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ON SOLVING LINEAR ALGEBRAIC EQUATIONS
WITH AN ILL-CONDITIONED MATRIX

1. Introduction. Consider a system of N linear algebraic equations
(1.1) Az =b

with an invertible N x N real matrix A. The matrix A has spectral decom-
position

(1.2) A= ZP:AP—i—N

j=1
where:
e P, j=1,...,p, are the spectral projectors,

e N;, j=1,...,p, are the spectral nilpotents,
e \;, j=1,...,p, are the eigenvalues of A.

The following conditions hold:
® PoP = PP, = 63 Py,
° PkNl = NlPk = 5klNk for k‘,l = 1, BRI O
o if 55, = dim(Pk.RN) then s; + ...+ s, = N and N?j =0;
° Z = Iy, where Iy is the N x N identity matrlx
It is easy to see that

Sj*l

13) =y Y )
s=1

j=1" ‘
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hence, for the solution x of (1.1) we get

p sj—1
- 1 (=1 \s
(1.4) sz%zE-EP%+§ Asmﬁ.
j:l s=1 J

We can read the formula (1.4) as follows: if we consider some class
of matrices A, close to symmetric matrices, for example a class for which
INI/IN) < ClPll /55, 5 = 1,...,p; s = 1,...,s;, with some not very
large constant C' independent of s and j, then the part of the matrix A
corresponding to the eigenvalues of the smallest moduli has the strongest
influence on the solution x. If A is ill-conditioned, the influence of large
eigenvalues may be negligible, while they will disturb any process of numer-
ical solution of (1.1). In such a case, (approximate) decomposition of A into
parts corresponding to eigenvalues of small and large moduli seems to be
useful. We can look at such an operation as a kind of preconditioning. But,
in general, preconditioning is not the only purpose of decomposing A. An-
other purpose is to enable parallel computing. Clearly, such a decomposition
is closely related to (approximate) invariant subspaces of A, or equivalently,
to some matrices (approximately) commuting with A.

2. Generalities. Put X = RY and Y = span{qy,...,q,} C X, where

qi,---,qr are linearly independent elements of X such that » < N. Denote
by Q@ =[q1 ... ¢r] the matrix with columns ¢, ..., ¢.; it is an N X r matrix
of rank r.

(2.1) PROPOSITION. For any N x N matriz U, Y = UX iff there exist
linearly independent vectors f1,. .., fr in X = RY such that U = QF, where

i
F=:
£
Moreover, U? = U (U is a projector) iff FQ = I,.. m

Let U be a matrix satisfying the conditions of (2.1). Then U = QF, and
the r x r matrices Q7' Q and FFT are both invertible.

If U is nearly a projector, then F'Q should be at least invertible.

We are interested in matrices (approximately) commuting with A. As-
sume first that U exactly commutes with A:

UA—- AU =0,

(2.2) QFA— AQF =0
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and
(2.3) AQ=QC;, Q=Iq ... gl
with the 7 x r matrix C; = FAFT(FFT)~!; in other words, YV =
span{qi,...,q,} is an invariant subspace of A. From (2.2) we immediately
deduce
(2.4) FA=CyF
with the 7 x 7 matrix Cy = (QTQ)*QT AQ. From (2.3) we get C; = Cs.
Condition (2.4) means that Z = span{fy,..., f-} is an invariant subspace
of AT,

If FQ is invertible, then (2.2) implies
(2.5) AQ = QCs

with C3 = FAQ(FQ)™!, and now from (2.4) it follows that C5 = Cy = C.
Finally, if F'Q is invertible, then by (2.2) we obtain

(2.6) FA=CyF

with Cy = (FQ) 'FAQ. Formula (2.5) together with the previous condi-
tions implies

(2.7) Ci=0C=03=0,=0C.
Denote by o(B) the spectrum of a matrix B. It is easy to see that
(2.8) o(C;) Cco(A), i=1,2,34.

In fact, if (A — Cy)z = 0 for = # 0, then Q(A — C1)x = 0 and hence,
applying (2.2), we get (QA — AQ)x = 0 or (A — A)Qz = 0 with Qx # 0,
because @ = [¢1 ... ¢;] and q1,...,q, are linearly independent. In view of
(2.8) if A is invertible, then so is C = C = Cy = C3 = C4. If U commutes
with A, then C' contains entire information concerning A relating to the
invariant subspace Y = UX. This fact is expressed more precisely by the
following:

(2.9) PROPOSITION. If U commutes with A, then

p

C= > (MPF+NP),
j=1,UP;#0
where
(210)  PC=(Q"Q)'Q"PQ = FR,FT(FFT)™",
(210) NS =(QTQ)'Q"N;Q=FN;F'(FF")™", j=1,....p,
are the spectral projectors and nilpotents of C.

Proof. Observe first that formulae (2.3)—(2.8) follow from commuta-
tivity of U and A. Since U commutes with (A — A)~! (if (A — A)~! exists),
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the condition similar to (2.7) holds for P; = - [.(A — A)~'d\. Here I'

27
is a Jordan curve containing only one eigenvalue ); in its interior domain,

and such that o(A) NI is empty. We then have (2.10). By an easy trans-
formation we prove that U commutes with N; as well, and (2.10") follows.
Now

PEPE =(QTQ)'QTR.QFPFT(FFT)™!
= QTQ) ' QTUPRFT(FFT) ' =(Q"TQ) ' QTUs, P, FT(FFT)™!
=6 (QTQ) 'QTQFP, FT(FFT) ™ =6,PF, k,il=1,...,p,

i.e. PkC are spectral projectors. Similarly we can prove that N]C are the
spectral nilpotents of C'. This completes the proof. m

Now assume UA — AU = R and R # 0. Then neither (2.7) nor (2.9) is
true. The only thing we may expect is that (2.7) and (2.9) hold approxi-
mately if R is small enough (and (FQ)~! exists). More precisely, if Uy, Qo,
Fy commute with A, (FpQo) ! exists and U = (Qp + AQ)(Fy + AF), then
(2.7) and (2.9) hold asymptotically for U as |AQ|| — 0 and ||[AF|| — 0.

Moreover, if (FpQo)~! exists and ||AQ|| and ||AF|| are small enough,
then Cj, j = 1,2,3,4, are invertible. Since FFT, QTQ, and FQ are invert-
ible, it follows that FAFT, QT AQ, and FAQ are invertible as well.

It may be of some interest to know the inverses of QT AQ, FAFT and
FAQ. It is easy to verify that, under the above assumptions,

(2.11) (QTAQ) ' = FA'FT(QTQFF") " (I — A))™!
= FAT'FT(QTQFFT)™! + O(R)
with A; = QTRATIFT(QTQFFT)~! = O(R), and
(2.12) (FAFT)™ = (I + A9) 1 (QTQFFT)'QTA™'Q
= (QTQFFT)™'QTA™'Q + O(R)
with Ay = (QTQFFT)"1QTA-'RFT = O(R); finally, if (FQ)™! exists,
then
(2.13) (FAQ)™' = (FAT'Q)(FQ)*(I-43)"' = FAT'Q(FQ) ' +O(R)

with Az = FRATIQ(FQ)~2 = O(R).
Let now og be a spectral set, i.e. oy C o(A). Consider U of the following
form:

(2.14) U= > Pi+e,
)\jGO'Q

where P; are spectral projectors of A and ¢ is a small matrix. We have
R =UA—- AU = A — Ae = O(e). We are interested in the asymptotic
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behaviour of (QTAQ)™!, (FAFT)™!, and (FAQ)™! as ¢ — 0. Notice that:
F=@Q"Q)'Q"U or

F=(FQ) 'FU if (QF)™! exists, and
Q=UFT(FF')"' or

Q=UQFQ)™' if (FQ)™! exists.

Let us consider (QT AQ)~! only. The discussion of the remaining inverses
is similar. From (2.11) and (2.15) we get

(QTAQ)™ ' = FAT'FT(QTQFF")™' + O(R)
= (@Q"Q)QTUATIFN(QTQFFT) T + O(R).
From (1.2) and (1.3) it follows that

vATt = (Y p+e) zp:%[Pj +Srl (—;)SN;]

(2.15)

Hence

(216)  (QTAQ)! =
s;—1
_ 1 .
Q) 'Q" > A—[Pﬁr ;

)\jEO'() J

( ;;) N;] FT(QTQFFT)™ + 0O(e),
i.e. the principal component of (QT AQ)~! depends on the spectral elements
of A related to 0. Observe also that, in general, (2.16) is not the spectral
decomposition of (QT AQ)~!.

The matrices QT AQ and FAQ will play a very important role in the
method presented below. FAFT plays a similar role to QT AQ, but for
equations with the transposed matrix AT

3. Approximate decomposition of (1.1). Consider now a matrix
U = QF, where Q = [q1 ... g is a matrix of rank r, » < N, such that
Y = span{q,...,q.} is a sufficiently good approximation of some invariant
subspace of A, related to a spectral set og. We are going to decompose the
system (1.1) into two parts corresponding to o and to o(A)\op. Multiplying
(1.1) from the left by U, we get a new system:

(3.1) UAz = Ub.
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Since UA = AU + R (with R small), we have AUz + Rz = Ub, or
(3.2) AQy + Rx = Ub,

where y = Fx.

Observe that, in general, (3.1) has many solutions (x is one of them),
while (3.2), regarded as a system with unknown y and x given, has exactly
one solution y = F'z. This follows from the fact that the N x r matrix AQ
has maximal possible rank r. If we multiply the solution y of (3.2) by @ we
get

Qy=QFx=Uz.
This is exactly the component of the solution x = A~1b of (1.1) related to
U (or, in other words, to the spectral set oo C o(A)).

Assume QT AQ to be invertible. Multiplying now (3.2) from the left by
QT we obtain a system equivalent to (3.2):

(3.3) QTAQy + QT Rz = QT UD.
Another possibility is to multiply (3.2) from the left by F:
(3.4) FAQy+ FRx = FUD.

If FAQ is invertible (see Section 2) then (3.4) and (3.2) are equivalent. Both
systems (3.3) and (3.4) are of dimension r X r and both satisfy the condition

(3.5) Uz = Qy.

Algorithms for computing the matrices QT AQ, F AQ and the vectors QT Ub,
FUb will be proposed in Section 4.

We may stop here if we only want to have an approzimate vector y (or
Uzx), under the assumption that R is sufficiently small. In order to compute
y we can solve one of the systems

(3.6) QTAQu=Q*Ub
or
(3.7) FAQw = FUb,

provided that the corresponding r x r matrix Q7T AQ or FAQ is invertible
(see Section 2).

To estimate the errors ||[v — y||/|ly]| and [Jw — y||/||y|| we can apply the
well known inequality given in

(3.8) LEMMA. Let B be an invertible matriz and consider two systems of
linear algebraic equations

Bu=d and (B+E)(u+A)=d+0.
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Then
el IEN
HAH\<:COHd(B)<nﬂ| i)
- _ LEL
[l 1 — cond(B) 0
provided that cond(B)||E||/||B|| < 1, where cond(B) = || B| ||B~!||.

Proof. By simple verification. m
Applying now (3.8) to (3.6) and (3.7), we get

lv = yll/llyll < cond(QTAQ)IQ™ Ra||/|Q"Ubll = O(R),

B9 Z g/l < cond(FAQ)|FRz]/ | FUB| = O(F).

Observe that if A is ill-conditioned and oy C o(A) is properly chosen,
then we should expect that

cond(QT AQ) < cond(A), cond(FAQ) < cond(A).

Moreover, sometimes it is possible to get a full decomposition of (1.1)
corresponding to the decomposition of the spectrum

o(A) =09 U (c(A)\oo).
Assume that, as above, the matrix U = QF is known; then we can also
use the matrix I —U. If U is a projector of rank r, then I — U is a projector

of rank N — 7. This is the most interesting situation. In general, if U is not
a projector, then I — U is a matrix of rank s, where N —r < s < N. Let

(3.10) I-U=SaG,

where S is an N x s matrix of rank s (N —r < s < N) and G is an s x N
matrix of rank s. If U is a projector then s = N — r. Observe that

(3.11) (I-U)A—A(I-U)=—R,

hence multiplying now (1.1) from the left by U and by I — U, and taking
into account (3.10) and (3.11), we get

AQy+ Rx=Ub and ASz— Rx=(I-U)b,

where y = Fz and z = Gz with z = A7'. Since z = Uz + (I — U)z =
Qy + Sz, we can write

AQy + RQy + RSz = Ub,
ASz — RSz — RQy = (I —U)b,

and, finally, multiplying (3.12) by QT and ST, we obtain

(3.13) QTAQy + QTRQy + QT RSz = QT UD,
‘ STASz — STRS= — STRQy = ST(I — U)b.

(3.12)



506 K. Moszynski

Another possibility is to multiply (3.12) by F' and G to get
(314 FAQy + FRQy + FRSz = FUb,
' GASz — GRSz — GRQy = G(I —U)b.
Both systems (3.13) and (3.14) are of dimension s+ r, N < s+ r. We shall

prove:

(3.15) THEOREM. (a) If QT AQ and STAS are invertible and ||R|| is
small enough, then (3.13) and (1.1) are equivalent.

(b) If FAQ and GAS are invertible and ||R| is small enough, then
(3.14) and (1.1) are equivalent.

Proof. We shall prove (a). The proof of (b) is analogous. We have to
show that:

(i) [Y] is a solution of (3.13), where y = Fz, z = Gz, and z = A~ 'b.
(ii) (3.13) has a unique solution.
To verify (i), insert y and z into the first equation of (3.13) to get
(QTAQF + QTRQF + QTRSG)x — QTUb
= Q"{[AU + RU + R(I — U)]x — Ub}
= QT {[AU + R)z — Ub} = QTU[Az — b] = 0.
Similar calculations show that the second equation of (3.13) is also satisfied.

(i) will be proved if we show that the matrix of (3.13) is invertible. This
matrix has the following block form:

1 |@TAQEQTRQ QTRS
' -STRQ STAS —STRS

_ [QTAQUI +(QTAQ)'QTRQ) Q" RS
N —STRQ STAS(I — (STAS)"LSTRS) |-
Observe now that, in general, the matrix
|:A11 A12]
A1 Az

is invertible if A7}' and Ay, exist and ||A;2| and ||As;| are small enough.
In fact, we have to find a matrix

Bi1 B
Byi B
such that
A11B11 + A19Boy =1, A;1Bio+ A12Bos =0,
(3.17) 11B11 12821 11B12 12822

A21Bi1 + AyaBoy =0, A1 Big+ AyoBay = 1.
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The first block column of (3.17) yields
(I - A1_11A12A2271A21)Bll == Al_ll and Bgl == —A2_21A21B11.

If ||Ai2]] and ||A21]| are small enough, the matrix in brackets in the first
formula is invertible; hence Bi; and Bs, are well defined. The same argu-
ment applies to the second block column of (3.17). In particular, for suitable
A;j,1,7 = 1,2, we obtain (a). m

Observe that the matrix R can be expressed by means of A,Q, S, F,G.
To make use of the decomposition (3.13) or (3.14) of the system (1.1) one
can apply the following iterative procedure: we start with an arbitrary pair
of vectors yg € R” and zp € R®; then the consecutive vectors yx+1 and zp41
are computed from the system of algebraic equations

3 18) QTAka+1 + QTRka + QTRSZk = QTUb7
' ST ASz 11 — STRS 2z — STRQus = ST(I — U)b

for (3.13)), or

319) {FAka+1+FRka+FRSZk = FUb,

(
(
( GASzp+1 — GRSz, — GRQyr = G(I —U)b

(for (3.14)).

Observe that each iteration step using (3.18) or (3.19) consists in solving
two independent systems of dimension r and s with matrices Q7 AQ and
STAS, or FAQ and GAS respectively. If the decomposition is done properly,
then the conditioning of these systems should be much better than that of
the original system (1.1). Moreover, the two systems admit parallel solution.

Now let us transform slightly the systems (3.18) and (3.19) to obtain
new systems, more convenient for computations. If we express R in terms
of @, F, and S, G, then we easily obtain a new form of (3.18):

(3.20 e = e
’ STASU)k+1 = ST(I - U)Tku
where
T = Qur + Szk,  Vkt+1 = Ykt1 — Fay,
Ty = b— A:Ek, W41 = Rk+1 — Gl‘k
An analogous transformation applied to (3.19) gives
FAQui 1 = FUry,
GASZU]H_l = G(I — U)T‘k,
with the same definitions of xy, 7k, V11, and wgs1. In the next section we
discuss the algorithms of computation of the entries in (3.20) and (3.21).
We also present possible simplifications of (3.20) and (3.21). The following

theorem makes use of equations (3.13) or (3.14), which are more satisfactory
for theoretical investigations than (3.20) and (3.21) respectively.

(3.21)
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(3.22) THEOREM. (a) If QT AQ and ST AS are invertible, and
| Rl ||
cond(QTAQ) ——— Lk |
(@ A9 maraq] [STAS]

is small enough, then for any yo and zo the process (3.20) converges to the
solution x = A=1b of (1.1).
(b) If FAQ and GAS are invertible, and

IR IR
IFAQ |GAS]|
is small enough, then for any yo and zo the process (3.21) converges to the
solution x = A=1b of (1.1).

Proof. We prove (a) only. The proof of (b) is analogous. Observe that
the iterative process under consideration is of the general form

A 0] uwea]  [Aa C]fwe] _ [t
0 B |2k D Ap| |z bz ]’
while the system of equations we are going to solve (see (3.15)) is
A+rA, C© yl o
D B+ Ap 2 ] N ba |’
with some matrices g, é, Aa, A, C, D, and vectors by and bs.
Let ey, =y —yi and e, = z — 2;; then

Cypir | — _ 1%1AA gilc Cyr | — T €y .
ezk+1 B_lD B_IAB €z €2k
The norm of the iteration matrix 7" can be easily estimated in the stan-
dard way:

+ cond (ST AS)

cond(FAQ) + cond(GAS)

TN < IA™ Aull + |ATC) + | BT DI| + |B~ Ap|.

Since in our case A = QT AQ, B = STAS, Ay = QTRQ, Ag = —STRS,
C = QTRS, D = —STRQ, we immediately get a sufficient condition for
convergence of the process:

Rl T Rl

———— +cond(S"AS)——+—+| <1
[oraq) TS A 5Tag]

with some constant K depending on @@ and S. This completes the proof

of (a). m

IT|| < K | cond(QT AQ)

4. Algorithms. In this section we propose two algorithms giving entries
for the iterative processes (3.20) and (3.21). As before let U be a matrix
related to some spectral set oy C o(A), approrimately commuting with A.
Certain suggestions on construction of such a matrix U are discussed in
Section 5.
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Gram—Schmidt Process. The Gram—Schmidt Process is suitable for equa-
tion (3.20). We consider two applications of this process.

A. We try to express the matrix U (of rank 7 < N) in the form U = QF,
where @Q is an N X r matrix with orthonormal columns:

The splitting U = QF is exactly the Gram—Schmidt Process, applied to the
consecutive columns of U. In this case, F' is an upper triangular matrix of
the coefficients of the Gram—Schmidt Process. The same algorithm should
be applied to I —U: I — U = SG and STS = I,. The equations obtained
are a little simpler than (3.20), namely,

(4 2) QTAka+1 = Fry,
' STASZU]C_H = GT‘]C,

with o5, 7%, 7kt 1, and wy 1 as defined after (3.20) (because QTU = QTQF
=F,and ST(I -U) = STSG = Q).

B. We modify the Gram—Schmidt Process, applied also to the consecu-
tive columns of U = QF. Now instead of the orthogonality assumption (4.2),
we impose the condition

QTAQ =1I..
The matrix F is again upper triangular. As before, the same algorithm
should be applied to I —U: I — U = SG and STAS = I,. If we succeed

in this operation (this is always possible when A is positive definite), the
iterative process (3.20) will be explicit:

(4.3) Yk+1 = Fop + QT Ury,

' Zk4+1 = Gz, + ST(I — U)rk,
with x, = Quyr + Sz, 1. = b — Axy or, equivalently,
(4.4) Tpp1 = 2 + [QQTU + SST(I — U)ry,
with x; — 2 as k — oo under the assumptions of Theorem (3.22).

Lanczos Process. To define the entries for the iterative process (3.21)

we can apply the Lanczos Process to the matrix UA: we find an N x r
matrix () with orthonormal columns and an r x r lower Hessenberg matrix

T (quasi-triangular, i.e. triangular with one additional diagonal, nearest to
the main diagonal) such that

UAQ = QTTv QTQ = 1I,.
In such a way we obtain an orthonormal basis of the space

Y = URY =span{qi,...,q},
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where @ = [¢1 ... ¢]. Hence U = QF for some matrix F. Moreover,
QFAQ = QT" and the orthogonality condition Q7 Q = I,. gives
FAQ=1T".

In other words, the Lanczos Process defines directly the matrices @) and
FAQ = T7; then FAQ is an upper Hessenberg matrix. If A is symmetric,
then T7 = FAQ is symmetric tridiagonal. The analogous procedure applied
to the matrix (I — U)A = SGA gives
(I -U)AS = Sz"

with a lower Hessenberg matrix Z, and S satisfying STS = I,. Hence
GAS = Z7 is also an upper Hessenberg matrix. In this way we have deter-
mined the principal entries for the process (3.21).

Now we only need to transform the right hand side of (3.21). Observe
that F = QTQF = QTU and G = STSG = ST(I — U). Hence (3.21)
becomes

T v = QTU?r
4' +1 k7
( 5) { ZTZU]C_H = ST(I — U)z’r’k.
Both subsystems of (4.5) are Hessenberg (tridiagonal if A is symmetric).

There is another known version of the Lanczos Process wich results in
tridiagonal 1" and Z for any matrix A. However, this version is considered
to be less stable.

We are looking for IV x r matrices ()1 and Q)5 such that

(16 {Yecho 8
AU Q2 = Q215 ,
and
(4.7) Q3Q1=Q1Q2=1I,.
Since U = Q1 F, (4.6) and (4.7) imply
QIUAQ, =T! =T, = FAQ;.
Since both 77 and 75 are lower Hessenberg matrices, it follows that
UAQ, = Q17
(4-8) {ATUQ%QQCilQQT,
with Q¥Q1 = QTQs = I, and T = QT ATUTQ, tridiagonal. From the
condition U = Q1 F we get F = QI'U.

Applying the similar procedure to I — U with Sy, S5, and Z in place of
@1, Q2, and T, we obtain the tridiagonal version of (3.21):

TT’Uk+1 = Q:{Uzrk,
ZTwyyq = ST(I = U)*ry,

with zg, Y&, 2k, Uk, wy defined as before.

(4.9)
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5. The matrix U. Certainly there are many possibilities of construct-
ing a suitable matrix U. Here we give some remarks on applications of
polynomials of the matrix A. It seems that nice results can be obtained in
the case of A diagonalizable and with real spectrum o(A), using Bernstein-
like polynomials approximating step functions (see [3]).

Let W,, be a polynomial of degree n. Then, for A = E?Zl()\ij + N;),
we have

n+1 (s)()\‘)
(5.1) W, (A) = Z [PjWn(Aj) - Z %Nj} .

n
s
Jj=1

Let 2 C R be an interval containing o(A); let £2; be a subset of {2 and
X, the characteristic function of £2;. Assume that Wr(bk)(z) — Xy;l)(z) as
n — oo at any point z € R of continuity of x, , and that o(A)No N2 = 0.
Then W, (A;) — 1asn — oo for A\; € o(A)N 2y, Wy(A;) — 0as n — oo for
A; € o(A) N (2\12y), while WP ();) — 0 as n — oo for A; € o(A), 5 > 0.
In other words, U,, = W,,(A4) — ijefh Pj as n — oo.

As an example, consider the following sequence of Bernstein-like polyno-
mials By, (z1,22,\) (see also [3]), which can be applied when A has real
spectrum in [—1,1]. The function B, (x1,x2,\) of three real variables:
r1, To, —1 < 1 < x5 < 1, and A, is a polynomial of degree n with respect

to A:
B, (x1,29,\) = 3 (;z) <1J2M>j<1;)\>nj

jn(xl)gjgjn(r2)

where j,(z) = in(1+2), |z| < 1.
The graph of Bs3;(—0.5,0.5,\) is shown in Figure 1.

0.5

1

Fig. 1. The graph of B31(—0.5,0.5,\)
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Define U = By, (1,22, A) with fixed 21, zo and n. This matrix corre-
sponds to the spectral set o9 = [x1,22] N o(A) and approzimately cuts off
the part of the spectrum o(A) contained in [—1, 2] U [z2,1].

A good method to compute values of the polynomial B,,(z1,x2,A) is to
apply the so-called Newton formula:

Bn (1,9, A) = by (2) + 07 (2)(A = A1) + 03 (2)(A = A)(A = A2)
+o (@) A = A1) (A=A
The coefficients b (x) are divided differences of B, (z,-). The suitable choice
of the knots A1,...,\, was discussed for example in [2] and [3].
Below we give tables of Chebyshev knots and coefficients b?l, 7 =0,1,

2,...,31, for B3;(—0.5,0.5,\). In this case, only 15 (even) coefficients do
not vanish.

Chebyshev knots for n = 31 The coefficients bg?l of B31(—0.5,0.5,A)

A = .998795456205172 bl = 0.0

A3 = .049067674327418 b3l = —1.0

A5 = .740951125354959 b3t = 1.667

A7 = .671558954847018 bt = — 0.5881
No = .941544065183021 bl = —2.2957
A1 = .336889853392220 b3y = 11.4375
A3 = .903989293123443 b3t = — 4.3486
A15 = .427555093430282 b3 = — 34.0687
A7 = .989176509964781 b3t = 29.9361
Mg = .148730474455362 bl = 33.4487
Aa1 = .803207531480645 b3s = — 36.0957
A23 = .595609304492433 b3y = —18.8784

A5 = .970031253194544

b3 = 20.4324

Aoy = .242980179903264 b3t =9.2076
Aag = .857728610000272 b3t = 1.1829
A31 = .514102744193222 b33 =0.3135
* ok The b?l for j odd all vanish
Agj = — A2j41

6. Final remarks. The crucial point of the method discussed above
is the decomposition U = QF and I — U = GS, when U is given. All
processes presented here generate a kind of orthogonal basis of the space
Y = URY (the columns of the matrix ). When dealing with the imple-
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mentation of the numerical process of splitting U = QF, it is important to
incorporate some criteria in this implementation. These criteria should en-
able us to decide which elements of the basis under construction are nearly
linearly dependent on those already accepted. Such elements have to be re-
jected. Only after accepting or rejecting consecutive elements of the basis,
the matrix U is really defined by means of its factors Q and F. At this
point a non-polynomial intervention occurs. It seems that both processes of
orthogonalization (Gram-Schmidt and Lanczos) are suitable to this end.

Let us remark at the end that the choice of U with U? = U (a projector)
is favorable. This condition implies that s = N — r; hence the decom-
posed systems (3.20) and (3.21) are both of dimension N. Possibilities of
construction of projectors U will be discussed elsewhere.
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