APPLICATIONES MATHEMATICAE
23,1 (1995), pp. 13-23

W. SONG (Harbin)

THE SOLUTION SET OF A DIFFERENTIAL INCLUSION
ON A CLOSED SET OF A BANACH SPACE

Abstract. We consider differential inclusions with state constraints in a
Banach space and study the properties of their solution sets. We prove a
relaxation theorem and we apply it to prove the well-posedness of an optimal
control problem.

1. Introduction. It is well known that the relaxation theorem is very
useful in optimal control problems. For a differential inclusion with Lipschitz
right hand side without state constraints, several papers [2, 5, 6, 9-11] yield
results on the relaxation theorem and some other properties of the solution
sets. In [7], the relaxation theorem for a semilinear evolution equation with
state constraints was proved. In this paper, we consider the same problem
for the differential inclusion system

z(t) € F(t,z(t)) ae.t,
z(0) =29 and =z(t)e K, 0<t<T.

Here K C X is a closet subset of a Banach space X, and F : [0, T] x K — 2%
is a multifunction. Under weak conditions, we obtain results similar to [7].
We note that in our case, we require at each step a projection on the set K,
since F' is not defined outside K, and that this projection is not continuous.
Moreover, in general there is no extension F of F to an open neighbourhood
of K, so we cannot obtain our results from known results. Let us also
mention that the viability problems for differential inclusions were studied
in [1, 8] and well-posedness for differential inclusions on closed subsets of
R™ was discussed in [4].

2. Preliminaries. Let I = [0,7] C R' and u be Lebesgue measure;
let X be a Banach space and K be a closed subset of X. For x € K, let
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dig(xz) = inf{|lx —y|| | y € K} be the distance from z to K. Also let
mx(z) ={y € K | ||z —y| = dx(x)} be the metric projection of z onto K
and let
Tk(z)={ve K| lil}fbnigf(l/h)d;((x + hv) = 0}

be the contingent cone to K at x. For A,B C X denote by d(A, B) the
Hausdorff distance from A to B.

A multifunction G : I — 2% is called measurable if there exists a se-
quence {g,} of measurable selections such that G(t) C cl{g,(t) | n > 0}.

We observe that when X is separable and G has closed images this definition
is the same as the usual one [3].

LEMMA 2.1 ([11]). Assume that F : [0,T] x K — 2% is a multifunction
with closed images such that

(a) for any x € K, F(-,x) is measurable on I;
(b) for any t € I, F(t,-) is continuous on K.

Then for any measurable function xz(-), t — F(t,z(t)) is measurable on I.

LEMMA 2.2 ([11]). Let G : I — 2% be a measurable multifunction with
closed images and u(-) : I — X a measurable function. Then for any
measurable function r(t) > 0, there exists a measurable selection g of G
such that for almost all t € I,

lg(t) = u(®)|| < d(u(t),G(t)) +r(t).
LEMMA 2.3 ([11]). If G : I — 2% is an integrable multifunction then, for
any rg € X,

Sc(z0) = Sea (o),
where Sg(xo) denotes the solution set of the differential inclusion @(t) €
G(t) a.e. t €, x(0) = xg.

3. Main results. Consider the differential inclusion
P) z(t) € F(t,z(t)) ae. tel,
z(0)=¢ and z(t)e K, tel,

where F : [0,T] x K — 2% is a multifunction with closed images and K C X
is a closed subset of X. We denote by Sg(§) the solution set of (P) and by
Szsr (&) the solution set of the relaxation differential inclusion

) x(t) € coF(t,x(t)) ae tel,

z(0)=¢ and z(t) € K, tel.
We assume that F : [0,7] x K — 2% satisfies the following hypotheses:
(Hy) t — F(t,x) is measurable for all z € K;;
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(Hg) there exists [(-) € L*(I,R) such that for all z,y € X,
d(F(t,z), F(t,y)) < 1(t)]lx —yll;

(H3) for all (t,z) € I x K, F(t,z) C Tk(x); K is prorimal, i.e., for any
re X, mg(x)#0;

(Hy) for any continuous function z(-) : I — K, t € F(t,xz(t)) is inte-
grable.

THEOREM 3.1. Let F : [0, T]x K — 2% be a multifunction with closed im-

ages satisfying (Hy)—(Hys). Let M = exp fo t)dt) and let y(-) be an abso-
lutely continuous function such that y(0)=§& € K. Let q(t)=esssup{d(y(t),
F(t, z(t)) | 2(t) is a measurable selection of w (y ( ))} (if y(t) € K for all

t €I, we let q(t) = d(y(t), F(t,y(t)))) and let fo t)dt < e. Then there
exists n > 0 such that for all £ € (§o +nB) N K, there ea:zsts a solution x(-)
of (P) such that

lz(-) = y()lew,x) < 12MPe.

Proof Let 1 be a positive number such that n + fo t)dt < e; also
let m(t fo s)ds. For any & € (§ + nB) N K, we deﬁne xo(t, &) =

§+ fo s)ds. It is easy to see that [|zo(-,&) — y(-)|| < |€ — &oll < n. Let
2o(t) € WK(xo(t €)) be a measurable selection of ¢t — mx (z(t,&)) and z(t)
be a measurable selection of 7 (y(t)). Then

d(do(t,€), F(t, 20(t))) = d(y(t), F'(t, z0()))
< d(y(t), 't (1)) + 1)[|2(2) — 20 (@)

< q(t) +1B)]|2(t) — y@)I + Uy (t) — 2o(t, E))]
+ 1) |2o(t,€)) — 20 ()|
< q(t) +Ut)n + Ut)dk (zo(t,€)) + L(t)dk (y(1))-
By Proposition 1 in [2, p. 202], we have

jt(dK( () < d(y(®), Tre (wxc (y(1)))) < d(y(t), T (2(1)))

< d(y(t), F(t, 2(1)) < q(t)

and, since dg (y(0)) = 0, we obtain

die(y(t) < [ q(s)ds.
0
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Similarly, we get

o
o
o

From Gronwall’s inequality and by interchanging the order of integration,
we obtain

and

d(o(t,€), F'(t, z0(t))) < q(t) +U(t) exp(m(t))n

+ 2I(t) exp(m fexp —m(s))q(s) ds.
0

Set do(t) = esssup{d(zo(t,§), F(t,2(t))) | 2(t) is a measurable selection
of mx (zo(t,€))}. Then

t

8o(t) < q(t) + 1(t) exp(m(t))n + 20(t) exp(m(t)) [ exp(—m(s))q(s) ds,
0

dic(wo(t,€)) < [ do(s) ds
0

By Lemma 2.2, we can choose a measurable selection vy (t) of F(t, zo(t))
such that

[01(2) = @0 (t, )| < 2d(0(t,€), F (¢, 20(t))) < 200(t).
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Set x1(t) = & + fo vi(s)ds and let z1(t) be a measurable selection of
i (21(t)). Then

l21(8) = wo(t, &) < [ lor(s) = do(s,€)[[ds <2 [ do(s)ds
0 0

(i1 (2), F(E, 21(1))) = d(vi(t), F (8, 21())) < U(B)]|20(8) — 21 (D)
<U(B)[20(t) = zo(t, )] + 1) |lwo(t, €) — 22 ()]
+1(t )Hzl( ) =z (t)]]

< 3(t f50 )ds + 1(t)dg (z1 (1))

and
f z1(s), F(s,z1(s))) ds
<3 f exp(m(t) — m(s))l(s) f&o(u) duds
0
f (exp(m m(s)) — 1)dp(s) ds,
so that
d(iy (), F(t, 21 (t))) < 31(t) exp(m(t)) [ exp(—m(s))do(s) ds.
0

Set 01(t) = esssup{d(i1(t), F(t,2(t))) | z(t) is a measurable selection of
7wk (z1(t))}. Then

t

01(t) < 3l(t) exp(m(t)) f exp(—m(s))do(s) ds,
0

t)) < [ 61(s)ds
0

We claim that we may define sequences {x,,}, {d,,} of functions with the
following properties:

(i) 0, (t) = esssup{d(&,(t), F(t,2(t))) | z(t) is a measurable selection of
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0
x exp(— ( ))do(s) ds
(i) d (2, (t)) < fo on(s)ds,
(ili) [l () = Zn—1(2)]| S 25n—1(t)-
For n = 1 the above holds. Assume it holds up to 7 and let us show

it holds for ¢ + 1. Let z;(¢) be a measurable selection of mx (x;(t)) and let
v;+1(t) be a measurable selection of F'(t, z;(t)) such that

[viea (8) = @i (0)]] < 2d(i(1), F(L, (1)) < 20:(t).
Set x;11(t) =&+ fot vi+1(s) ds. Then

t

lzis1(t) = 2 ()] < [ Nvia(s) = @i(s)| ds <2 [ 6i(s) ds
0 0

Let z;11(t) be a measurable selection of 7y (x;11(t)). Then
d( i1 (1), F'(t, zig1 (1)) < U@B)[[2:() — ziga (D]
<IDz:(t) — @) + 1) [2:(t) = zig2 (D]
+1( )dK(fI?z+1(t))

< 3l(t fa )ds 4+ 1(t)dg (zi41(t)),

dic (w1 (1) < [ d(dig1(s), F(s, zi11(5))) ds
0
<3 [ exp(m(t) —m(s))i(s) [ i(u)duds
0 0
<3 [ (exp(m(t) — m(s)) — 1)d(s) ds.
0
Thus

d(zi41(t), F(t, zi+1(t))) < 3U(t) exp(m(t)) f exp(—m(s))d;(s) ds.
0
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Therefore, set 0;41(t) = esssup{d(&;+1(t), F(t,2(t))) | 2(t) is a measurable
selection of mx (x;41(t))}. We have

dx (ziy1(t)) §f5i+1(8) ds,

t
0;41(t) < 3l(t) exp(m f (s)ds.

Finally, it follows from (i) that
¢

5i1(t) < 3U(t) exp(m(t)) [ exp(—m(s))3U(s) exp(m(s))

0

X f )G — 1)) exp(—m(u))do(u) du ds

< 3" (t) exp(m f ))"/i!] exp(—m(s))do(s) ds.

Hence, the proof of our claim is complete.
Note that from (iii), we have

() i () = za ()]l
< [ Nansa(t) = (@)l dt <2 [ 6,(t)dt <2 [ 3"1(t) exp(m(t))
0 0 0

t

X f [(m(t) — m(s))" " /(n — 1) exp(—m(s))do(s) ds dt

0
T t
<6[B3m(T)" "/ (n = 1)!] [U(t)exp(m(t)) [ exp(—m(s))do(s)ds dt
< 6[(3m(T))" " /(n = 1)!] [ [exp(m(T) —m(t)) — 1) (t) dt.

0
Thus, {x,(-)} is a Cauchy sequence in C(I X) and so we may assume Z,(+)
converges to z(-) in C(I,X). Since fo t)dt — 0 and dg(z,(t))) <

fo n(s)ds, we obtain x(t) € K for all t € I
To ShOW that z(-) is a solution, we choose a sequence {z,(t)} of measur-
able selections of mx (x,(t)) and observe that

(rx)  d(@n(t), F(82(t))) < d(@a(t), F(E, 2(1)))
H1Ozn(t) = 2a ()] + 1) l2n(t) — z(t)]]
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<0u(®) +10) ([ Suls)ds + [lan(t) = 2()]).
0

Since {i@,(-)} is a Cauchy sequence in L' (I, X), there exists a subsequence
of {&,(t)} which converges to @(t) a.e. t € I. Passing to the limit in (xx),
we find that z(-) is a solution.

From (%), we have

[2n(-) =y ()l
<lzo(-) =yl + lz () = oIl + -+ [l2n () = 202 ()]l

<n+2 [do(t)dt+6 Z_:[(Sm(T))i_l/(i — 1)
0 =1
T
x [ [exp(m(T) —mi(t)) — 1) (t) dt
0
T T
<n+2 [ 6o(t)dt+6Gexp(3m(T)) [ [exp(m(T) — m(t)) — 1) (t) dt

<n+2 [ 0o(t)dt+ 6exp(4m(T))
0

T

T
x [ exp(=m(t))d(t) dt — 6 exp(3m(T)) [ do(t) dt
0 0

< 12MP%e.

THEOREM 3.2. Assume that F : [0,T] x K — 2% is a multifunction with
closed images satisfying (Hy)—(Hy). Then for any z¢ € K,
Sr(x0) = Sesr (o).

Proof. It is enough to show that for any xg € K, Ser(zo) C Sp(xo).
Let y(-) € Swmr(xo) and define G(-) = F(-,y(-)). It is easy to see that
G : I — 2% satisfies the requirement of Lemma 2.3 and so

y(-) € Sesa(xo) C Sa(xo).
For any € > 0, there exists z € Sg(zg), i.e., 2(t) € F(t,y(t)), 2(0) = zo,
such that
12(-) —y()lle < e/(12M°).
For any zy(t) € mx (2(t)) measurable, since

d(2(t), F'(t, z0(t)) < UB)[20(t) =y <UD[2() =y (@) + 1) dx (2(2)),
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we have

f (s,20(s))) ds,

so that
d(2(1), F'(t,z0(t))) < U(t)[|z(t) — y (@)

Ut [ 1) exp(m(t) — m(s))lly(s) — =(s)]] s,
0
and therefore

fd F(t, 2(t)) dt

T T
<12 —y(~)||< [yt + [ i) fz 5) exp(m m(s))dsdt)
0 0

< [l2() = yO)ll(exp(m(T)) = 1) < M|z(-) = y()|l-
Set q(t) = esssup{d(2(t), F(t,20(t))) | z0(t) is a measurable selection of
i (2(t))}. Then

Ja®yde < Mjz(-) = y()]| < /(12M°).

0

By Theorem 3.1, there exists z(-) € Sp(zg) such that ||z(-) — z(-)|| < e.
Thus

d(y(-), Sr(xo)) < [lz() =yl < flz() = 2O+ 12¢) =y
< (1+1/(12M%)e.

Since ¢ is arbitrary, y € Sp(xo).

4. An application. Let X be a Banach space and Y be a separable
Banach space. Also let K, K. (0 < ¢ < 1) be closed subsets of X and let
U(-) : I — 2% be a measurable multifunction with nonempty closed values.

Consider a function f : I x X xY x [0,1] — X. We will assume the
following hypotheses:

(1) For all (z,u,e) € X xY x[0,1], t — f(t,z,u,e) is measurable, and
for every t € I, (z,u,e) — f(t,x,u,e) is continuous.

(2) There exists I(-) € L'(I,R") such that for almost every t € I and
forallu € U(t) and 0 <e < 1,

Hf(t,x',u,e) - f(t,x",u,a)” < l(t)Hx/ - .%'NH.
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(3) For almost every t € I and for all z € X and 0 < ¢ < 1 the set
F(t,z,e) = f(t,x,U(t),e) is closed and contained in I(t)B.
(4) F(t,z) = F(t,z,0) C Tk (x) for (t,z) € I x K.
(5) Upcect Ke is compact, K is proximal and limsup, o K. C K, where
the lim sup is defined in the Kuratowski sense, i.e.,
limsup K. = {z € X | limi(r]lf d(z,K.) = 0}.

e—0 g

(6) Let g : X — R be continuous. Consider the optimal control problem

(P.) J(u,e) = g(z(T)) — inf
subject to

(4.1) z(t) = f(t,xz,u,e), x(0) =z,
(4.2) $(t) € Ke»

where u € Upq = {u(:) : I =Y |u(t) € U(t) is measurable}.

We denote the value of (P.) by V. and the value of the original prob-
lem (Py) (¢ = 0) by V; we say that (P.) is well-posed if V. — V as e — 0.

To prove well-posedness, we need the following hypothesis:

(7) There exists a minimizing sequence {uy, } for (Pg) such that if z,,(-,¢)
and x,(-) are solutions of (4.1), (4.2) and of the original equation (¢ = 0)
respectively with u, (), then z,(T,e) — z,(T) as € — 0.

THEOREM 4.1. If hypotheses (1)—(7) hold, then the problem (P.) is well-
posed.

Proof. By (7), there exist a minimizing sequence {u,(-)} for (Py) and
solutions x,(+) of (4.1) and (4.2) (for ¢ = 0) with respect to u,(-) such that
g(xn(T,e))—g(zn(T)) as e—0. Also note that V. <g(z,(T,¢)). So we get
(4.3) limsup Ve < V.

e—0

On the other hand, let €, — 0 (¢, < 1). Choose admissible state-control

pairs (x,,u,) for (4.1) and (4.2) such that

(4.4) J(tn, 2n) < V(en) + 1/n.

We note that z,(t) € K., C Uycocq Ke and ||, ()] < I(t). From the
Ascoli-Arzela theorem, taking a subsequence and keeping the same nota-
tions we may assume that z,(-) — z(-) in C(0,T;X) and &, —— &(-) in
LM(I, X).
It is easy to show that (see [6])
#(t) € eolimsup F(t, z,(t),e,) C cOF (t, x(t))

(t — F(t,z,e) is measurable; © — F(t,x,¢) is I(t)-Lipschitz and ¢ —
F(t,x,e) is continuous).
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By hypothesis (5), we get
z(t) € limsup K. C K.

e—0

From the definition of F' and hypotheses (1)—(5), we know that F' and K
satisfy the hypotheses (Hy)—(H4). By Theorem 3.2, there exists a sequence
{z ()} of solutions of the differential inclusions

(4.5) Tm(t) € F(t,xm(t)), zm(0)=z¢ and xz,(t) €K

such that z,,(-) — z(-) in C(0,7;X). From [3, p. 214], there exists a
sequence {u,,(t)} € U(t) of measurable functions such that

(4.6)  Tp(t) = f(t,zm(t),um(t),0), x,(0) =20 and z,(t) € K.
Hence, we get g(z(T')) = limy;, 00 g(2m (7)) > V. Note that by passing to
the limit in (4.4), we obtain

(4.7) V<g@T)) = lim g(z,(T,e,)) = lim J(un,e,) < lim V(e,).

n—oo

From (4.4)—(4.7), we deduce V(¢) — V as e — 0.
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