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A CLASS OF UNBIASED KERNEL ESTIMATES
OF A PROBABILITY DENSITY FUNCTION

Abstract. We propose a class of unbiased and strongly consistent non-
parametric kernel estimates of a probability density function, based on a
random choice of the sample size and the kernel function. The expected
sample size can be arbitrarily small and mild conditions on the local behav-
ior of the density function are imposed.

1. Introduction and notation. Unbiased (and minimum variance)
estimates of probability density functions have been determined for various
parametric models. Some general methods and a number of examples were
presented in Voinov and Nikulin [19]. For a rather peculiar nonparametric
family of density functions Devroye [4] also determined an unbiased esti-
mate. However, in a general nonparametric setup we have some negative
results. Rosenblatt [13], in the fundamental paper where kernel density es-
timates were introduced, proved that for no sample size does there exist
an estimate which is unbiased for the values of all continuous density func-
tions at a given point. Bickel and Lehmann [2] established the same for any
family of density functions containing the convex combinations of doubly
exponential densities with the scale parameter. Yamato [20] showed that no
kernel estimate is unbiased for any density function.

We propose a global unbiased estimate for a general nonparametric class
of densities, applying a random rule of choosing a number of observations as
well as an element of a sequence of kernel estimates. The rule is independent
of the sample. A similar approach was employed in Rychlik [14] to estimate
the derivative of a regression function.

We consider a sequence Xn, n ≥ 1, of independent real-valued ran-
dom variables with a common probability density function f . In order to
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construct the estimate we introduce the following notions. We take three
sequences of strictly positive numbers:

(1)

an, n ≥ 0, decreasing to zero,

kn, n ≥ 1, where all kn are integers,

pn, n ≥ 1, such that
∞∑

n=1

pn = 1.

Let K denote a kernel function which is subject to the conditions:∫
K(x) dx = 1,

∫
K(x)2 dx = A2 < ∞,(2)

K is symmetric about the origin, nonincreasing on [0,∞),
and has a bounded support.

For simplicity we assume that suppK = [−1, 1]. With the notation

Kn(t) =
1
an

K

(
t

an

)
, n ≥ 0,

we define a sequence of kernels by

(3) Ln = K0 +
Kn −Kn−1

pn
, n ≥ 1,

and a sequence of estimates

f̂n(x) = f̂n(X1, . . . , Xkn ;x) =
1
kn

kn∑
i=1

Ln(x−Xi), n ≥ 1.

We see that the an are the bandwidths of the kernel estimates Kn, n ≥ 0,
and kn are the numbers of observations necessary to determine the respective
estimates f̂n, n ≥ 1. The sequence pn, n ≥ 1, is used to define the modified
kernels in (3), and also to determine the distribution of a positive integer
random variable N , independent of the sequence Xn, n ≥ 1,

P (N = n) = pn, n ≥ 1.

A randomly chosen f̂N , by means of an independent selection rule N , is our
candidate for the unbiased estimate of the density function. Observe that f̂N

is a global estimate and it integrates to 1, as does each of Kn, Ln, and f̂n.
However, this is not a proper probability density function, because it takes
negative values. Negative-valued estimates of density functions, very popu-
lar nowadays, were introduced in order to reduce the bias and square error
and to estimate the derivatives of densities (see, e.g., Bartlett [1], Schucany
and Sommers [15], Schuster [16], Silverman [17]). They appear naturally
in estimating by means of orthogonal series (see, e.g., Chentsov [3], and
Kronmal and Tarter [10]). Koronacki [9] reduced the mean square error by
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introducing a kernel estimate which was both negative-valued and random-
ized. Gajek [8] proposed projecting estimates on the class of proper density
functions. The method improves some properties of estimates, but it makes
our estimate biased.

In the sequel, we need some auxiliary notation. Let

(4)

bn = 1− an

an−1
,

cn =
1√

kn min{an−1 − an, an}
,

qn(x) = EKn(x−X1),

rn(x) = Ef̂n(x) = ELn(x−X1), n ≥ 1.

For fs(x; t) = 1
2 [f(x + t) + f(x− t)], the symmetrized density function, we

define the oscillation around a point x by

ω(h) = ω(fs, x;h) = sup
0≤t≤h

|fs(x; t)− f(x)|, h > 0.

To illustrate our idea of estimation, we focus attention on the simple
rectangular kernel K = 1

2I[−1,1]. If Ef̂N (x) were finite, we would write

Ef̂N (x) =
∞∑

n=1

rn(x)pn(5)

=
∞∑

n=1

[q0(x)pn + qn(x)− qn−1(x)]

= lim
n→∞

qn(x) = lim
n→∞

Pn(x)
2an

= f(x)

for every Lebesgue point x of f , with Pn(x) denoting the probability that
x − an ≤ X1 ≤ x + an. The same idea, with a slightly redefined estimate,
carries over naturally to the multidimensional case, but we will not develop
this point here.

Our main purpose is to prove that Ef̂N (x) exists, and, in consequence,
equals f(x), under mildest possible smoothness conditions on f , and for a
smallest possible average number of observations. The proof falls naturally
into two parts. One consists in evaluating E|rN (x)|, which we call the
deterministic term, because it depends merely on the choice of parameters
of the estimate and local properties of the density function. In the other part,
where the stochastic term E|f̂N (x)− rN (x)| is handled, we also analyze the
behavior of observations. In Section 2, assumptions ensuring the finiteness
of the deterministic and stochastic terms are stated in Propositions 1 and 2,
respectively, and discussed. In particular, Proposition 4 shows that for the
naive rectangular kernel K the assumptions of Proposition 2 are practically
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necessary. Our main result is formulated in Proposition 3. In Corollary 1
we notice that a natural modification of our estimate yields additionally the
strong consistency. All proofs are given in Section 3.

2. Results and discussion

Proposition 1. If there is an integer m = m(x) such that

(6)
∑
n>m

bnω(fs, x; an−1) < ∞,

then E|rN (x)| < ∞.

Proposition 2. If ω(fs, x;h) → 0, as h → 0, and

(7)
∞∑

n=1

bncn < ∞,

then E|f̂N (x)− rN (x)| < ∞.

Observe that an = a0

∏n
i=1(1− bi), n ≥ 1, tends to zero iff

(8)
∞∑

n=1

bn = ∞.

Therefore both ω(an−1) and cn, n ≥ 1, should decrease sufficiently fast to
ensure the convergence of the series (6) and (7). In particular, ω(an), n ≥ 0,
is monotone, and so (6) implies the first assumption of Proposition 2, and,
in consequence, we have

Proposition 3. If (7) holds, then Ef̂N (x) = f(x) for all x satisfying
(6) for some m(x) ≥ 1.

We now discuss our assumptions in more detail.
If we took into account asymmetric kernels, we would deal with the os-

cillation of the original density function. Taking symmetric ones, we can
confine ourselves to the symmetrized version fs(x; t) of the density function.
The original f may be discontinuous at the point under study, whereas
fs(x; t) should satisfy (6), which is slightly stronger than continuity at zero.
Generally, ω(fs, x;h) ≤ ω(f, x;h), and equality holds for functions f (lo-
cally) symmetric about x, while ω(fs, x;h) = 0 for (locally) asymmetric,
e.g. linear, ones. Therefore, at points of smoothness we can estimate better
than at sharp local extremes.

In Section 3 we show that if lim infn→∞ an/an−1 > 0, then (6) holds iff

(9)
h∫

0

ω(t)
t

dt < ∞ for some h > 0.
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Consequently, if an, n ≥ 0, decreases geometrically or slower, then f̂N is
unbiased at every point x where

ω(fs, x;h) = O
(

ln−1 1
h

. . . ln−1−ε
k

1
h

)
as h → 0,

for all k ≥ 1 and ε > 0. (We adopt the convention that ln0 x = x+ and
lnk+1 x = ln(lnk x)+.) This is satisfied, with a possible exception of several
points, by the density functions occurring in practice. The advantage of
condition (9) lies also in the fact of being independent of the parameters of
the estimate.

Theoretically, we can extend the set of points with the property of un-
biasedness by taking bandwidths, which decrease faster. E.g., choosing
an = a−n2

, n ≥ 0, a > 1, we also include x’s such that

ω(fs, x;h) = O
(

ln−1/2 1
h

ln−1
2

1
h

. . . ln−1−ε
k

1
h

)
as h → 0.

Other ways of relaxing conditions on f consist in modifying assumptions,
which would also need reformulating conditions on K and different reason-
ing. By analogy, we refer to various proofs of approximating the identity by
integral kernel operators (cf. Parzen [12], Stein [18], and Devroye and Wag-
ner [6]). In our proof, no advanced tools of the theory of differentiability
of integrals are used. Accordingly, we do not present abstract conclusions,
which hold true almost everywhere, but we describe explicitly the points
with the desired properties.

For rectangular kernels, (7) becomes necessary if we exclude oscillatory
sequences cn, n ≥ 1, which are unbounded and approach zero.

Proposition 4. If K = 1
2I[−1,1] and either lim supn→∞ cn < ∞ or

lim infn→∞ cn > 0, then
∑∞

n=1 bncn = ∞ implies

E|f̂N (x)− rN (x)| = ∞
for all x such that f(x) > 0 and ω(fs, x;h) → 0 as h → 0.

The choice of rectangulars, though natural and easily tractable, is far
from optimality in our case. In fact, the rectangulars are the extreme points
of the convex class of kernels (2) and so maximize the convex functional
K 7→ E|f̂N (x) − rN (x)| (with an, kn, pn, n ≥ 1, fixed). Some indirect
arguments show that the kernels concentrated about the origin are more
advisable. For instance, the major contribution to the summands of the
stochastic term with large indices comes from the values of

∫
|Kn −Kn−1|,

which increase with β for power kernels K(x) = cβ(1−|x|β)+, −1/2 < β 6= 0.
Observe that the integral also becomes smaller as an/an−1 approaches 1.

Yet another argument for taking slowly decreasing bandwidths is as follows.
Though we are able to choose kn, n ≥ 1, so that (7) holds for any sequence
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an, n ≥ 0, we are interested in minimizing the sample size. If an, n ≥ 0,
vanishes slower, we can preserve (7) by taking slower increasing kn, n ≥ 1
(we deduce from (1) and (8) that lim supn→∞ kn = ∞ is necessary). For
instance, for an = a−n, n−α and ln−1

j n, where a > 1 and α > 0, it suf-
fices to take kn = O(an/2n2 ln2 n . . . ln2+ε

k n), O(n1+α ln2 n . . . ln2+ε
k n) and

O(n lnn . . . lnj−1 n ln2
j n . . . ln2+ε

k n), respectively. Putting ε = 0 in the above
expressions gives divergence of the series and infiniteness of the stochastic
term.

An important point is that Proposition 3 does not involve any additional
assumptions about the distribution of the stopping rule N . All pn, n ≥ 1,
are merely required to be positive. We cannot avoid obtaining large N and
large kN , but we can make their probabilities arbitrarily small. Also, it is
even possible to make EkN as close to 1 as we wish. Theoretically, we should
have a possibility of performing arbitrarily many independent experiments,
but choosing a stopping rule properly, we can make it almost unlikely to
have more than very few repetitions.

Summarizing the above considerations, we recommend the randomized
estimate based on f̂n, n ≥ 1, with bandwidths slowly approaching zero, and
moderately increasing sample sizes, a kernel mostly concentrated about the
origin, and a stopping rule with an overwhelming probability mass attached
to several first elements.

Finally, we point out that our Proposition 3, together with the strong law
of large numbers, suggests a standard construction of a strongly consistent
unbiased estimate of density functions. Let Nj , j ≥ 1, be independent
random variables distributed as N , S0 = 0, and Sk =

∑k
j=1 Nj , k ≥ 1.

Corollary 1. Under the hypotheses of Proposition 3,

1
k

k∑
j=1

f̂Nj
(XSj−1+1, . . . , XSj

;x) → f(x) as k →∞,

with probability one.

One may be interested in the rate of convergence, which is intimately
related to existence of higher moments E|f̂N (x) − rN (x)|p for p > 1. This
is possible to be accomplished by taking more observations so that each f̂n,
n ≥ 1, approximates the density function more precisely. Since, moreover,
all moments except the first one depend on the distribution of N , the sample
size kN is expected to increase dramatically.

One may conjecture that the estimation error will be reduced by using
another stopping rule. In our approach, the sample size is determined in-
dependently of observations. A properly constructed sequential rule makes
use of the information carried by each consecutive experiment and stops
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sampling when an estimate of error becomes sufficiently small. However,
preservation of unbiasedness and reduction of estimation errors are, in some
sense, contradictory requirements (cf., e.g., Doss and Sethuraman [7], and
Liu and Brown [11]).

3. Proofs. P r o o f o f P r o p o s i t i o n 1. Let a fixed x satisfy (6) and
m be the smallest integer such that ω(am) is finite. Then

qn(x) =
∫

Kn(t)fs(x; t) dt(10)

≤ [f(x) + ω(am)]
∫

|t|≤am

Kn(t) dt + Kn(am)
∫

|t|>am

fs(x; t) dt

≤ f(x) + ω(am) + Kn(am) < ∞
for all n ≥ 1. Also,

qn(x)− qn−1(x) =
∫

[Kn(t)−Kn−1(t)][fs(x; t)− f(x)] dt

= bn

∫ [
Kn(t) +

anKn(t)− an−1Kn−1(t)
an−1 − an

]
[fs(x; t)− f(x)] dt.

Since Kn is nonnegative and the fraction is nonpositive, and both vanish for
|t| > an−1, we obtain

(11) |qn(x)− qn−1(x)|

≤ bnω(an−1)
∫ [

Kn(t) +
an−1Kn−1(t)− anKn(t)

an−1 − an

]
dt

= 2bnω(an−1).

Therefore, by (6), (10), and (11),

E|rN (x)| =
∞∑

n=1

∣∣∣∣q0(x) +
qn(x)− qn−1(x)

pn

∣∣∣∣pn

≤ q0(x) +
∞∑

n=1

|qn(x)− qn−1(x)|

≤ q0(x) +
m∑

n=1

[qn(x) + qn−1(x)] + 2
∑
n>m

bnω(an−1) < ∞.

P r o o f o f P r o p o s i t i o n 2. We first examine absolute deviations of
f̂n(x), n ≥ 1. Generally, by the Jensen inequality for the reverse martingale
of means of independent identically distributed random variables, we obtain

E|f̂n(x)− rn(x)| ≤ E|Ln(x−X1)− rn(x)|(12)

≤ 2
[
q0(x) +

qn(x) + qn−1(x)
pn

]
< ∞.
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For large n, we need a refined evaluation. Since

Ln = K0 −
1
pn

(
Kn−1 −

an

an−1
Kn

)
+

bnKn

pn
,

we have

E|f̂n(x)− rn(x)| ≤ 1
kn

E
∣∣∣ kn∑

i=1

[K0(x−Xi)− q0(x)]
∣∣∣(13)

+
1

knan−1pn
E

∣∣∣ kn∑
i=1

[an−1Kn−1(x−Xi)

− anKn(x−Xi)− an−1qn−1(x) + anqn(x)]
∣∣∣

+
bn

knpn
E

∣∣∣ kn∑
i=1

Kn(x−Xi)− qn(x)
∣∣∣

= I1 + I2 + I3 (say).

Below, we estimate each summand separately. First, repeating the argu-
ments of (12), we obtain

(14) I1 ≤ 2q0(x).

By the Schwarz inequality and independence of observations,

(knan−1pnI2)2 ≤ kn Var[an−1Kn−1(x−X1)− anKn(x−X1)]

≤ knE[an−1Kn−1(x−X1)− anKn(x−X1)]2.

Applying monotonicity of the kernel function and boundedness of its support
and (2), we deduce that

(15) kn(an−1pnI2)2≤ E

[
K2

(
x−X1

an−1

)
−K2

(
x−X1

an

)]
≤ [f(x) + ω(an−1)]

∫ [
K2

(
t

an−1

)
−K2

(
t

an

)]
dt

= [f(x) + ω(an−1)]A2(an−1 − an).

Similarly,

(16) kn

(
pnI3

bn

)2

≤ EKn(x−X1)2 ≤
[f(x) + ω(an)]A2

an
.

Combining (14)–(16) with (4), we can rewrite (13) as

E|f̂n(x)− rn(x)| ≤ 2q0(x) + 2
√

f(x) + ω(an−1)A
bncn

pn
.
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Finally, we see that

E|f̂N (x)− rN (x)| =
∞∑

n=1

E|f̂n(x)− rn(x)|pn

≤ 2q0(x) + 2
m∑

n=1

[qn(x) + qn−1(x)]

+ 2
√

f(x) + ω(am)A
∑
n>m

bncn < ∞.

P r o o f o f P r o p o s i t i o n 3. By Propositions 1 and 2, Ef̂N (x) is well
defined, and satisfies

Ef̂N (x) = lim
n→∞

qn(x)

(cf. (5)). This is exactly f(x), because

|qn(x)− f(x)| =
∣∣∣ ∫ Kn(t)[fs(x; t)− f(x)] dt

∣∣∣ ≤ ω(an) → 0

as n →∞, and the proposition follows.

P r o o f o f (6)⇔(9) f o r lim inf an/an−1 > 0. Take a piecewise linear
function α such that α(1/n) = an and α′(t) = n(n − 1)(an−1 − an) for
t ∈ (1/(n − 1), 1/n). By monotonicity of α and ω, changing variables we
obtain

an−1∫
an

ω(t)
t

dt = c

1/(n−1)∫
1/n

α′(s)
α(s)

ω(α(s)) ds

≤
1/(n−1)∫
1/n

α′(s)
an−1

ω(an−1) ds = bnω(an−1)

≤
1/(n−1)∫
1/n

α′(s)
α(s)

ω

(
α(s)

c

)
ds =

an−1/c∫
an/c

ω(t)
t

dt

for all sufficiently large n (say n > m), and a sufficiently small c such that
can−1 ≤ an for every n > m. Consequently,

c
am∫
0

ω(t)
t

dt ≤
∑
n>m

bnω(an−1) ≤
am/c∫
0

ω(t)
t

dt,

which is our assertion.

P r o o f o f P r o p o s i t i o n 4. Write

f̂n(x)− rn(x) = gn(x) +
hn(x)

pn
,
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where

gn(x) =
1
kn

kn∑
i=1

K0(x−Xi)− q0(x),

and

(17) hn(x) =
1
kn

kn∑
i=1

[Kn(x−Xi)−Kn−1(x−Xi)]− qn(x) + qn−1(x).

By (14), E|gn(x)| = I1 < ∞, n ≥ 1, and E|gN (x)| < ∞. Since

E|f̂N (x)− rN (x)| ≥ E
|hN (x)|

pN
− E|gN (x)|,

we need to show that

E
|hN (x)|

pN
=

∞∑
n=1

|hn(x)| = ∞.

To this end, we apply the following lower bound for the first central
absolute moment of the sample mean.

Lemma 1. Let Z1, . . . , Zk be independent identically distributed random
variables such that EZ1 = 0 and P (|Z1 − Z2| ≥ a) ≥ p. If kp ≥ c > 0, then

E

∣∣∣∣1k
k∑

i=1

Zi

∣∣∣∣ ≥ ac

4(4 + c)

√
p

k
.

This is a modification of an inequality presented by Devroye and Győrfi
[5, Chapter 5, Lemma 27]. We shall not prove it here, because actually it is
an essential part of the proof in [5].

For the rectangular kernel K = 1
2I[−1,1], we introduce a sequence of

symmetric random variables

Sn(x) = Kn(x−X1)−Kn−1(x−X1)−Kn(x−X2) + Kn−1(x−X2),

n ≥ 1, whose probabilities of positive values are

P

(
Sn(x) =

1
2an

)
= Pn(x)[Pn−1(x)− Pn(x)],

P

(
Sn(x) =

1
2an−1

)
= [Pn−1(x)− Pn(x)][1− Pn−1(x)],

P

(
Sn(x) =

1
2an

− 1
2an−1

)
= Pn(x)[1− Pn−1(x)].

If the last two values coincide, we obviously sum up the respective proba-
bilities.

Assume first that lim supn→∞ cn < ∞, and take m ≥ 1 such that
ω(am) < f(x), and cn ≤ C for some C > 0 and all n > m.
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If an−1 ≤ 2an, then

P

(
|Sn(x)| ≥ 1

2an−1

)
= P

(
|Sn(x)| = 1

2an−1
or

1
2an

)
≥ 2[Pn−1(x)− Pn(x)][1− Pn−1(x) + Pn(x)]
≥ 4[f(x)− ω(am)][1− Pm(x)](an−1 − an)
= 4B(an−1 − an) (say),

and

4Bkn(an−1 − an) =
4B

c2
n

≥ 4B

C2
.

By Lemma 1,

(18) E|hn(x)| ≥ B3/2

4(B + C2)
· bn√

(an−1 − an)kn

=
B3/2

4(B + C2)
bncn.

Likewise, for an−1 > 2an we have

P

(
|Sn(x)| ≥ 1

2an
− 1

2an−1

)
= P

(
|Sn(x)| = 1

2an
− 1

2an−1
or

1
2an

)
= 2Pn(x)[1− Pn(x)] ≥ 4Ban,

and

4Bknan =
4B

c2
n

≥ 4B

C2
.

Applying Lemma 1 again, we obtain

E|hn(x)| ≥ B3/2

4(B + C2)
· bn√

ankn

=
B3/2

4(B + C2)
bncn.

This, together with (18), yields
∞∑

n=1

E|hn(x)| ≥ B3/2

4(B + C2)

∑
n>m

bncn = ∞,

which is the desired assertion.
Suppose now that lim infn→∞ cn > 0, i.e., there exists a positive c such

that cn ≥ c for all n > m. Then we take k′n ≥ kn, n > m, such that
c

2
≤ c′n =

1√
min{an−1 − an, an}k′n

≤ c,

and define h′n(x) by writing k′n instead of kn in (17). Applying the Jensen
inequality for means and the arguments of the proof for the previous case,
with kn replaced by k′n, we conclude that

E|hn(x)| ≥ E|h′n(x)| ≥ B3/2

4(B + c2)
bnc′n ≥

B3/2c

8(B + c2)
bn.
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Finally, by (8),
∞∑

n=1

|hn(x)| ≥ B3/2c

8(B + c2)

∑
n>m

bn = ∞,

and the proof of Proposition 4 is complete.

Acknowledgements. The author thanks the referee for drawing his
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