k?, and that there are 2k? + 2
elements in the partition. The necessary and sufficient condition is then
k* = o(n/logn).
2. Construction for arbitrary s. A parametric representation of S is: for
0; € [0,7] wheni=1,...,s—2 and 65_; € [0, 27|,

r1 = cos B,
i—1

xi:HsiHHjcosei, 1=2,...,8—1,
j=1
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s—1
Ty = H sin 6.
=1

In R®, the distance between two points M and M’ belonging to the
sphere, associated with (0;);=1,. s—1 and (0});=1,.. s—1, is

s—1i—1

0; — 0!
d*(M,M'") = 42 Hsinej sin 6] sin” TZ
i=1j=1
We notice that, fori =1,...,s—2, sinf; = 0 implies that 6;,1,...,05_1 are

arbitrary.
The area of a part S’ C S is

s—1
w(S) = [ [[sin™ 0;d6;  withm;=s—1—d;i=1,...,5—1.
s’ =1
For positive integers ¢ > 0, define

/2 T
I = [ sin®™odo, J,= [ sin®0dp.
0 0

First, let us construct the elements which do not contain the poles—i.e.
the points such that, for one indexi =1,...,s—2, sin; = 0. These elements
can be written as

s—1
Ak,r = H[am—lyam[v re R;c
i=1
We choose the values a,,, ¢ = 1,...,s5—1, in the following manner. Consider
the integral

Q.
[ sin™ 0; do;.

arifl

If m; = 2¢; + 1 with ¢; € N, then define
e}
Fy(a) = [ sn®*10;d;  for a € [0,7].
0

Then Fy, () is increasing from 0 to Fy, (m) = 21,,; we define o, from

27"i

Fy.(ay,) = k I, forr=1,... k.
Then
o s 22q;+1 _ 2
f sin 0;do; = EIC“'

arifl
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If m; = 2¢; with ¢; € N*, then define
Gy(a) = f sin® 0, df;  for o € [0, 7).
0
Then G, (o) is increasing from 0 to J,,; we define o, from

qu(am):%qu forr, =1,... k.
Then
o 02 1
f sin“? 0; do; = Equ.

For m; =0, i.e. = s — 1, we choose

[ar,  —1, 0, [=[(rs—1 — V)7 /k,re_17/k], re—1=1,...,2k.

Using the values of I, and J,,, we can easily see that for r; =2,...,k—1;
i=1,....,s—2;and rs_1 =1,...,2k,
C(s)
N(Ak,r) = ]{78717

where C(s) is a constant; its value follows from the preceding formulations.
The whole partition is constructed by generalization of the method explained
for s = 3. When, for an index i = 1,...s5 — 2, sinf; = 0, the associated ele-
ment of the partition satisfies: 6;1,...,05_2 arein [0, 7], and 65_; in [0, 27[;
the intervals for 01, ...,0; are chosen to make the area of Ay, ,. equivalent to
the preceding expression.
ExAaMPLE (for s = 4). For ry = 2,...,k —1;ry = 2,...,k — 1; and
Ty = 1,...,2k’,
Ak,r = [arlfla arl[
x [arccos(1 — 2(re — 1) /k), arccos(1 — 2ry /k)[ X [(rs — V)7 /k,rsm/k],
#(Ag) =7 /K2,
o, being given from
1 1 .2 ’,"1
5057«1 — ZSIH Qp, = %ﬂ',
and
Aro = [0,(3m/4)!° k[ x [0,7] x [0, 2x],

A1 = |7 — (31/4)Y3 [k, 7] x [0, 7] x [0, 2],
Apao = [37/4)Y3 [k, a1 x [0,V2/k[ x [0, 27],
Ak,l,k—f—l = [(37?/4)1/3/14;,(11[ X [7'(' — \/E/k,ﬂ'] X [O, 27'['[,
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Ap11rs = (37 /)3 [k, iy [ x [V2/k, arccos(1 — 1/k)|
X[(Tg—l)ﬂ'/k,?’gﬂ'/k)[, 7’3:1,...,2]{7,

and so on.
The number of elements in the partition is

Kpa=2+k(2k* +2) = 2k + 2k + 2.
Coming back to the general case, we have
k52 =1
kE—1
The necessary and sufficient condition is then
k*~' = o(n/logn).

Kps=2k"1+2

B. The spherical cap estimator. For the sphere S in R®, the spherical
cap estimator is defined as in [6].

With each x € S, we associate the spherical cap with pole x and radius
hy, denoted by B, ;; here h,, is a sequence of positive real numbers such
that

lim h, =0.

The area of B,, ; is
27.[.(3—1)/2
(s=DI'((s —1)/2)
We estimate the density f in the following manner. Let v, , be the
number of X;’s belonging to B,, ,. Define

~ 1%
VeeS, Folz)=_—2nr
v fn(2) nChi

We are going to prove the following theorem:

wW(Bn.o) = Cshi™t +o(hi™1),  where C, =

For each element f € D, fn s uniformly convergent—in probability and
almost completely—if and only if
hl=% = o(n/logn).
Proof of the “if” part. We suppose that
RL* = o(n/log ),

and we are going to prove that, for every f in D, fn converges almost
completely to f, uniformly on S.
Let = be an element of S, and f,,(z) the associated estimator. We choose
0z; = 0z. Let k,, = [1/hy]. Then
kn,
kn+1

< kp,h, <1.
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Now, k,, being chosen, we construct the partition as in part A; x belongs to
Ay, 0, and the corresponding histogram estimator is

-~ k
frk, () = M, where v, o(ky,) is the number of X;’s in Ay, o.
np(Ar, 0)
We do the same construction with the integer k,, + 1:

Un,o(kn +1)
(A, +1,0)
Since Ay, o (resp. Ay, +1,0) is (by part A) the spherical cap of pole x and
radius 1/k,, (resp. 1/(k, + 1)), we can write
Un,o(kn + 1) < ]?n(l") < Vn,o(kn) ’
np(Ar, 0) n(Ak,+1,0)

fn,kn+1(x) =

or
1Ak, +1,0) 7 s 1Ak, 0) 2
- : fn,kn 1\T S fn X S & fn,kn x).
(A, 0) +1(@) (@) 1(Ak,+1,0) (@)
From the choices of h,, and k,,, we claim that fn’kn and J/C;L,k;n_i'_l converge to
f uniformly almost completely. R
Choosing a positive 7, we suppose that the events {d( f, x,, f) < n} and

{d(fnk,+1,f) <n} are realized. For large n

WAk, +1,0) ] = [ (A, 0) ]
-+ |—=—= 1| f(z) < fulz) — flo) < | ————— — 1| f(x) + 2n.
g | A2t 1(0) < Fo(o) — fi0) < [ HE0 o)+ 2
Let H be such that f < H. Then, for large n,
WAk, +1,0)
‘MMmd !

Thus, for large n,

Pld(fa, f) > 31] < Pld(fa,, ) > 0]+ Pld(fup, 41, f) > 1)
The choices of h,, and k,, imply the convergence of the series on the right-
hand side. _
The uniform and almost complete convergence of f,, to f follows imme-
diately.

_ Proof of the “only if” part. We suppose that, for every f in D,
fn converges to f uniformly in probability. First, we show hl=% = o(n).
We choose a coordinate system and we consider the spherical cap with
radius 1/4 and pole = (6; = 0); we choose f to be an element of D such
that, on this cap, f is an arbitrary positive number a.
From this choice of f, and from the hypothesis, we get

lim Py, =0] =0,
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that is,
lim (1 — aC,h3~ )" =0,
so that lim,, ., nlog(1 — aCshs™!) = —oo and thus h): =% = o(n).

Now, we show that hl=% = o(n/logn). Let 3 be fixed in ]0,7/2[, and
let S’ be the part of S defined by 3 <6, <7 —fBfori=1,...,5s—2, and
0<0,_1 < 2m.

Let k, be an integer to be defined later; we construct the corresponding
partition (as in part A), and let {Ag, - : 7 € R} be the set of its elements
included in S’.

For each Ay, ,, we define its center Ty, , as follows. For large n, Ay, ,
can be written as Hf:_ll [, 1, 0, [ for every r € R}, . Then Ty, , = a,, 12,
i1=1,...,s— 1, with

2’“’ -1
Qri—1/2 TI%
f sin™¢ 6, df; = < or fori=1,...,8—2,
0 2Ti —1
2](7 qi
and
27"5_1 -1
O, 1—1/2 = T

Consider the distance (in R®) from Ty, , to the boundary of Ay, ,.. Using
the expression for d(M, M') (part A), we can easily see that there exists a
positive constant C(s,3) such that

inf d(Ty, ,, boundary of Ay ) > C(s,3)Y?/kp.

rER;n

This implies that, for each r in R} , Ay, . contains the spherical cap with
pole Ty, , and radius C(s, 3)'/2/k,. Choose k,, = [C(s, 3)*/?/h,]. Then, for
each r in R;C", Ay, » contains the spherical cap with pole Ty, , and radius
hp,ie. Bpgz, -

Moreover, by definition of S, R}, has [C'(s,B)ks!] elements, where
C'(s, ) is a positive number depending only on s and £.

We choose f in D with f = o on S’, a being an arbitrarily small positive
number. From the hypothesis, f,, converges to f uniformly in probability,
SO

lim Pld(fn,f) > a/2] =0.
If one of the Ay, , included in S’ contains no X;, then neither does the cap
Bnz,, , and fn(Ty, ) = 0, so d(fn, f) > a. The convergence hypothesis
implies

Tim P[ U (vnr(kn) = 0}] =0,

n—oo
reR)
n
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Un,r(ky) being the number of X,’s belonging to Ay, . That is,
lim P[ ﬂ {vn,r(kn) >1}] =1.
e reR) .
Here, we remind that two events A and B of positive probability are in
negative correlation if
P(A|B) < P(A), thatis, P(ANB)< P(A)P(B).

More generally, the events Aq, ..., A, of positive probability are in negative

correlation if
vIc{l,...,n, P[ﬂAi] <[P
iel icl
that is, the realization of one of the A; diminishes the probability that the
others are realized.
The events in the intersection several lines above are in negative corre-
lation, thus

lim [] Pns(kn) >1] =1
" OOTER;M
Then, remembering that f = o on S’, we have

Jm TT (10— (- an(A, )] =1
reRr;

From part A, u(Ag, ) = C(s)/ki™!; taking the logarithm, we obtain, for
large n,
naC|(s)

YVa >0, 1-—
“ ki 2 log[C' (s, B)k ]

<0,

thus
s—1 ! s—1
L kM oa[C(s, ks
n—oo n
Using the definition of k,, from h,, and h.=* = o(n), we obtain the desired
result.

=0.

C. The kernel estimator. Let K be a positive function, defined on
R, such that

f K(w)u®=/2 du < oo.

For this function K and for a sequence of positive numbers h,, with
lim,, o h,, = 0 the kernel estimator of f is

o) = e K (),
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where (x, X;) is the scalar product and
—s - <$, y>
Crealin) =i [ 5 (2552 ) auty)
S n

du(y) being the area element on S.
The constant Ck s(h,) does not depend on x and can be written as

op(s—1/2  2/Mn 2o (om3))2
Crs(hn) = == (2u —uh;) ¥ K (u) du
I'((s —1)/2) Uf
with
7T(s 1)/2 %0
: — (s—3)/2
lim Cr () (=) Of (2u) K (u) du.

Notice first that if we choose

K(u) = 119,19 (u),

then
or(s—1)/2 1/2
s hn _ = 2 — 2h2 (373)/2d
that is,

27.[.(3—1)/2 2 arcsin h,, /2

I'((s —1)/2)
From part B, we see that hfleKS(hn) is the area of the cap B,, ,, and thus
the estimator fn defined from that function K is the spherical cap estimator.

We are going to prove two uniform convergence theorems for the ker-
nel estimator: a necessary condition for convergence in probability, and a
sufficient condition for almost complete convergence. In the proofs, we will
follow the method used in [3]. Thus, we do not give all the details; we just
indicate how these methods can be adapted for S.

Cr s(hy) = hy* sin®~2 6 df.

1. Necessary condition for convergence. The theorem is:

Suppose that

lim y f K (u)(2u)5=/2 du = 0.

Y— 00

Then, for every f in D, if fn converges to f uniformly in probability, then
hl=¢ = o(n/logn).

First, we show that
hl=% = o(n).
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As in [3], we suppose that this condition is not satisfied, and we show that,
for an element f in D, f, does not converge in probability.

If h1=% is not o(n), there exists a positive a and an infinite subset Ny of
N such that

Vne Ny, hl*>an.

We define a parametric representation of S, and we choose f in D equal to
a on C' defined by

C={reS:0<0,<n/4; 0, €[0,7], i=1,...,8s—2; 051 € [0,27]}.

Let H be an upper bound of f.
We choose a positive number M such that

K 2 (s 3)/2 f K 2 (s—3)/2 )
f w) du < in 4 4H f (2u) du

Let
0n = hpV2M

and let @,, be the cap with pole £ (#; = 0) and radius g,. Let H,, be the
event: no one of the X;’s belongs to Q.
We get

P(Hy) = [1 — ap(@n)]".
We use the hypothesis on h,, and the choice of p,, to obtain
P(H,) > e 2@MTNEC S g for large n in Nj.
Let fH» be the density of X conditioned by H,,:

i ! fo) on Q.
fin(z) = T i
’ 1 —aCy(2M)=D/2p5~1 on S — Qn.

Then we bound the mean of fn(é) conditioned by H,; as in [3], we obtain
E[fn(&) | Hy]

_ 2/h2
2D/ D((s — 1) /2)]H .
S Tt NCnath) ), K)o d
sn ,s\Utn 02 /(2h2)

For large n, using o2 /(2h2) = M, we get

z [2m (e~ 1)/2/F(5—1/2 u)(==3)/2
Elfn(§) | Hn) < 01— aCugr ICra(h f K(u du,

and, from the definition of M,
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E[fn(&) | Hy]
o' 2r(=D/2/ (s = 1)/2)] [ K (u)(20)5=3/2 du
401 - aCstsz_l) Ck,s(hn) '
Remembering that lim,, ., 0, = 0 and

1)/2 oo
2 gy (20) 92 du
0

li s\Uln) =
A, Cxslh) = 7 —1/2)

we obtain, for large n, E[f,(€) | Hyn] < ta(l+e).

The proof is then as in [3], using the Markov inequality, and the fact
that, for large n in Ny, P(H,,) is strictly positive.

Now we show

hl=% = o(n/logn).
We suppose that h1~% = o(n), but that the condition h1~% = o(n/logn) is
not satisfied. Then there exists a positive 8 and an infinite subset N of N
such that
Vn e Ny, hi > pn/logn.
Let a be a positive number, to be made precise further, and let us choose f:
f(01,...,0,_1)=a on C=10,7/2] x[0,7]*2 x [0, 27|,
(z) asin® +b on [1/2,2r/3] x [0,7]*~3 x [0, 2n],
H elsewhere.

The constants a,b, H are well known from «, using the continuity con-

dition, and |, s [ du = 1. More precisely, we get
ds — asa
H=—"
by

ds, as, bs being positive numbers, known from the choice of s.

We choose §y = 3/(12C5), decreasing the value of 3 if necessary to get
Bo < ds/as. Using the hypothesis on K:

lim y f K(u)(2u)®*=3/2 du = 0,

Yy—oo

that iS, Ve > O, ElMg, VM > Mg,

M fK(u)(2u)(S—3)/2 du < & fK(u)(2u)(s—3)/2 du,
M

we choose € = inf(Bybs/(4ds),1/4); then My is known.
Next, we choose a positive M such that

M > maX(Mo, asﬁO/dsy ﬁov 1)
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and
ot
R
Then H is known and
o Bobs ,
4H — A(dsM — asf)’
thus,
o Pobs ,
4H =~ 4Md,

and from the choices of € and M,
r (s—3)/2 il r (s—3)/2
A{ K (u)(2u) du < 4 J K (u)(2u) du.

We shall use this inequality at the end of the proof.
We choose the integer

ht
kn = [\/W(ngs)l/(sn}
and let
_ Ry
= T
Then, for large n, 2°k$~1 > 1/(3MCy).
For large n in Ny, we have k3~ > 3'n/logn, where 8’ = 3/(3MC;) =
4. This inequality is valid if 8 is chosen small enough. R
We make a partition of C, similar to the partition defining f, on S:
without going into details, we simply note that we divide [0, 7/2] for 6, and
the partition is associated with the integer 2k,,.
Let K, be the number of elements in this partition; K,, is equivalent to
2°k5~1. For each element, the area is equivalent to Cs05~ 1.
We obtain a similar result to Proposition 1 of [3]:
Let J,, be the exact number of A,, ;, ¢t =1,..., K, containing no element
of the sample. Then for every € > 0,

lim P[1 < J, <eK,]=1.

n—oo

We can also state (cf. [3]):
Let j an integer in {1,..., K, } and integers t1,...,¢; be such that

1§t1<...<tj§Kn.
Let V,,(t1,...,t;) be the event: each A, ¢+, t = t1,...,t;, is empty, while each
among the others contains at least a point of the sample; the hypothesis
hl=% = o(n) implies K,, = o(n). Let o’ and o” be the positive numbers
defined in [3]; suppose n is so large that K,, < o/n, and let v be an integer
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such that [a'n]+1 < v < o'n; let v, be the number of X;’s belonging to C.
Then the distribution of each X; (i =1,...,n) conditioned by the event
gn(V;tl, e ,tj) = {I/n = V} N Vn(tl, e ,tj)
admits the density

(n—v f(x) .
n 1 oK. Ca? ifeeS—-C,
v [ . ’
) = d — s ifzeC—|JAns,,
f(z) na (K, —j)on Cs 4
J
0 if v € | JAns,-
\ r=1

We now conclude as in [3]. Let

U(x) = Blfalx) | Eavits,. .. 1)),
Then
— ; 1- (IL‘,U)
we) = hz—ch,s(hn>S_CK< w2
1
T )

)i ) dut)

14

1— (x,u)
< RS e Tt

C_UizlAn,tr

Let ¢ be in |0, 1], and suppose 1 < j < eK,,. Then, for large n,
(Kp— 7)o 10y > 1 —¢,

and we can bound

00 < g S K (e ) TS W dutw

< o
hy CK,S(hn)S_C 2 1—a
1 1—(z,u) o
L K< ) £ () dpw).
% h2 1—
CK’S(hn)C_UizlAn,tr n Oé( 5)
If o/ and o are chosen such that
1-¢o o
1+2 _ 1+2
1—a< +2¢  and a(1—5)< + 2¢
then
142 1 —(x,u)
< K d .
@[ et () s dut

SiUi:lAnuir
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Let us choose z = &, corresponding to 61 = 0, a pole of A, ;, = Ay, o. We
obtain

1 2 1— )
Y(E) < ﬁih) / K(%)JC(U) dp(u),
n K,s\Itn S—UizlAn,tr n
that is,
1+ 2e 1 —cosb;
YOS e fAM K (S5 ) HOree 60 dul6),

Let D” be the image of the integration domain under the change of variable
u=(1-cosf)/h%. Then

142 2x6—1)/2
Crk,s(hn) I'((s —1)/2)

The image of the cap A,, ;, has no common point with D" and is the interval
[0, 07,/ (2h3,)]. Thus

P(€) < (sup f) f K (u)(2u)=3/2 du.

D//

27_[_(8—1)/2
<(1+2 K 2 o
V&) = (4200698 ) 5=y 73y s ) . f K "
02 /(2h3)
Remembering that
2
On _ 1 ; :
w2~ (o nazry M S e ey
we have Qi/2h% > M and
or(s—1)/2 o0
- 1+2€ “ K 2U (S 3)/2du-
V&) < 42060 f) iy e s IJ

Recall also that

(s—3)/2 (s—3)/2
fK )(2u) du < inf <4H 4M> JK )(2u) du

and, from the definition of M,

o0
K (u)(2u)5=)/2 ¢ K (1) (2u) 572
f w) du < in 4H 4 Of w) du.

But sup f = sup(«a, H) and thus

4 2D/ /1 (s = 1)/2)] Ji K () (20) =92 du

(07
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and for large n,

1 «
Choosing € = ¢’ = 1/10, for large n, we get 1(¢) < Za, and the end of the
proof is similar to [3].
2. Sufficient condition for convergence. In this part, too, we proceed as
in [3].
We recall that a function defined on R is called m,,-simple if, for a fixed
integer m, it is constant on each element of the partition m,,, where

T = {m; = [3/2™,(j +1)/2™[: j € N}.
We suppose that K is chosen such that there exist two sequences ;) and
o, of Rt-integrable m,,-simple functions with

O < Pir S K <@l <f  for large m.

For instance, every function K of bounded variation in the neighboorhood
of infinity satisfies this condition.

We suppose, moreover, that u(6~1/2K (u) is decreasing for large u, and
that fooo w2 K (u) du exists, with

lim fu(s_3)/2cp,‘fl(u)du: lim fu(s_3)/2<p;(u)du

o

fu(s 32K (u) du.

o

We are going to prove the following theorem:

If K satisfies the above hypotheses and if h1~° = o(n/logn), then for
each element f of D, f, converges to f uniformly almost completely.

We set

oo [ee]
§ - § /

= aﬂlj 1Imj I (p'rn = amj 1Imj .
J=0 J=0

We can write

nhi 10Ks< ) ZZO"”]II < ;;X>>

=1 j=0

< Fula) < sz%h (1_2 X">>.

”21]0
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P () =1}

{LS1—<$7X1‘> <]+1}7

Consider the event

that is,

2m h? 2m

n

or

{Xz € Bn,m,j+17x - Bn,m,j}x = n,m,g}x}y

where B, 1 .o (r€Sp. By m j+1,2) is the spherical cap with pole  and radius
an = (/27" HY2h, (vesp. b, = ((j +1)/2™"1/2h,,). Let

_ o ~ o
Frm () = =222 and  fi i (z) = —SIRELE

nCyay, Y nCsbn

be the spherical cap estimators corresponding to these two caps. When
7 and m are chosen, the hypothesis about h, implies the uniform almost
complete convergence of these two estimators. For the chosen j and m,

(2m—He-b & 1—(2,X;)
s—1 1Im. 2
nhi Crea(hn) 2= o\ 12

(2m—1)(s—1)/2
= nhsflch (h )(Vn,m,j—f—l,z - Vn,m,j,z)

OK,s(hn)

So the preceding bounds allow us to write

G+ D2 Fomiea (@) = 5 fo i (@)

CKs ) ZO‘ mi (gm—1 (s 0/2
j:

X [+ )2 fp (@) = jETV2F, ()] - fla)

Cs 1
< CKS( n Z::am.? om— 1)(3 1)/2

X G+ D2 frmgia(@) = 702 fom g (@)] = f(@).
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Consider, first, the upper bound of f,(z) — f(z). We can write it as

oo

Cs Am,j
Crc.s(hn) ;) 2(m=1)(s—-1)/2

< AG+ D fom i (@) = f@)] = 32 fm (@) = f(@)]}

oo

Cs Qi j . (s—1)/2 _ +(s—1)/2
" f(x){ Ck,s(hn) ]ZO o(m—1)(s—1)/2 [(+1) —J J—1¢.

Recall that

op(s—1)/2 0

Jim Ck s(hn) = (=12 f (2u)C 2K (u) du,
0
o o

(s=1I'((s—1)/2)
Moreover,
(8=3)/2 4o, — S Om : (s=1)/2 _ :(s—1)/2
f Pm () (20) du = ZQ(m 1)(5 57zl 0+1) J J-
=0
From the hypotheses about K, there exists an integer mg such that, for
m > my,

oo
f w)(2u) 72 du < (1 +¢)
0

K(u)(2u)®=3/2 du.

Thus, for n > ny and m > mg, the coefficient of f(x) is smaller than an
arbitrary positive number 7.

Let us choose m > mg. The hypotheses about u(*~1/2 K (u) imply that,
for each € > 0, there exists a finite subset J of N such that

Za (s 1)/2 (j+1)(sfl)/2] < e.
JjéJ

Let H be an upper bound for f. For n > ng, ﬁ(:ﬂ) — f(x) is smaller than

Cs Amj : (s-1)/2|F .
Ck s(hn) Z 9(m—1)(s—1)/2 (7+1) | frm i1 (x) = f(2)]
K,s\!n jeJ

C Qnj 7 Cs
+ . E = (D2 f (@ +2He———+H.
Ck,s(hn) = 2(m—1)(s-1)/2” [, (@) = f()] Ck.s(hn)

The end of proof is similar to [3].
The lower bound for f,(x) — f(z) is obtained analogously.
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1 .
f(t91,t92) = pSlnel

TS
Bgsanunnt natthy,
2, SEE0LGne e
TR LAY
1 ?“u“-« &

The histogram estimator
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The kernel estimator

D. Simulation results. We now study the performance of these esti-
mators by simulation methods, for the density

1.
f(91,02) = F s1n01

with s = 3.

The histogram estimate is calculated from a sample of size n = 5000,
with k = y/n/logn.

The kernel estimate is calculated from a sample of size n = 1000, with
K(u) = e (u>0) and h, = (logn)//n.
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