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THE ROBUSTNESS AGAINST DEPENDENCE
OF NONPARAMETRIC TESTS

FOR THE TWO-SAMPLE LOCATION PROBLEM

Abstract. Nonparametric tests for the two-sample location problem are
investigated. It is shown that the supremum of the size of any test can be
arbitrarily close to 1. None of these tests is most robust against depen-
dence.

1. Introduction. Situations with some kind of dependencies for the
Mann–Whitney–Wilcoxon test were investigated by Hollander, Pledger and
Lin [3], Pettit and Siskind [4], Serfling [6], Zieliński [8], [9]. In this paper
we consider the robustness against dependence of a large family of non-
parametric tests for the two-sample location problem, including the test
mentioned above. We take advantage of a new description of dependence,
called Rüschendorf’s ε-neighbourhoods, proposed in [2].

2. Problem and notation. Let X1, . . . , Xm and Y1, . . . , Yn denote two
independent random samples from populations with continuous distribution
functions FX(x) = F (x−∆) and FY (y) = F (y) respectively. We verify the
hypothesis H : ∆ = 0 against K : ∆ > 0 by means of a test φ of size α. We
assume that φ belongs to some family Φ of tests (see Sec. 3 for the definition
of Φ).

Let P(F ) = {P : P (Zi ≤ z) = F (z), i = 1, . . . ,m + n} describe all
possible violations of independence. We denote P(F ) briefly by P. Let
PC ⊂ P be the subfamily of all continuous distribution functions. Moreover,
let Cε ⊂ PC be a family of all c.d.f. which correspond to small dependencies
(for more details see Sec. 4).
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The following problems are considered in this paper:

(A) Given any φ ∈ Φ, compute the supremum of the size of φ under
all kinds of dependencies, i.e. supP∈P

∫
X φ dP , where X denotes a

sample space.
(B) Given any φ∈Φ, evaluate the robustness of the size of φ against small

dependencies. We use the oscillation of the size over Cε as a measure
of robustness (see [7]):

rε(φ) = sup
P∈Cε

∫
X

φdP − inf
P∈Cε

∫
X

φdP.

(C) Find the most robust test in Φ, i.e. a test φ0 such that rε(φ0) ≤ rε(φ)
(∀φ∈Φ) for all ε.

3. The family Φ. We restrict our consideration to a family Φ of
one-sided nonparametric tests for the two-sample location problem given as
follows:

Definition. φ∈Φ if and only if

(i) φ(x1 + τ, . . . , xm + τ, y1 + τ, . . . , yn + τ)
= φ(x1, . . . , xm, y1, . . . , yn) ∀τ ,

(ii) φ(x1, . . . , xi−1, xi + δ, xi+1, . . . , xm, y1, . . . , yn)
≥ φ(x1, . . . , xm, y1, . . . , yn) (∀δ ≥ 0), i = 1, . . . ,m,

(iii) if X1:m > Yn:n then φ(x1, . . . , xm, y1, . . . , yn) = 1,
if Xm:m < Y1:n then φ(x1, . . . , xm, y1, . . . , yn) = 0,

where Xi:m and Yi:n denote the ith order statistics from the first and the
second sample respectively.

The conditions (i)–(iii) seem to be quite natural. The Mann–Whitney–
Wilcoxon test, the Fisher–Yates test, the Rosenbaum test and many other
tests for the two-sample location problem belong to the family Φ (see [1]).

4. A description of dependence. By the Rüschendorf theorem
(see [5]) we know that h is the density of a probability measure on [0, 1]r

with uniform marginals and continuous w.r.t. the Lebesgue measure dµ on
[0, 1]r if and only if h = 1 + Sf where f ∈L1([0, 1]r) and S : L1 → L1 is the
linear operator given by

Sf = f −
r∑

i=1

∫
[0,1]r−1

f dz1 . . . d̂zi . . . dzr + (r − 1)
∫

[0,1]r

f dz1 . . . dzr

and Sf ≥ −1.
Without loss of generality we assume that F is the uniform distribution

on [0, 1].
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Moreover, define R = {f ∈ L1([0, 1]r) : Sf ≥ −1}, and let [0, u]r = {x ∈
[0, 1]r : 0 ≤ xi ≤ ui, i = 1, . . . , r}.

Basing on the above theorem and assumptions we may write that

PC =
{

P : P (u) =
∫

[0,u]r

(1 + Sf) dµ, f ∈ R
}

.

In [2] a new description of dependence, called Rüschendorf’s ε-neighbour-
hoods, was proposed and motivated. Following that paper let Rε = {f ∈
L1 : ‖Sf‖ ≤ ε, Sf ≥ −1}, where ‖ · ‖ is the L1 norm. Then

Cε =
{

P : P (u) =
∫

[0,u]r

(1 + Sf) dµ, f ∈ Rε

}
describes the family of distributions which correspond to small departures
from independence, so called ε-dependence, i.e. if ε is sufficiently small then
the dependence measured by %-Spearman’s and many other meassures is
small as well, and conversely.

In order to solve our problems (A) and (B) it will be necessary for any
φ ∈ Φ to compute:

sup
f∈R

∫
[0,1]r

(1 + Sf)φ dµ,(A)

rε(φ) = sup
f∈Rε

∫
[0,1]r

(1 + Sf)φdµ− inf
f∈Rε

∫
[0,1]r

(1 + Sf)φdµ.(B)

It is easy to show (see Sec. 7) that the above expressions are equivalent
to the following, more convenient in further investigations:

sup
g∈G

∫
[0,1]r

(1 + g)φdµ,(A)

rε(φ) = sup
g∈Gε

∫
[0,1]r

(1 + g)φdµ− inf
g∈Gε

∫
[0,1]r

(1 + g)φdµ,(B)

where G = {g ∈ L1([0, 1]r) : g ≥ −1,
∫
[0,1]r

g dµ = 0,
∫
[0,1]r−1 g dz1 . . . d̂zi . . .

. . . dzr = 0, ∀i = 1, . . . , r}, and Gε = {g ∈ G : ‖g‖ ≤ ε}.

5. Results. Now we can state the solutions of our problems (A)–(C).

Theorem 1. Let φ ∈ Φ. Suppose that all kind of dependencies between
samples and among observations in samples are allowed. Then the size of
the test φ can be arbitrarily close to 1, i.e. supP∈P

∫
X φ dP = 1.
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Theorem 2. The robustness of any test φ ∈ Φ against ε-dependence
equals ε/2, i.e. rε(φ) = ε/2.

From this theorem we get immediately:

Corollary. In the family Φ of one-sided nonparametric tests for the
two-sample location problem, no test is most robust against dependence.

6. Proofs

P r o o f o f T h e o r e m 1. Let {GN}∞N=2 be the sequence of r-dimensio-
nal subsets of [0, 1]r, r = m + n, given by

GN =
⋃ [(

i

N
,
i + 1
N

)m

×
(

j − 1
N

,
j

N

)n]
,

where the union is extended over all (i, j) of the form (k mod N, k), for
k = 1, . . . , N .

Let {gN}∞N=2 be the sequence of real functions on [0, 1]r defined as fol-
lows:

gN (z) =
{

Nr−1 − 1 for z ∈ GN ,
−1 for z 6∈ GN .

We show that gN ∈ G (∀N ≥ 2):

gN ≥ −1 by the definition,(a) ∫
[0,1]r

gN dµ = N
Nr−1 − 1

Nr
+ (−1)

(
1−N

1
Nr

)
= 0,(b)

∫
[0,1]r−1

gN dz1 . . . d̂zi . . . dzr =
Nr−1 − 1

Nr−1
+ (−1)

(
1− 1

Nr−1

)
= 0(c)

for i = 1, . . . , r.

So gN ∈ G for every N ≥ 2.
Now take φ ∈ Φ and denote by α its size. Suppose that φ is a

non-randomized test with a critical region Kα. It is easy to check that
for each N ≥ 2,

GN \
[(

0,
1
N

)m

×
(

N − 1
N

, 1
)n]

⊂ {(z1, . . . , zr) : 0 ≤ zj ≤ zi ≤ 1, i = 1, . . . ,m; j = m+1, . . . ,m+n} ⊂ Kα

for every φ ∈ Φ (see conditions specified in Sec. 3). So we get
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sup
P∈P

∫
X

φdP ≥ sup
P∈PC

∫
X

φdP = sup
g∈G

∫
[0,1]r

(1 + g)φdµ

= sup
g∈G

∫
Kα

(1 + g) dµ ≥
∫

Kα

(1 + gN ) dµ

= α +
[
(N − 1)

Nr−1 − 1
Nr

+ (−1)
(

α− (N − 1)
1

Nr

)]
= α +

N − 1
N

− α =
N − 1

N
.

Choosing N large enough one can come arbitrarily close to 1.

R e m a r k. For simplicity we have assumed in the proof that φ is a
non-randomized test. The theorem is true for randomized tests as well.

P r o o f o f T h e o r e m 2. We take a non-randomized test φ ∈ Φ and
denote by α its size and by Kα its critical region. Let {GN} be as in the
proof of Theorem 1. Consider the sequence {g′N} of real functions on [0, 1]r

defined by

g′N (z) =


ε

2
Nr−1 for z ∈ GN ,

−ε

2
Nr−1

Nr−1 − 1
for z 6∈ GN ,

for N ≥ N0 = (2/(2− ε))1/(r−1). It is easily seen that g′N ∈ Gε (∀N ≥ N0).
So we get

sup
g∈Gε

∫
[0,1]r

(1 + g)φdµ

= sup
g∈Gε

∫
Kα

(1 + g) dµ ≥
∫

Kα

(1 + g′N ) dµ

= α +
[
(N − 1)

ε

2
Nr−1 1

Nr
+

(
− ε

2
Nr−1

Nr−1 − 1

)(
α− (N − 1)

1
Nr

)]
→ α +

ε

2
(1− α) as N →∞.

In order to show that also supg∈Gε

∫
[0,1]r

(1 + g)φdµ ≤ α + ε
2 (1− α), we

consider the operator Tg =
∫

Kα
g dµ. It is a bounded linear operator, so we

get Tg ≤ ‖T‖‖g‖ (∀g ∈ G).
By the proof of Theorem 1,

‖T‖ = sup
g∈G

‖Tg‖
‖g‖

=
1− α

2
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(this is evident, because ε cannot be greater than 2). So we get

(∀g ∈ Gε) Tg ≤ 1− α

2
‖g‖ ≤ 1− α

2
ε

and therefore

sup
g∈Gε

∫
Kα

(1 + g) dµ = sup
g∈Gε

(α + Tg) ≤ α +
1− α

2
ε.

Hence

sup
g∈Gε

∫
[0,1]r

(1 + g)φdµ = α +
ε

2
(1− α).

Now we consider infg∈Gε

∫
[0,1]r

(1+g)φdµ. Let us define a sequence {G′′
N}

by

G′′
N =

⋃ [(
i− 1
N

,
i

N

)m

×
(

j

N
,
j + 1
N

)n]
⊂ [0, 1]r,

where the union is extended over all (i, j) of the form (k, kmodN) for k =
1, . . . , N .

Let {g′′N} be the following sequence of real functions on [0, 1]r:

g′′N (z) =


ε

2
Nr−1 for z ∈ G′′

N ,

−ε

2
Nr−1

Nr−1 − 1
for z 6∈ G′′

N ,

where N ≥ N0. It is easily seen that g′′N ∈ Gε (∀N ≥ N0). So

inf
g∈Gε

∫
[0,1]r

(1 + g)φdµ = inf
g∈Gε

∫
Kα

(1 + g) dµ ≤
∫

Kα

(1 + g′′N ) dµ

= α +
[
ε

2
Nr−1 1

Nr
− ε

2
Nr−1

Nr−1 − 1

(
α− 1

Nr

)]
→ α(1− ε/2) as N →∞.

Similarly, we can prove the opposite inequality:

inf
g∈Gε

∫
[0,1]r

(1 + g)φdµ ≥ α(1− ε/2)

and therefore

inf
g∈Gε

∫
[0,1]r

(1 + g)φdµ = α(1− ε/2).
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Thus finally

rε(φ) = sup
P∈Cε

∫
X

φ dP − inf
P∈Cε

∫
X

φdP

= sup
g∈Gε

∫
[0,1]r

(1 + g)φdµ− inf
g∈Gε

∫
[0,1]r

(1 + g)φdµ

= α +
ε

2
(1− α)− α

(
1− ε

2

)
=

ε

2
,

which completes the proof.

As before, the theorem is also true for randomized tests.

7. Complements. In Section 4 we have stated that in our problem we
could consider the families G and Gε instead of R and Rε. This follows from

Lemma. Let S be the operator defined in Section 4. Then S(R) = G
and S(Rε) = Gε.

P r o o f. It suffices to show that S(R) = G. The same proof remains
valid for the second assertion.

Suppose f ∈ R. Then Sf ∈ L1([0, 1]r), Sf ≥ −1 and
∫
[0,1]r

Sf dµ =∫
[0,1]r−1 Sf dµ = 0. So S(R) ⊆ G.

Now take any g ∈ G. Then

Sg = g −
r∑

i=1

∫
[0,1]r−1

gdz1 . . . d̂zi . . . dzr + (r − 1)
∫

[0,1]r

g dz1 . . . dzr = g

and hence S(R) ⊇ G.
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