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MODULATING ELEMENT METHOD

IN THE IDENTIFICATION OF A GENERALIZED

DYNAMICAL SYSTEM

Abstract. In this paper the identification of generalized linear dynamical
differential systems by the method of modulating elements is presented. The
dynamical system is described in the Bittner operational calculus by an ab-
stract linear differential equation with constant coefficients. The presented
general method can be used in the identification of stationary continuous
dynamical systems with compensating parameters and for certain nonsta-
tionary compensating or distributed parameter systems.

1. Introduction. The theoretical basis of operational calculus was
markedly developed by the Polish mathematical school created by S. Bellert,
R. Bittner and others (see [9]).

In his 1957 paper [1] and in its continuations S. Bellert formulated the
general principles of operational calculus in linear spaces. Using operational
calculus he also made efforts to create a uniform basis of dynamical systems
theory [2, 3]. In these papers he noticed that using operational calculus “we
avoid the necessity of creating separate theories for various system types”.

R. Bittner has developed a similar concept of operational calculus since
1959 [4]. In the book [15] (which is a posthumous edition of Bellert’s selected
papers) J. Osiowski confirmed that Bittner brought the idea of the Bellert
operational calculus to the shape of a compact and complete mathematical
theory (see [5–7]).

Using the Bittner operational calculus, the authors [23, 24] presented
certain generalizations of the identification method of a dynamical system
by means of modulating functions (see [17, 11]).
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In [23], the identification of a system described by a differential equation
of nth order required the knowledge of one modulating function and at least
n + 1 input signals, and the same number of output signals corresponding
to them, while [24] required the knowledge of at least n + 1 modulating
functions, only one input signal and one output signal corresponding to it.

In this paper a further generalization of the modulating function method
is given. Similar to the previous papers, there is also considered the problem
of choosing the best model (equation) describing the dynamics of the studied
system. For its identification we now have to know only one modulating
function and only one pair of input and output signals corresponding to each
other. The number of input and output signals required for the identification
is important for economical reasons, when we take into account the costs of
those signal measurements. It is also of particular importance in the cases
when multiple measurements are troublesome or unfeasible.

Using the notion of the modulating element defined in the Bittner oper-
ational calculus we perform the identification of the dynamical system de-
scribed by the following abstract linear differential equation with constant
coefficients:

(0) anSny + an−1S
n−1y + . . . + a1Sy + a0y = u.

Here S stands for an abstract derivative and u and y denote the input and
output signals of the system, respectively.

The proposed identification is based on an optimization algorithm. The
classical modulating function method, as given in [17], concerns the com-
pensating constants system only. Moreover, the problem of optimization is
not posed at all.

In our generalization of the modulating function method, using various
representations of operational calculus we may identify various types of dy-
namical systems.

In this paper we discuss the identification of the stationary systems de-
scribed by linear ordinary differential equations of second order (together
with the interpolation of signals by means of splines) and of nonstationary
first order systems described by linear ordinary differential equations and
quasi-linear partial differential equations.

2. The operational calculus. In accordance with the notation used
e.g. in [6], a Bittner operational calculus is a system

CO(L0, L1, S, Tq , sq , q,Q),

where L0 and L1 are linear spaces over the same field Γ of scalars, the
linear operation S : L1 → L0 (written S ∈ L(L1, L0)), called the (abstract)
derivative, is a surjection. Moreover, the nonempty set Q is the set of
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indices q for the operations Tq ∈ L(L0, L1) such that STqw = w, w ∈ L0,
called integrals, and for the operations sq ∈ L(L1, L1) such that sqx =
x − TqSx, x ∈ L1, called limit conditions.

By induction we define a sequence of spaces Ln, n ∈ N, such that

Ln := {x ∈ Ln−1 : Sx ∈ Ln−1}.

Then . . . ⊂ Ln ⊂ Ln−1 ⊂ . . . ⊂ L1 ⊂ L0 and

Sn(Lm+n) = Lm,

where

L(Ln, L0) ∋ Sn := S ◦ . . . ◦ S︸ ︷︷ ︸
n times

, n ∈ N, m ∈ N0 := N ∪ {0}.

The kernel of S, i.e. the set KerS := {c ∈ L1 : Sc = 0}, is called the space

of constants for the derivative S.
Let Q be a set which has more than one element. The mapping Iq2

q1
∈

L(L0,Ker S) defined by

(1) Iq2

q1
w := (Tq1

− Tq2
)w = sq2

Tq1
w, q1, q2 ∈ Q, w ∈ L0,

is called the operation of definite integration.
Suppose that L0 is an algebra and L1 is its subalgebra. We say that the

derivative S satisfies the Leibniz condition if

(2) S(x · y) = Sx · y + x · Sy, x, y ∈ L1.

We say that the limit condition sq is multiplicative if

(3) sq(x · y) = sqx · sqy, x, y ∈ L1.

3. The system identification. Henceforth, we assume that

• q0, q1, . . . , qm ∈ Q, m ≥ n + 1,
• L0 is a real algebra, and L1 is its subalgebra,
• the derivative S satisfies the Leibniz condition (2),
• the operations sqν

, qν ∈ Q, ν ∈ 0,m := {0, 1, . . . ,m}, are multiplica-
tive.

Let Rqν

qµ
∈ L(L1,Ker S) be defined by

Rqν

qµ
x := (sqν

− sqµ
)x = Iqν

qµ
Sx, qµ, qν ∈ Q, x ∈ L1.

By induction on k ∈ N we can prove [23, 21] the following formula of inte-

gration by parts:

(4) Iqν

qµ
(x · Sky) =

k−1∑

i=0

(−1)iRqν

qµ
(Six · Sk−i−1) + (−1)kIqν

qµ
(Skx · y),

where S0x := x, qµ, qν ∈ Q, x, y ∈ Lk, k ∈ N.
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Consider all the real systems whose dynamics, in suitable models of
operational calculus, is described by an equation

(5) anSny + an−1S
n−1y + . . . + a1Sy + a0y = u,

where ai ∈ R
1, i ∈ 0, n, u ∈ L0, y ∈ Ln, n ∈ N.

The model (5) will be called a generalized linear dynamical differential

stationary system with compensating constants. The given element u and
the unknown element y will be called the input signal (control) and output

signal (response) of the system (5), respectively. The set Q will be called
the set of instants (see [22–24]).

Assume that the pair (u, y) ∈ L0 ×Ln satisfies (5) with the given coeffi-
cients a0, a1, . . . , an. Then for every f ∈ Ln we have

(6) anfSn + an−1fSn−1 + . . . + a1fSy + a0fy = fu.

Acting by Iqν

qν−1
on both sides and then using (4) we obtain

(7)

n∑

i=1

ai

[ i−1∑

j=0

(−1)jRqν

qν−1
(Sjf · Si−j−1y)

]

+

n∑

i=0

(−1)iaiI
qν

qν−1
(Sif · y) = Iqν

qν−1
(fu),

where ν ∈ 1,m.

Assume that f ∈ Ln satisfies

(8) f 6∈ Ker Sn, sqν
Sif = 0, ν ∈ 0,m, i ∈ 0, n − 1.

Then f ∈ Ln will be called a modulating element of (5) corresponding to
q0, q1, . . . , qm ∈ Q.

With the above assumptions, we obtain from (7),

n∑

i=0

(−1)iaiI
qν

qν−1
(Sif · y) = Iqν

qν−1
(fu), ν ∈ 1,m.

The system may be written in the form

n∑

i=0

aivi = w,

where

(9) vi :=




(−1)iIq1

q0
(Sif · y)
...

(−1)iIqm

qm−1
(Sif · y)


 , w :=




Iq1

q0
(fu)
...

Iqm

qm−1
(fu)


 , i ∈ 0, n.
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From (1) it follows that

vi, w ∈ (Ker S)m :=

m⊕

ν=1

Ker S, i ∈ 0, n,

where ⊕ is direct sum.

In this paper, by identification of a dynamical system (5) we shall un-
derstand the problem of choosing the coefficients of (5) with given u∗ ∈
L0, y∗ ∈ Ln so that for some modulating element f ∈ Ln the functional

(10) Jf (a0, a1, . . . , an) :=
∥∥∥

n∑

i=0

aiv
∗

i − w∗

∥∥∥

(called the identification performance index ) attains its minimum, where
‖ · ‖ is the norm induced by the scalar product (· | ·) in a fixed Hilbert space
H and v∗

i , w
∗ ∈ (Ker S)m, i ∈ 0, n, are vectors of the form (9) determined

for the signals u∗, y∗.

Assume that B := {v∗

0, v
∗

1, . . . , v
∗

n} is a set of linearly independent vectors
in H. Then

Lin B :=
{

w =

n∑

i=0

aiv
∗

i : ai ∈ R
1, i ∈ 0, n

}

is a closed subspace of H.

Now, we determine a vector

w0 = a0
0v

∗

0 + a0
1v

∗

1 + . . . + a0
nv∗n ∈ Lin B

which is the nearest (with respect to the norm ‖ · ‖) to the given vector w∗.
This means that we shall find real numbers (a0

0, a
0
1, . . . , a

0
n) such that

‖w0 −w∗‖ = Jf (a0
0, a

0
1, . . . , a

0
n) = min{Jf (a0, a1, . . . , an) : ai ∈ R

1, i ∈ 0, n}.

From the orthogonal projection theorem (Th. 2 of [12]) we infer the
existence and uniqueness of w0 and the orthogonality of w0 − w∗ to every
v∗j ∈ B, j ∈ 0, n. Therefore

(w0 − w∗ | v∗j ) =
( n∑

i=0

a0
i v

∗

i − w∗

∣∣∣ v∗

j

)
= 0, j ∈ 0, n.

Hence

(11)

n∑

i=0

a0
i bij = cj , i, j ∈ 0, n,

where

(12) bij := (v∗i | v∗j ), cj := (w∗|v∗

j ), i, j ∈ 0, n.
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The linear system (11) has exactly one solution, because the matrix [(v∗

i |
v∗j )](n+1)×(n+1) is non-singular (this is equivalent to the linear independence
of v∗0, v

∗

1, . . . , v
∗

n).

As in [22], one can prove that by increasing the order of equation (5) the
exactness of identification will not deteriorate, more precisely, the identifi-
cation performance index given by (10) will not increase.

Fix G := {g−1, g0, . . . , gr} ⊂ Ln. Assume that u∗, y∗ ∈ Lin G. Moreover,
let V ν

i , W ν denote the νth coordinates of v∗

i and w∗, respectively. Then, by
(9), we obtain

(13) V ν
i = (−1)i

r∑

j=−1

βjdi,ν,j , W ν =

r∑

j=−1

αjd0,ν,j ,

where

u∗ =
r∑

j=−1

αjgj , y∗ =
r∑

j=−1

βjgj

and

(14) di,ν,j := Iqν

qν−1
(Sif · gj) ∈ Ker S, i ∈ 0, n, ν ∈ 1,m, j ∈ −1, r.

The above formulas are useful for the identification of dynamical systems
differing by the signals u∗, y∗ ∈ LinG only, since the constants di,ν,j are
independent of the signals.

4. Examples. A. Let Ln := Cn(R1, R1), n ∈ N0, and

S :=
d

dt
, Tq :=

t∫

q

, sq :=|t=q , q ∈ Q := R
1.

With the natural definition of multiplication the spaces Ln, n ∈ N0, are
algebras such that Ln ⊂ Ln−1, n ∈ N, whereas the derivative S satisfies the
Leibniz condition and the operations sq, q ∈ Q, are multiplicative.

As Ker S is the space of constant functions on R
1, isomorphic to R

1, for
the Hilbert space H we take the real space l2m with the inner product

(15) (a | b) =

m∑

ν=1

aνbν , a, b ∈ l2m,

and the norm

‖a‖ =
( m∑

ν=1

a2
ν

)1/2

, a ∈ l2m.

Then (5) reads

(16) any(n)(t) + an−1y
(n−1)(t) + . . . + a0y(t) = u(t),
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where u = u(t) is the input signal and y = y(t) is the output signal of the
system to be identified.

The identification algorithm of the system (16) comprises:

1) the algorithm of approximation of the input signal and the output
signal,

2) the algorithm of choosing the coefficients of the differential equation,

3) the algorithm of verification of the model.

Let us discuss the identification algorithm for the second order equation

(17) a2ÿ(t) + a1ẏ(t) + a0y(t) = u(t).

1) From the values ũi = ũ(ti) of the input signal and the values ỹi = ỹ(ti)
of the output signal, obtained from measurements on the real system at
times ti = t0 + ih, h = (t4k − t0)/(4k), i ∈ 0, 4k + 1, we determine the
functions u∗ = u∗(t) and y∗ = y∗(t) which are used in the identification of
the coefficients of the system (17). We take interpolating cubic splines for
approximation of the input and output signals.

Assume that u∗, y∗ ∈ Lin G, where G = {g−1, g0, . . . , g4k+1}, k ≥ 3, and
the gj are cubic basic splines given by (see [10, 19])

(18) gj = Φj(t) =
1

h3





(t − tj−2)
3 for t ∈ [tj−2, tj−1],

h3 + 3h2(t − tj−1) + 3h(t − tj−1)
2 − 3(t − tj−1)

3

for t ∈ [tj−1, tj ],

h3 + 3h2(tj+1 − t) + 3h(tj+1 − t)2 − 3(tj+1 − t)3,

for t ∈ [tj , tj+1],

(tj+2 − t)3 for t ∈ [tj+1, tj+2],

0 for other t ∈ R
1,

j ∈ −1, 4k + 1 (Fig. 1). Obviously, G is a subset of L2 = C2(R1, R1).

Fig. 1. The basic function Φj(t)
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The functions interpolating the input and output signals are determined
by the coefficients αj , βj , j ∈ −1, 4k + 1, respectively, i.e.

(19) u∗ =
4k+1∑

j=−1

αjΦj(t), y∗ =
4k+1∑

j=−1

βjΦj(t) [10].

The coefficients of (19) are obtained from measurement data of ũ(ti), ỹ(ti)
and from the boundary conditions for the derivatives

u̇∗(t0) = u̇∗

0, u̇∗(t4k) = u̇∗

4k,

ẏ∗(t0) = ẏ∗

0 , ẏ∗(t4k) = ẏ∗

4k,

which we can approximate by difference quotients obtaining

u̇∗

0 ≈
ũ(t1) − ũ(t0)

h
, u̇∗

4k ≈
ũ(t4k+1) − ũ(t4k)

h
,(20)

ẏ∗

0 ≈
ỹ(t1) − ỹ(t0)

h
, ẏ∗

4k ≈
ỹ(t4k+1) − ỹ(t4k)

h
.(21)

Substituting the interpolating points (ti, ũi), (ti, ỹi), i ∈ 0, 4k, into (19)
and (ti, u̇

∗

i ), (ti, ẏ
∗

i ), i = 0, 4k, into the derivatives of the functions (19) we
obtain two systems of 4k + 3 equations with 4k + 3 unknowns (cf. [10]):

(22)





−α−1 + α1 = 1
3hu̇∗

0,
α−1 + 4α0 + α1 = ũ0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
α4k−1 + 4α4k + α4k+1 = ũ4k,
−α4k−1 + α4k+1 = 1

3
hu̇∗

4k,





−β−1 + β1 = 1
3hẏ∗

0 ,
β−1 + 4β0 + β1 = ỹ0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
β4k−1 + 4β4k + β4k+1 = ỹ4k,
−β4k−1 + β4k+1 = 1

3
hẏ∗

4k.

After elimination of α−1, α4k+1 and β−1, β4k+1, we obtain systems with
tridiagonal coefficient matrices with dominating main diagonal. An algo-
rithm (see Fig. 3, Interpol algorithm) of solving that type of systems of
linear equations is presented in [10, 14].

Solving the systems (22) we obtain the interpolated (in [t0, t4k]) input
signal u∗ and output signal y∗ in the form (19) of cubic splines.

2) From (8) it follows that every function f = f(t) ∈ C2(R1, R1) \
Ker d2/dt2 satisfying

f (i)(qν) = 0, ν ∈ 0,m, m ≥ 3, i = 0, 1,

may be a modulating element of the system (17) corresponding to qν ∈ R
1.

In particular, the function f defined by

f(t) =





Φ2(t) for t ∈ [t0, t4],
Φ6(t) for t ∈ [t4, t8],
. . .
Φ4k−2(t) for t ∈ [t4k−4, t4k],
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is a modulating function of the system (17) corresponding to qν = t4ν ,
ν ∈ 0, k (Fig. 2).

That function can also be represented in the form

(23) f(t) = Φ4j−2(t) for t ∈ [t4j−4, t4j ], j ∈ 1, k.

Fig. 2. The modulating function of the system (17)

With qν = t4ν we have Iqν

qν−1
=

∫ t4ν

t4ν−4

. By (18) and (23), the formula

(14) takes the form

(24) di,ν,j =
t4ν∫

t4ν−4

Φ
(i)
4ν−2(t)Φj(t) dt, i = 0, 1, 2, ν ∈ 1, k, j ∈ −1, 4k + 1.

The coefficients (24) are determined in [14] (cf. [19]). Their values for i =
0, 1, 2 are

d0,ν,j = h





1
140

for j = 4ν − 5, j = 4ν + 1,
6
7 for j = 4ν − 4, j = 4ν,
1191
140 for j = 4ν − 3, j = 4ν − 1,
604
35 for j = 4ν − 2,

0 for |4ν − 2 − j| > 3,

d1,ν,j =





1
20

for j = 4ν − 5,
14
5 for j = 4ν − 4,
49
4

for j = 4ν − 3,

0 for j = 4ν − 2,

− 49
4 for j = 4ν − 1,

− 14
5 for j = 4ν,

− 1
20 for j = 4ν + 1,

0 for |4ν − 2 − j| > 3,
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d2,ν,j =
1

h





3
10 for j = 4ν − 5, j = 4ν + 1,
36
5

for j = 4ν − 4, j = 4ν,
9
2 for j = 4ν − 3, j = 4ν − 1,

−24 for j = 4ν − 2,

0 for |4ν − 2 − j| > 3,

for ν ∈ 1, k, j ∈ −1, 4k + 1. Therefore, by (13), we obtain

V ν
0 =

[
1

140 (β4ν−5 + β4ν+1) + 6
7 (β4ν−4 + β4ν)(25)

+ 1191
140

(β4ν−3 + β4ν−1) + 604
35

β4ν−2

]
h,

V ν
1 = 1

20 (β4ν+1 − β4ν−5) + 14
5 (β4ν − β4ν−4) + 49

4 (β4ν−1 − β4ν−3),(26)

V ν
2 =

[
3
10 (β4ν−5 + β4ν+1) + 36

5 (β4ν−4 + β4ν)(27)

+ 9
2
(β4ν−3 + β4ν−1) − 24β4ν−2

]
/h,

W ν =
[

1
140 (α4ν−5 + α4ν+1) + 6

7 (α4ν−4 + α4ν)(28)

+ 1191
140

(α4ν−3 + α4ν−1) + 604
35

α4ν−2

]
h,

for ν ∈ 1, k.

The above formulas contain no definite integrals. This is important for
numerical calculations.

Using (25)–(28) we can determine the coefficients of equations (11).
Namely, from (15) and (12) it follows that

(29) bij =
k∑

ν=1

V ν
i V ν

j , cj =
k∑

ν=1

W νV ν
j , i, j = 0, 1, 2.

Solving (11) we obtain a model of the dynamical system (17):

(30) a0
2ÿ(t) + a0

1ẏ(t) + a0
0y(t) = u(t),

where a0
0, a0

1, a0
2 are the optimal coefficients of (30) in [t0, t4k].

3) The value of the functional (10) at the optimal point (a0
0, a

0
1, a

0
2) serves

to assess the identification method used. In the considered model of opera-
tional calculus we have

(31) Jf (a0
0, a

0
1, a

0
2) =

√√√√
k∑

ν=1

( 2∑

i=0

a0
i V

ν
i − W ν

)2

,

where f is the modulating function (23).

Another way of assessing the identification method is the computation
of the absolute errors

(32) ∆fy(ti) = |ỹ(ti) − y(ti)|, i ∈ 0, 4k,
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between the measured values ỹi = ỹ(ti) and the output signal y(ti) obtained
from (30) as a response to u(ti) = u∗(ti).

We can accept that the system is “well” identified if

max{∆fy(ti) : i ∈ 0, 4k} ≤ δ,

where δ is the absolute error of measurement of the output signal.

In order to determine the absolute errors (32) we first have to solve the
initial value problem

(33) a0
2ÿ(t) + a0

1ẏ(t) + a0
0y(t) = u∗(t), y(t0) = ỹ0, ẏ(t0) = ẏ∗

0 .

Figure 3 presents the whole scheme of the algorithm (1). To solve (11)
the Gauss elimination method was applied.

Table 1 contains the results of the identification of the equation (17) for
the observation interval [0, 2.4] in the case of sinusoidal input signal. In
particular, the table contains optimal values of the coefficients of (17) and
the identification performance index. Moreover, the results of measurements
ỹ(ti) of the output signal, the values y(ti) obtained from the model and the
absolute errors ∆y(ti) at ti = 0.2i, i ∈ 0, 12, are listed.

T A B L E 1

Identification of an ordinary differential equation of the second order

a2ÿ + a1ẏ + a0y = u a00 = 1.95100373

t0 = 0, t4k = 2.4 a01 = 2.89063531

k = 3 a02 = 1.04296329

ũ(ti) = sin ti J = 1.04774E−09

t ỹ y ∆y

0.0 0 0 0
0.2 0.001 1.87108E−03 8.71077E−04
0.4 0.008 8.89653E−03 8.96531E−04
0.6 0.023 2.40286E−02 1.02863E−03
0.8 0.047 0.048037949 1.03795E−03
1.0 0.079 0.080195102 1.19510E−03
1.2 0.117 0.118774478 1.77448E−03
1.4 0.159 0.161434070 2.43407E−03
1.6 0.201 0.205508083 4.50808E−03
1.8 0.243 0.248236869 5.23687E−03
2.0 0.279 0.286950117 7.95012E−03
2.2 0.310 0.319213313 0.009213313
2.4 0.335 0.342943448 7.94345E−03

2.6 0.343 0.356497392 1.34974E−02

(1) For all numerical examples there exist programs in Basic 1.1 for Amstrad CPC
6128.
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START

INTERPOL

Compute:

p0 = x̃0 +
ẋ∗0h

3
, p4k = x̃4k −

ẋ∗4kh

3

pi = x̃i, i ∈ 1, 4k − 1

γ0 = δ4k = 2, γi = δi = 1, i ∈ 1, 4k − 1

A0 = 4, Bi =
δi
Ai−1

, Ai = 4−Biγi−1, i ∈ 1, 4k

r0 = p0, ri = pi −Biri−1, i ∈ 1, 4k

d4k =
r4k
A4k
, di =

ri − γidi+1

Ai
, i ∈ 0, 4k − 1

d−1 = d1 −
ẋ∗0h

3
, d4k+1 = d4k−1 +

ẋ∗4kh

3

RETURN

START

Initial data:
t0, h, k

ũi, ỹi, i ∈ 0, 4k + 1

Interpolation

Compute u̇∗0, u̇
∗

4k, ẏ
∗

0 , ẏ
∗

4k from (20), (21)

x̃i = ũi, i ∈ 0, 4k

ẋ
∗

0 = u̇∗0, ẋ
∗

4k = u̇∗4k

INTERPOL

1

Fig. 3. The identification algorithm for the equation a2ÿ + a1ẏ + a0y = u
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1

αi = di, i ∈ −1, 4k + 1

x̃i = ỹi, i ∈ 0, 4k

ẋ
∗

0 = ẏ∗0 , ẋ
∗

4k = ẏ∗4k

INTERPOL

βi = di, i ∈ −1, 4k + 1

Identification

Compute:

V
ν
i , W

ν from (25)–(28), i = 0, 1, 2, ν ∈ 1, k

bij , cj from (29), i, j = 0, 1, 2

Solve the system (11)

Print:
a
∗

i , i = 0, 1, 2

Verification

Compute the index Jf from (31)

Solve the Cauchy problem (33)

Compute the errors ∆fy(ti), i ∈ 0, 4k, from (32)

Print:

Jf , ∆fy(ti), i ∈ 0, 4k

END

Fig. 3 (cont.)
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B. Let CO(L0, L1, Ŝ, T̂q , ŝq, q,Q) be an operational calculus satisfying
the same assumptions as previously. Moreover, suppose L0 is an algebra
with unit.

Consider the equation

(34) a1p1Ŝy + a0p0y = p,

where p0, p1 ∈ Inv(L0), p ∈ L0, y ∈ L1, a0, a1 ∈ R
1 and Inv(L0) denotes the

set of invertible elements in L0.

To determine a0 and a1 we can apply our identification method for the
new operational calculus with

(35) Sx := AŜx, Tqw := T̂q(A
−1w), sqx := ŝqx,

where A := p−1
0 p1 ∈ L0, x ∈ L1, w ∈ L0, q ∈ Q. In this case (34) is a

particular form of (5), i.e.

a1Sy + a0y = u,

where u := p−1
0 p ∈ L0. Moreover, S satisfies the Leibniz condition and the

limit conditions sq, q ∈ Q, are multiplicative [13].

The application of the new operational calculus to (34) makes it possible
to use the modulating element method for identification of certain types of
nonstationary compensating or distributed parameter systems.

B.1. For the operational calculus in which

Ln := Cn([t0, tm], R1), n = 0, 1,

and

Ŝ :=
d

dt
, T̂q :=

t∫

q

, ŝq := |t=q , q ∈ Q := [t0, tm],

we can consider the structure of algebra and the Hilbert space as in Ex-
ample A. Moreover, (34) takes the form

(36) a1p1(t)ẏ(t) + a0p0(t)y(t) = p(t),

where p0(t), p1(t) 6= 0 for every t ∈ [t0, tm]. The equation (36) describes the
dynamics of a nonstationary compensating constants system.

Every function 0 6≡ f(t) ∈ C1([t0, tm], R1) satisfying

f(tν) = 0, tν ∈ Q, ν ∈ 0,m, m ≥ 2,

is a modulating element corresponding to qν = tν ∈ Q.

Now, let p∗ ∈ C0([t0, tm], R1), y∗ ∈ C1([t0, tm], R1) denote functions
approximating the input and output signals of the system (36) in [t0, tm]
(on the basis of measurements of a real system). Then u∗ = p∗(t)/p0(t).

Using the operational calculus with S, Tq and sq defined by (35), where
A = A(t) = p1(t)/p0(t), we can determine the νth coordinates V ν

i ,W ν of
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v∗i , w
∗. Namely, from (9) it follows that

V ν
0 =

tν∫

tν−1

f(t)p0(t)y
∗(t)

p1(t)
dt, V ν

1 = −
tν∫

tν−1

f ′(t)y∗(t) dt,

W ν =
tν∫

tν−1

f(t)p∗(t)

p1(t)
dt, ν ∈ 1,m.

Hence, from (15) and (12) we obtain the formulas for the coefficients of (11):

bij =

m∑

ν=1

V ν
i V ν

j , cj =

m∑

ν=1

W νV ν
j , i, j = 0, 1.

Solving (11) we obtain the optimal coefficients a0
0, a

0
1 of (36). The value of

the identification performance index (10) is computed from the formula

Jf (a0
0, a

0
1) =

√√√√
m∑

ν=1

(a0
0V

ν
0 + a0

1V
ν
1 − W ν)2,

where f is a fixed modulating function of the system (36) corresponding to
tν ∈ [t0, tm], ν ∈ 0,m.

In order to determine the absolute errors

∆fy(ti) = |y(ti) − y∗(ti)|

we must first solve the initial value problem

a0
1p1(t)ẏ(t) + a0

0p0(t)y(t) = p∗(t), y(t0) = y∗(t0) = y∗

0 .

A computer program for the identification algorithm has been elabo-
rated. In this program the Simpson method of computing definite inte-
grals and the Cramer method of solving linear algebraic equations are used.
That program was used for the numerical example shown in Table 2. The
behaviour of the optimal coefficients of the equation with two modulating
functions corresponding to tν , ν ∈ 0, 3, was studied. Table 2, apart from
the modulating functions and the values of tν , ν ∈ 0, 3, contains the general
form of the differential equation describing the dynamical system, the forms
of p∗ and y∗ of the approximated input and output signals, the number k of
parts into which the integration interval [t0, tm] was divided for the Simp-
son method, the values of the optimal coefficients a0

0, a
0
1, of the identification

performance index Jf , of the function y∗ approximating the output signal
and of the function y obtained from the model at ti = 0.6i, i ∈ 0, 5, and of
the absolute errors ∆fy at these points.

B.2. In the operational calculus with the derivative

Ŝx(z, t) :=
∂x(z, t)

∂z
+

∂x(z, t)

∂t
,
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T A B L E 2

Identification of an ordinary differential equation of the first order

t0 = 0, t1 = 1 a1(0.5t
2 + t+ 1)ẏ + a0(t+ 1)y = p

t2 = 2, t3 = 3 p∗ = t+ 1

k = 64 y∗ = −0.001t5 + 0.006t4 + 0.105t3 + 0.375t2 + 0.5t

f sin[(t− t0)(t− t1)(t− t2)(t− t3)] (t− t0)(t− t1)(t− t2)(t− t3)

a00 −3.01639875 −3.0163477

a01 2.00463942 2.00460815

Jf 2.80909E−09 3.29272E−10

t y∗ y ∆fy y ∆fy

0.0 0 0 0 0 0
0.6 0.45837984 0.457921251 4.58589E−04 0.45792809 4.51750E−04
1.2 1.33139328 1.331037450 3.55835E−04 1.33105641 3.36871E−04
1.8 2.77144992 2.770779430 6.70488E−04 2.77081710 6.32819E−04
2.4 4.93095936 4.931174050 2.14692E−04 4.93123817 2.78803E−04
3.0 7.95300000 7.967295470 0.014295470 7.96739479 1.43948E−02

the integrals

T̂qw(z, t) :=
t∫

q

w(z − t + τ, τ) dτ

and the limit conditions

ŝqx(z, t) := x(z − t + q, q),

where q ∈ Q := [t0, tm], x = x(z, t) ∈ L1 := C2(R1 × [t0, tm], R1), w =
w(z, t) ∈ L0 := C1(R1 × [t0, tm], R1) the equation (34) takes the form of a
quasi-linear partial differential equation

(37) a1p1(z, t)

(
∂y(z, t)

∂z
+

∂y(z, t)

∂t

)
+ a0p0(z, t)y(z, t) = p(z, t),

where p0(z, t), p1(z, t) 6= 0 for every (z, t) ∈ R
1 × [t0, tm].

The equation (37) describes the dynamics of a nonstationary distributed
parameters system.

It is easy to verify that with the usual multiplication of functions the
derivative Ŝ satisfies the Leibniz condition, and the limit conditions ŝq,

q ∈ Q, are multiplicative. Moreover,

Ker S = {c(z, t) ∈ L1 : c(z, t) = ϕ(z − t), ϕ ∈ C2(R1, R1)}.

Notice that every function c(z, t) ∈ Ker Ŝ, restricted to the rectangle P =
[z0, zm] × [t0, tm], may be treated as an element of H1 = L2(P, R1). In this
connection, when identifying the system (37) in the product P , we may take
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for H the direct sum

H =

m⊕

ν=1

H1,

because v∗

i , w
∗ ∈ (Ker S)m.

In this space the inner product is given by

(38) (α | β) =

m∑

ν=1

tm∫

t0

zm∫

z0

αν(z, t)βν(z, t) dz dt, α, β ∈ H.

The induced norm is then

‖α‖ =

√√√√
m∑

ν=1

tm∫

t0

zm∫

z0

[αν(z, t)]2 dz dt, α ∈ H.

From the form of limit conditions in this operational calculus it follows
that every function

0 6≡ f(t) ∈ C2([t0, tm], R1), f(tν) = 0, ν ∈ 0,m, m ≥ 2,

is a modulating element corresponding to qν = tν ∈ Q.

Let p∗ = p∗(z, t), y∗ = y∗(z, t) denote the approximated input and out-
put signals of the system (37) in the rectangle P , on the basis of which we
are to identify its coefficients a0 and a1. Then u∗ = p∗(z, t)/p0(z, t).

From the definition of integrals and limit conditions in the operational
calculus (35), where A = A(z, t) = p1(z, t)/p0(z, t), it follows that the νth
coordinates of v∗i , w∗ are

V ν
0 (z, t) =

tν∫

tν−1

f(τ)p0(z − t + τ, τ)y∗(z − t + τ, τ)

p1(z − t + τ, τ)
dτ,

V ν
1 (z, t) = −

tν∫

tν−1

f ′(τ)y∗(z − t + τ, τ) dτ,(39)

W ν(z, t) =
tν∫

tν−1

f(τ)p∗(z − t + τ, τ)

p1(z − t + τ, τ)
dτ, ν ∈ 1,m.

Form (38) and (12), we obtain formulas for the coefficients of (11):

(40)

bij =

m∑

ν=1

tm∫

t0

zm∫

z0

V ν
i (z, t)V ν

j (z, t) dz dt,

cj =

m∑

ν=1

tm∫

t0

zm∫

z0

W ν(z, t)V ν
j (z, t) dz dt, i, j = 0, 1.
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The identification performance index (10) is calculated from

(41) Jf (a0
0, a

0
1) = ‖a0

0v
∗

0 + a0
1v

∗

1 − w∗‖

=
( m∑

ν=1

[ 1∑

i,j=0

a0
i a

0
j (V

ν
i | V ν

j ) − 2

1∑

i=0

a0
i (W

ν | V ν
i ) + (W ν | W ν)

])1/2

,

where f is a fixed modulating function of (37) corresponding to tν ∈ [t0, tm],
ν ∈ 0,m, the inner product is

(α | β) =
tm∫

t0

tm∫

t0

α(z, t)β(z, t) dz dt

and V ν
i , W ν are defined by (39).

T A B L E 3

Identification of a partial differential equation of the first order

t0 = 0, t1 = 0.5, t2 = 1 a1(z
2t2 + 1)( ∂y

∂z
+ ∂y
∂t

) + a0(2t
2 + 3)y = p(z, t)

p∗ = 4.1t3 + 2.9z2t2 + 8.2zt2 + 11.8z + 6.2t + 3

k = 6 y∗ = 2z + t

f a00 a01 Jf

sin(t− t0)(t− t1)(t− t2) 2.01556215 1.048092380 3.25104E−03

(t− t0)(t− t1)(t− t2) 2.01555038 1.048084830 3.25094E−03

sin(t− t0) sin(t− t1) sin(t− t2) 2.01007362 1.048158110 2.50256E−03

[sin(t− t0)(t− t1)(t− t2)]
2 1.95011143 0.969249844 1.70858E−04

[(t− t0)(t− t1)(t− t2)]
2 1.95013695 0.969294625 1.70816E−04

[sin(t− t0) sin(t− t1) sin(t− t2)]
2 1.95841726 0.975006209 9.84764E−05

In the numerical example shown in Table 3, z0 = t0, zm = tm. In this
case the values of the definite integrals in (40), (41) given in the form

Kν =
tm∫

t0

tm∫

t0

[ tν∫

tν−1

γ(z, t, τ) dτ ·
tν∫

tν−1

δ(z, t, τ) dτ
]

dz dt

are approximated by the following formula:

Kν ≈

k∑

i,j=1

[ k∑

l=1

γ(ξi, ξj , ηl) ·

k∑

l=1

δ(ξi, ξj , ηl)
]
h2h2

ν ,

where

h =
tm − t0

k
, ξi =

ti−1
m + tim

2
, tjm = t0 + jh, t0m = t0, tkm = tm,
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hν =
tν − tν−1

k
, ηi =

ti−1
ν + tiν

2
,

tjν = tν−1 + jhν , t0ν = tν−1, tkν = tν , i ∈ 1, k, j ∈ 0, k.

This example may be generalized to the case of distributed parameter
systems described by a partial differential equation

a1p1(t1, . . . , tr)

(
b1

∂y

∂t1
+ . . . + br

∂y

∂tr

)
+ a0p0(t1, . . . , tr)y = p(t1, . . . , tr)

using the operational calculus with the derivative Ŝ =
∑r

i=1 bi∂/∂ti (cf. [13]).

5. Conclusions. In this paper an application of the Bittner operational
calculus to identification of generalized dynamical differential systems was
presented. The identification method is so general that it may be used for
any real system whose dynamics, in a proper model of operational calcu-
lus, is described by the equation (0). So, we have obtained the modulating
element method of identification for many systems described by means of
various types of ordinary and partial differential equations. From Example
A it follows that every stationary compensating constants system in the
classical sense is a stationary compensating constants system in the opera-
tional sense. From Examples B.1 and B.2 it follows that some nonstationary
compensating or distributed parameter systems in the classical sense are sta-
tionary compensating constant systems in the operational sense.

The presented solution of the identification problem is determined by the
choice of the identifying pair (u∗, y∗) and the modulating element f . The
resulting coefficients

a0
i = a0

i (u
∗, y∗, f), i ∈ 0, n,

of model (0) are the best with respect to the identification performance
index Jf (cf. [8]). In this connection, we can set the problem of choosing
the best modulating element:

Let f, F ∈ Ln be modulating elements of the system (0) (corresponding
to q0, q1, . . . , qm ∈ Q) with the same identifying pair (u∗, y∗). Which of the
numbers

Jf (a0
0, a

0
1, . . . , a

0
n), JF (A0

0, A
0
1, . . . , A

0
n)

is smaller? For some remarks relating to this question, see [23].

In particular, for the operational calculus with S = d/dt we have ob-
tained a modification of the continuous systems identification method by
means of the modulating function. The problem of choosing the best model
and the problem of signal interpolation by means of splines are not con-
sidered in the classical modulating function method (see [17, 11]). Here
the splines have also been used to design the modulating function. This is
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important in numerical computations, as it reduces the time and errors of
calculations.
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