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ESTIMATES OF SOME PROBABILITIES IN
MULTIDIMENSIONAL CONVEX RECORDS

Abstract. Convex records in Euclidean space are considered. We provide
both lower and upper bounds on the probability pn(k) that in a sequence
of random vectors X1, . . . , Xn there are exactly k records.

1. Introduction. Records on a line have received a good deal of atten-
tion in the last thirty years. The reader may be referred to Nevzorov [8] and
Resnick [9] for some recent studies on this model. There has been a trend in
the past few years to move away from the standard model and to consider
either records for random elements in a partially ordered space or convex
records for random vectors in d-dimensional Euclidean space (see [3, 9]).

The purpose of this paper is to investigate the case of convex records
defined as follows. Suppose independent and identically distributed random
vectors Xi = (Xi1, . . . , Xid), i = 1, 2, . . . , are observed. Define random
variables L(n) as follows: L(0) = 0, L(1) = 1, and L(n + 1) = min{i :
Xi 6∈ conv{X1, . . . , XL(n)}}, n > 1, where conv{X1, . . . , Xn} is the con-
vex hull of X1, . . . , Xn. In addition, define N(n) = max{k : L(k) ≤ n}.
Throughout the paper L(k) is called the time of the kth convex record. Then
N(n) is the cardinality of the set of convex records which occur up to time
n. Further, for k = d + 1, . . . , n, we set

(1) pn(k) = Pr{N(n) = k} and qn(k) = Pr{L(k) = n}.
The problem of convex records dates back to the nineteenth century.

The case of randomly chosen points within the d-dimensional unit ball was
considered for the first time by Sylvester (see [6]). He posed the problem of
calculation of pd+2(d+1). An important contribution to solving Sylvester’s
problem was made by Blaschke and Hostinsky but it was Kingman [7] who
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obtained the exact formula for pd+2(d+1). The first result on the asymptotic
distribution of the number of vertices of the convex hull of n randomly cho-
sen points, say Nn, was given by Rényi and Sulanke (cf. [6]). Groeneboom
[5] continued the work on this problem and obtained the asymptotic distri-
bution of Nn as n tends to infinity. Bárany and Füredi [1] also examined
the limiting behaviour of Pr{Nn = k} as either k or d goes to infinity.

In this article we are concerned with the distribution of the random
variables L(n) and N(n) for n = d+1, d +2, . . . In Section 2 we present the
exact formula for pn(d + 1) and provide both lower and upper bounds for
pn(k) and qn(k) for k ≥ d + 2 in the case of convex records within a unit
ball. Section 3 concerns some numerical study.

2. The main results. We first set up the basic notation and assump-
tions. Suppose that X1, X2 . . . are modeled as independent observations in
Rd with a common density f and that K, K = {x : f(x) > 0}, is a bounded
convex subset of Rd. Let C(x1, . . . , xk) denote the k-neighbourly polytope
whose vertices are x1, . . . , xk, and let F be the distribution of X1. Define

Mk = sup
{ ∫

C(x1,...,xk)

dF (x) : C(x1, . . . , xk) ⊂ K
}

, k = d + 2, d + 3, . . .

The following proposition gives both upper and lower bounds on the
probability pn(k) that in the sequence X1, . . . , Xn there are exactly k re-
cords.

Proposition 1. With the notation given above, define

αk =
∫

Rd(d+1)

( ∫
C(x1,...,xd+1)

dF (x)
)k

dF (x1) . . . dF (xd+1).

Then:

(i) pn(d + 1) = αn−d−1.
(ii) For d + 2 ≤ k ≤ n,(
n− d− 1
k − d− 1

) k−1∏
i=d+2

(1−Mi)(αn−k − αn−k+1) ≤ pn(k)

≤
n−k∑
i=0

k−d−1∑
j=0

(
n− d− i− 2

k − d− 2

)(
k − d− 1

j

)
(−1)jMn−k−i

k αi+j ,

where
∏d+1

i=d+2(1−Mi) is 1 by convention.

P r o o f. Using standard arguments it is possible to show that for k =
d + 1, . . . , n,
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pn(k) =
∑

(ni)∈N

∫
Rd(d+1)

( ∫
Cd+1

dF (x)
)n1

dF (x1) . . . dF (xd+1)(2)

×
∫

Rd\Cd+1

( ∫
Cd+2

dF (x)
)n2

dF (xd+2)× . . .

×
∫

Rd\Ck−1

( ∫
Ck

dF (x)
)nk−d

dF (xk)

with

N = {(n1, . . . , nk−d) : k + ni = n and ni ≥ 0 for all i}.
Here Cn = conv{x1, . . . , xn}. Hence the result for k = d+1 follows directly.
To prove (ii) we use the following estimates:

(3)
∫

Ci

dF (x) ≤
∫

Ck

dF (x) for i ≤ k,

(4) 1−Mk ≤
∫

Rd\Ck

dF (x),

(5)
∫

Ck

dF (x) ≤ Mk,

(6)
∫

Rd\Ck

dF (x) ≤
∫

Rd\Cd+1

dF (x) for k ≥ d + 1.

Combining (3) and (4) yields

pn(k) ≥ #N
∫

Rd(d+1)

dF (x)
( ∫

Cd+1

dF (x)
)n−k

(7)

×
(
1−
∫

Cd+1

dF (x)
)

dF (x1) . . . dF (xd+1),

where #N denotes the cardinality of N . Next use (5) and (6) to get

pn(k) ≤
∑

(ni)∈N

k∏
i=d+2

M i−d
i

∫
Rd(d+1)

[ ∫
Cd+1

dF (x)
]n1

(8)

×
[
1−
∫

Cd+1

dF (x)
]k−d−1

dF (x1) . . . dF (xd+1)

≤
n−k∑
i=0

#Ni ·Mn−k−i
k

k−d−1∑
j=0

(
n− d− 1
k − d− 1

)
(−1)jαi+j ,

where Ni = {(n2, . . . , nk−d) : k + i + ns = n and ns ≥ 0 for all s}. Now,
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application of a combinatorial lemma (see [2], Chapter II, 5) to both (7) and
(8) yields the desired result.

The next proposition gives worse estimates than those of Proposition 1
but which are more useful to derive asymptotic results.

Proposition 2. Under the assumptions of Proposition 1,

(9)
(

n− d− 1
k − d− 1

) k−1∏
i=d+1

(1−Mi)αn−k ≤ pn(k) ≤
(

n− d− 1
k − d− 1

)
Mn−k

k ,

for k = d + 2, . . . , n.

P r o o f. The proof follows along the same lines as in Proposition 1 and
is left to the reader.

The above propositions allow us to estimate some probabilities in the
multidimensional model of convex records if we are able to obtain the ex-
act form of αk and Mk for k = 1, 2, . . . Consider the case of independent
observations from the unit ball on the plane; that is, X1 has a uniform dis-
tribution over K, where K = {(x, y) : x2 + y2 ≤ 1}. Henceforth, we write
n!! = 3 · 5 · . . . · n for n odd and 2 · 4 · . . . · n for n even. We also put 0!! = 1
and (−1)!! = 1.

Theorem 3. Let pn(k) be the probability that in a sequence of n randomly
chosen points from the unit ball on the plane there are exactly k convex
records. Suppose that d = 2. Then

αk =
3 · 2k+6

(k + 2)2(k + 3)πk+4

(k−1)/2∑
i=0

(
k

2i

) (k−1)/2−i∑
s=0

(
(k − 1)/2− i

s

)
(−1)s

× (3k − 1 + 2s + 5)!!(2i− 1)!!
(k + 2s + 2i + 3)[(3k − 1)/2 + s + i + 3]!

· 0.5(3k−1)/2+s+i+3

for k = 1, 3, 5, . . .

=
3 · 2−2k+1

(k + 2)2(k + 3)πk

k/2∑
i=0

(
k

2i

)
(k + 2i + 1)!!(k − 2i)!!4−i

(k + 1)k . . . (k/2− i + 1)(k/2− i)!

×
i∑

s=0

(
i

s

)(
2(k + s− i + 1)
k + s− i + 1

)
(−1)s4−s for k = 0, 2, 4, . . .

and conclusions (i) and (ii) of Proposition 1 hold.

P r o o f. By Proposition 1, it is enough to derive the exact form of αk

and Mk. Since Mk = (2π/k) sin(k/2π) (cf. [10], Problem 57), we only have
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to evaluate the integral

αk = (πr2)−(k+3)
∫

K(r)2

|C(x1, x2, x3)|k dx1 dx2 dx3,

where K(r) = {(x, y) : x2 + y2 ≤ r2}, xi = (xi1, xi2) for i = 1, 2, 3,
C(x1, x2, x3) = conv{x1, x2, x3} and | · | stands for the Lebesgue measure.
Direct calculations show that

αk = (πr2)−(k+3)
∫

[0,2π]3

∫
[0,r]3

(0.5|uw · sin(θ2 − θ3) + wz · sin(θ1 − θ2)(10)

+ uz · sin(θ3 − θ1)|)kuwz du dw dz dθ1 dθ2 dθ3.

Unfortunately, for general k, it seems difficult to obtain αk explicity from
(10) so the technique similar to that of Crafton (see [7], Chapter 2) is pro-
posed.

Letting ak(r) denote (πr2)k+3αk(r), and K(r, r + δ) denote K(r + δ)\
K(r), we calculate the derivative a′k(r). First note that

ak(r + δ)−ak(r) = 3
∫

K(r,r+δ)

dx1

∫
K(r)2

|C(x1, x2, x3)|k dx1 dx2 dx3 + o(δ).

This follows from the definition of ak(r) and the estimates∫
K(r,r+δ)2

dx1dx2

∫
K(r)

|C(x1, x2, x3)|k dx3 ≤ (πr2)k[π(r + δ)2 − πr2]2 = o(δ)

and ∫
K(r,r+δ)3

|C(x1, x2, x3)|k dx1 dx2 dx3 ≤ o(δ).

Now, after the transformation x11 = u cos φ and x12 = u sinφ, we can obtain

ak(r + δ)− ak(r)

= 3
r+δ∫
r

u du
π∫

0

dφ
∫

K(r)2

|C((u cos φ, u sinφ), x2, x3)|k dx2 dx3 + o(δ).

Thus, by dominated convergence,

(11) a′k(r) = 6πr
∫

K(r)2

|C(x1, x2, x3)|k dx2 dx3,

x1 being any point of the boundary of K(r). Further, applying the trans-
formation x21 = a cos θ, x22 = a sin θ, x31 = b cos φ and x32 = b sinφ, we
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get

(12)
∫

K(r)2

|C(x1, x2, x3)|k dx2 dx3

=
π∫

0

π∫
0

2r sin θ∫
0

2r cos φ∫
0

(0.5 · ab sin |θ− φ|)kab da db dθ dφ =
2k+4

(k + 2)2
r2k+4γk,

where

γk =
1∫

0

1∫
0

sink+2 θ sink+2 φ sink |θ − φ| dθ dφ.

Combining (11) and (12), we have

αk =
3 · 2k+4

(k + 2)2(k + 3)πk+2
γk.

By Appendix 1, this yields the desired result.

Now we formulate some asymptotic results dealing with pn(k) as n tends
to infinity.

Theorem 4. Suppose that the conditions of Theorem 1 hold. Then for
k = 4, 5, . . . ,

(i) lim
n→∞

pn(k)[Mn−k
k ]−1 ≤ [− lnMk]3−k,

(ii) lim
n→∞

pn(k)
[(

1
π

)n−k

n4

]−1

≥ 12
π

k−1∏
i=3

(1−Mi)(lnπ)3−k.

P r o o f. We apply Proposition 2. In what follows we write f(x) ∼ g(x)
as x → α iff limx→α(f(x)/g(x)) = 1, where α ∈ R ∪ {−∞,∞}. Using the
well-known asymptotic formula Γ (x + 1) ∼ xx2πxe−x as x →∞, we have(

n− 3
k − 3

)
∼ (n− 3)k−3[(k − 3)!]−1 as n →∞.

Hence

(13) p∗n(k) ≤ pn(k) ≤ p∗∗n (k)

where

p∗n(k) ∼ (n− 3)k−3
k−1∏
i=3

(1−Mi)αn−k[(k − 3)!]−1

and
p∗∗n (k) ∼ (n− 3)k−3Mn−k

k [(k − 3)!]−1Mn−k
k [− lnMk]3−k,

which completes the proof of (i). Here we use the fact that xn exp(−bx) ∼
n!b−n exp(−bx) as x →∞ provided b > 0 and n = 0, 1, 2, . . .



Multidimensional convex records 7

To prove (ii), we note that

αk ≥
3 · 2k+4

(k + 2)2(k + 3)πk+3
2−k−3B((k + 3)/2, 0.5)

where B(x, y) = Γ (x)Γ (y)/Γ (x + y) (for the proof see Appendix 2). Con-
sequently,

p∗n(k) ∼ 12
π(lnπ)k−3

k−1∏
i=3

(1−Mi)π−(n−k)n−4.

This establishes Theorem 4.

It is of interest how to improve the results of Theorems 3 and 4.
This might be done by evaluating mixed moments of the random variables
|C(x1, x2, x3)| and |C(x1, . . . , x4)|, namely,∫

K4

|C(x1, x2, x3)|n1 |C(x1, x2, x3, x4)|n2 dx1 . . . dx4,

where n1, n2 = 0, 1, 2, . . . How to do this remains an open question.
Several corollaries are readily available from Theorem 3 or 4. One of

them gives an estimate for the rate of vanishing of the probability that in
a sequence of randomly chosen points in the unit ball on the plane the kth
record occurs on the nth position.

Corollary 1. If X1, . . . , Xn are independent uniformly distributed vec-
tors over the 2-dimensional unit ball , then qn(k), defined by (1), satisfies for
k = 4, 5, . . . ,

lim
n→∞

qn(k)[Mn
k−1]

−1 ≤ M1−k
k−1 [− lnMk−1]k−4,

where Mk = (k/2π) sin(2π/k).

P r o o f. The proof is straightforward. It follows from Theorem 4 and
the fact that

qn(k) = Pr(L(k) = n) = Pr(N(n− 1) < k)− Pr(N(n) < k)

=
k−1∑
i=3

(pn−1(i)− pn(i)).

The cases of other convex bodies in R2 can be analyzed in a similar
fashion but this is beyond the scope of the present work. Some extensions
to higher dimensions are also possible. The main difficulty is to obtain the
explicit form of Mk. Below we present some results for points randomly
chosen in the d-dimensional unit ball. Even in this case the exact formula
for Mk is still unknown in the literature. However, there are a few estimates
available. The simplest one is given by Ekeles’ inequality,
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(14) Mk ≤ k2−d,

where k ≥ 1 and d ≥ 2 (see [1]). Hence, (14) and Proposition 2 yield

Corollary 2. Let pn(k, d) be the probability that among n randomly
chosen points from the d-dimensional unit ball there are exactly k records.
Then

lim
n→∞

pn(k, d){(k2−d)n−k}−1 ≤ [d ln 2− ln k]1−d−k

provided k < 2d.

3. Numerical study. Herein the upper and lower estimates of pn(k)
derived in Theorem 1 will be referred to as p∗n(k) and p∗∗n (k), respectively. In
order to check how precise the estimates are, we performed some numerical
computations. Table 1 presents the results. For fixed k > 3, the lower
estimate is p∗∗n (k) while the upper one is

min(p∗∗n (k), 1− pn(3)− p∗n(i)).

For instance, p5(3) = 0.9499 and 0.1288 ≤ p5(4) ≤ 0.654.

TABLE 1
Exact values of pn(3), n ≥ 4, and lower/upper estimates of pn(k), for k = 3, 4, 5, 6, 7, in
the case of convex records within the unit ball on the plane

n
kH

HH 3 4 5 6 7

4 9.388E−02 9.261E−01

5 9.499E−03 6.540E−01 8.617E−01
1.288E−01 3.365E−01

6 1.606E−03 4.242E−01 9.747E−01 8.053E−01
2.368E−02 7.018E−02 8.184E−02

7 3.208E−04 2.714E−01 9.945E−01 9.973E−01 7.554E−01
5.139E−03 1.721E−01 2.276E−02 1.416E−02

8 7.181E−05 1.730E−01 9.987E−01 9.940E−01 9.870E−01
1.245E−03 4.669E−03 6.975E−03 4.921E−03

9 1.746E−05 1.102E−01 9.997E−01 9.983E−01 9.960E−01
3.261E−04 1.357E−03 2.271E−03 1.810E−03

10 4.520E−06 7.016E−02 9.999E−01 9.995E−01 9.987E−01
9.057E−05 4.148E−04 7.701E−04 6.875E−04

20 3.379E−11 7.673E−04 2.313E−01 1 1
1.149E−09 1.020E−08 3.884E−08 7.331E−08

30 9.158E−16 8.390E−06 2.324E−02 1 1
4.405E−14 5.834E−13 3.333E−12 9.816E−12

40 4.105E−20 9.174E−08 1.986E−03 8.599E−01 1
2.555E−18 4.503E−17 3.453E−16 1.376E−15

50 2.412E−24 1.003E−09 1.566E−04 2.116E−01 1
1.842E−22 4.058E−21 3.904E−20 1.964E−19

100 7.023E−30 1.568E−19 2.915E−10 7.008E−05 3.071E−01
1.497E−25 2.622E−24 2.930E−23 1.200E−22
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Appendix 1. In what follows we calculate

(A1) γk =
π∫

0

π∫
0

sink+2 θ sink+2 φ sink |θ − φ| dφ dθ = 2
k∑

i=0

(
k

i

)
(−1)iaik,

with

aik =
π∫

0

sink+i+2 θ cosk−i θ
π∫

θ

sin2k+2−i φ cosi φ dφ dθ.

First suppose that k − i is odd. Applying the formula
θ∫

0

sina u cos2b+1 u du = sina+1 θ

b∑
j=0

(
b

j

)
(−1)j sin2j θ

a + 2j + 1
,

for a ≥ 0 and b = 1, 2, . . . , we have

aik =
(k−i−1)/2∑

j=0

(
(k − i− 1)/2

j

)
(−1)j

k + i + 2j + 3
(A2)

×
π∫

0

sin3k+2j+5 θ cosi θ dθ

=
1 + (−1)i

2

(k−i−1)/2∑
j=0

(
(k − i− 1)/2

j

)
(−1)j

k + i + 2j + 3

×B

(
3k + 2j + 6

2
,
i + 1

2

)
.

Here we use the formula
π∫

0

sinp x cosq x dx =
1 + (−1)q

2
B

(
p + 1

2
,
q + 1

2

)
, p, q > 0

(see [4], 3.427.1).
Now consider the case of k − i even and k odd. Then

aik = −
(i−1)/2∑

j=0

(
(i− 1)/2

j

)
(−1)j

2k + 3 + 2j − i
(A3)

×
π∫

0

sin3k+2j+5 θ cosk−i θ dθ

= −
(i−1)/2∑

j=0

(
(i− 1)/2

j

)
(−1)j

2k + 3 + 2j − i
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×B

(
3k + 2j + 6

2
,
k − i + 1

2

)
.

To complete the proof we suppose both k and i are even. Since we
have

π∫
0

cosm x sin2n x dx

= − cosm+1 θ

2n + 1

( n−1∑
k=0

(2n + 1)(2n− 1) . . . (2n− 2k + 1)
(2n + m)(2n + m− 2) . . . (2n + m− 2)

sin2n−2k−1 θ

)

+
(2n− 1)!

(2n + m)(2n + m− 2) . . . (m + 2)

θ∫
0

cosm x dx

(see [4], 2.414), integration by parts gives

aik =
(k + i + 1)!!

(2k + 2)2k . . . (k − i + 2)
(A4)

×
π∫

0

sin2k+2−i θ cosi θ
θ∫

0

cosk−i x dx dθ

=
(k + i + 1)!!

(2k + 2)2k . . . (k − i + 2)

×
i/2∑
s=0

(
i/2
s

)
(−1)s (k − i− 1)!!π2

[(k − i)/2]! · (k + 1 + s− i/2)!2

× (2k − i + 2s + 2)!!22k+3−i+2s+(k−i)/2.

Here we use (2.415.1), (3.518.1), and (6.339.2) of [4]. Now from (A1)–(A4)
and a little algebra one can obtain

γk = 4π

(k−1)/2∑
i=0

(
k

2i

) (k−1)/2−i∑
s=0

(
(k − 1)/2− i

s

)
(−1)s (3k − 1 + 2s + 5)!!

(k + 2s + 2i + 3)

× (2i− 1)!!
[(3k − 1)/2 + s + i + 3]!

(
1
2

)(3k−1)/2+s+i+3

for k = 1, 3, 5, . . . ,

= 2−3(k+1)π2

k/2∑
i=0

(
k

2i

)
(k + 2i + 1)!!(k − 2i− 1)!!

(k + 1)k . . . (k/2− i + 1)(k/2− i)!
· 4i

×
i∑

s=0

(
i

s

)(
2(k + s− i + 1)
k + s− i + 1

)
(−1)s4−s for k = 0, 2, 4, . . .

This completes the proof.
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Appendix 2. Observe that

γk ≥ 2
π∫

0

sink+2 θ
π∫

π/2

sink+2 φ sink(φ− θ) dφ dθ

≥
π∫

π/2

sink+2 φ dφ

π/2∫
π/4

sink+2 φ cosk(θ) dθ

≥ 2
π/2∫
0

sink+2 φ dφ2−k−2

π/4∫
0

sink+1 2θ dθ = 2−k−3B[(k + 3)/2, 1/2]2.

Hence, by the asymptotic formula for Γ (x), we have αn−k ≥ α∗n−k, where

α∗n−k ∼ 12πn−4πk−n−2 as n →∞,

as desired.
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