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A. GOLBABAI

NON-PARALLEL PLANE RAYLEIGH BENARD
CONVECTION IN CYLINDRICAL GEOMETRY

Abstract. This paper considers the effect of a perturbed wall in regard to
the classical Benard convection problem in which the lower rigid surface is
of the form z = ε2g(s), s = εr, in axisymmetric cylindrical polar coordinates
(r, φ, z). The boundary conditions at s = 0 for the linear amplitude equation
are found and it is shown that these conditions are different from those which
apply to the nonlinear problem investigated by Brown and Stewartson [1],
representing the distribution of convection cells near the center.

1. Introduction. The theoretical foundation of the onset of thermal
instability in an infinite horizontal layer of fluid heated uniformly from below
was laid by Rayleigh [7], who proved the validity of the principle of the
exchange of stabilities. For the case of two free boundaries, several papers
have recently appeared in which the effect of certain perturbations of the
classical Benard problem is studied. For example, Daniels [3] has studied
the effect of including distant conducting side-walls at x = O(L) when
the Rayleigh number, R, exceeds the classical critical R by O(L−2), where
L is large. Brown and Stewartson [1] have considered a similar problem
but with distant cylindrical conducting boundary. And again Daniels [4]
has studied the effect of centrifugal force in a shallow rotating cylinder or
annulus. These studies all yield certain changes in the amplitude equation,
which results from the balance of terms in the governing equation at O(ε3).

The changes from the classical problem are essentially extra terms in
the amplitude equation or changes in its boundary conditions. It is hoped
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that experimental results will be more easily compared with these modified
problems.

In this paper we are interested in the Benard convection problem with
the lower surface being of the form z = ε2g(s), in cylindrical geometry
with axisymmetry. We refer to this new problem as the non-parallel plane
problem in contrast to the parallel plane problem (Golbabai [6]), where
the lower plane is given by z = 0. The upper boundary is z = 1. It is
assumed that g(s) is bounded so that for ε sufficiently small the surfaces
do not intersect. We choose g(0) = 0 and g positive for r = ∞, the excess
of the Rayleigh number above Rc (critical Rayleigh number) is assumed
to be O(ε2), and the deviation of the lower surface from the plane case is
O(ε2). We consider a fluid confined between two rigid boundaries z = 1 and
z = ε2g(s), where z, r are dimensionless cylindrical coordinates and ε is a
small parameter. Gravity acts in the negative direction and the flow field
extends to r = 0 and r = ∞. For definiteness the space cooordinates are
made non-dimensional with respect to the fluid depth, d, the lower surface
z = ε2g(s) is kept at constant temperature θ∗0 and the upper surface z = 1
at constant temperature θ∗1 . The velocity component v is taken to be zero.

2. The governing equations of motion. The full set of equations
in the Oberbeck–Boussinesq approximation for viscous, incompressible, axi-
symmetric flow can be expressed as follows:

ur +
u

r
+ wz = 0,(2.1)

ut − σ
(
∇2u− u

r2

)
+ pr = −(uur + wuz),(2.2)

wt − σ(∇2w + θ) + pz = −(uwr + wwz),(2.3)
θt −∇2θ −Rw = −(uθr + wθz),(2.4)

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
,

where ur = ∂u/∂r, uz = ∂u/∂z etc., and

R = gα0d
3(θ∗0 − θ∗1)/(kν) and σ = ν/k

are the Rayleigh number and Prandtl number respectively.
We define the slow variable, s, by s = εr, where ε is a small parameter.

The boundary conditions are

(2.5) u = w = θ = 0 on z = 1, z = ε2g(s).

3. Analysis of the base flow and steady state solution. For
steady flow in the parallel plane problem, which is given by ε = 0, there is
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a solution of the form

u = 0, w = 0, θ = 0, p = constant.

For ε 6= 0 we denote the velocity component of the steady case flow by
us, ws, and the pressure and temperature by ps and θs respectively. The
boundary conditions for the base flow are

(3.1)
us = ws = θs = 0 on z = 1,

us = ws = 0, θs = Rε2g(s) on z = ε2g(s).

We also add the condition that

(3.2) us → 0 and ws → 0 as s→∞.
For small ε we expand the perturbation us, ws, θs and ps in powers of ε and
write:

(3.3)

us = εu1 + ε2u2 + . . . ,

ws = εw1 + ε2w2 + . . . ,

θs = εθ1 + ε2θ2 + . . . ,

ps = εp1 + ε2p2 + . . .

The functions ui, wi, θi, pi for i = 1, 2, . . . are considered to depend on the
two variables z and s.

Substituting the form of expansions (3.1)–(3.3) into (2.1)–(2.4), replac-
ing ∂/∂r by ε∂/∂s, and equating powers of ε, we obtain a set of partial
differential equations as follows:

From (2.1), we find that

(3.4)
∂w1

∂z
= 0, ui + s

(
∂ui
∂s

+
∂wi+1

∂z

)
= 0, 1 = 1, 2, 3;

from (2.2) and (2.3),

∂2u1

∂z2
= 0, σ

∂2ui+1

∂z2
− ∂pi

∂s
= 0, i = 1, 2,(3.5)

∂p1

∂z
− σθ1 = 0,

∂pi
∂z

− σ
(
θi +

∂2wi
∂z2

)
= 0, i = 2, 3;(3.6)

finally, from (2.4),

(3.7) θ1 = 0,
∂2θi
∂z2

+Rwi = 0, i = 2, 3,

(3.8)
1
s

∂θ2
∂s

+
∂2θ4
∂z2

+Rw4 − w2
∂θ2
∂z

= 0.

Now we define the boundary conditions on ui, θi, wi for i = 1, 2, . . .
From (3.1),

(3.9) ui = wi = θi = 0 on z = 1, i = 1, 2, . . .
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The boundary conditions on z = ε2g, for ui, wi, θi (i = 1, 2, . . .), are given
by expansion of us, ws, θs about z = 0, and the details are given for us
only; we have

us(s, ε2g) = εu1(s, 0) + ε2u2(s, 0) + ε3(gu1z + u3)z=0(3.10)
+ ε4(gu2z + u4)z=0 + . . .

Therefore, since us(s, ε2g) = 0, we have

u1 = u2 = 0, gu1z + u3 = gu2z + u4 = 0 on z = 0,

where u1z = ∂ui/∂z (i = 1, 2, 4). Similar arguments provide boundary
conditions for wi and θi on z = 0.

The solutions of the equations (3.4)–(3.8) subject to the boundary con-
ditions are the following:

u1 = u2 = 0, w1 = w2 = w3 = 0, θ1 = θ3 = p1 = 0,(3.11)
θ2 = R(1− z)g,(3.12)

p2 = σR

(
z − z2

2

)
+B(s),(3.13)

u3 = R

(
z3 − z4

24
− z

8

)
dg

ds
+

1
2
σ−1(z2 − z)dB

ds
,(3.14)

w4 = Rf1(z)
(
d2g

ds2
+

1
s

dg

ds

)
+ σ−1f2(z)

(
d2B

ds2
+

1
s

dB

ds

)
,(3.15)

where f1 and f2 are given by

(3.16) f1 =
z5

120
+
z2

16
− z4

24
, f2 =

z2

2
− z3

3
.

In obtaining these solutions, p2 was first found in the form (3.13), where
B(s) is an unknown function at this stage.

In order that u3 → 0 as s→∞, we see from (3.14) that

(3.17) dg/ds→ 0 as s→∞,
and

(3.18) dB/ds→ 0 as s→∞.
From the condition w4 = 0 on z = 1, and (3.17), we find that

(3.19)
dB

ds
+ (7σR/20)

dg

ds
= 0,

and thus

(3.20) B = (−σ7R/20)g(s) + const.

Substituting (3.20) into (3.13)–(3.15) provides the explicit form of p2, u3, w4.
Summarizing, the expansions for the base flow, pressure and temperature
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can be written as follows:

us = ε3R

(
1− z4

24
+
z3

16
− 7

z2

40
+

z

20

)
dg

ds
+ . . . ,(3.21)

ws =
1

120
ε4(z5 − 5z4 + 7z3 − 3z3)

(
d2g

ds2
+

1
s

dg

ds

)
R+ . . . ,(3.22)

θs = ε2R(1− z)g + . . . ,(3.23)

ps = ε2σ

(
z − z2

2
− 7

20

)
g + . . . ,(3.24)

Note that as s→∞, we have zero fluid velocity and just a linear temperature
variation.

4. The disturbance equations in matrix form. We continue with
the case where the equation of the lower boundary is z = ε2g(s), where
s = εr. In equations (2.1)–(2.4) we set

(4.1)
u = us + û(r, z, t),

w = ws + ŵ(r, z, t),

θ = θs + θ̂(r, z, t),

p = ps − p̂(r, z, t)
(where the minus sign with perturbed pressure is merely for convenience) to
obtain the equations for small disturbances û, ŵ, θ̂, p̂; these are assumed to
be sufficiently small for non-linear products of these terms to be neglected in
the governing equations. The functions us, ws, θs, ps are the steady solutions
of (2.1)–(2.4) which are given in (3.21)–(3.24). Upon substitution of (4.1)
into (2.1)–(2.4) we then obtain the linear system

∂û

∂r
+
û

r
+
∂ŵ

∂z
= 0,(4.2)

∂û

∂t
+ us

∂û

∂r
+ û

∂us
∂r

+ ŵ
∂us
∂z

+ ws
∂û

∂z
= p̂r + σ

(
∇2û− û

r2

)
,(4.3)

∂ŵ

∂t
+ us

∂ŵ

∂r
+ û

∂ws
∂r

+ ŵ
∂ws
∂z

+ ws
∂ŵ

∂z
= p̂z + σ(∇2ŵ + θ̂ ),(4.4)

∂θ̂

∂t
+ us

∂θ̂

∂r
+ û

∂θs
∂r

+ ŵ
∂θs
∂z

+ ws
∂θ̂

∂z
= Rŵ +∇2θ̂(4.5)

and

(4.6) û = θ̂ = ŵ = 0 on z = 1, z = ε2g(s).

We now introduce the notation

(4.7) û = ∂u/∂z, θ̃ = ∂θ̃/∂z,

and in equation (4.3) we write

(4.8) ∇2û =
∂2û

∂r2
+

1
r

∂û

∂r
+
∂ũ

∂z
.
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Then (4.3) expresses ∂ũ/∂z in terms of û, ũ, ŵ, p̂ and their derivatives with
respect to r and t. We next note that the derivative of (4.2) with respect to
z may be written as

(4.9)
∂2ŵ

∂z2
= −

(
ũ

r
+
∂û

∂r

)
.

In our analysis we shall ignore powers of εn for n ≥ 3. With this assumption
and (3.21)–(3.24) we observe that

(4.10) us = 0, ws = 0, θs = ε2Rg(1− z).

Now we introduce the extended flow vector

(4.11) U =
[
ũ,
∂p̂

∂r
,
∂θ̂

∂r
, û,

∂ŵ

∂r
,
∂θ̂

∂r

]tr

,

where tr denotes the transpose and ũ, θ̃ are given in (4.7). Substituting
(4.10) in (4.3)–(4.5), we find that

(4.12)

∂û

∂z
= σ−1 ∂p̂

∂r
− Lû+ σ−1 ∂û

∂t
,

∂2p̂

∂z∂r
= σ

(
L

(
û+

∂ŵ

∂r

)
+
∂θ̂

∂r
+
∂2ŵ

∂r∂t

)
,

∂2θ̂

∂z∂r
= −R∂ŵ

∂r
− L

(
∂θ̂

∂r

)
+

∂2θ

∂r∂t
+
∂ŵ

∂r

∂θs
∂z

,

∂û

∂z
= ũ,

∂2ŵ

∂z∂r
= −Lû, ∂2θ̂

∂r∂z
=
∂θ̃

∂r
,

where L is a linear operator: L = ∂2/∂r2 + (1/r)(∂/∂r) − 1/r2. This
formulation enables us to write the equation (4.12) in matrix form:

(4.13)
∂U

∂z
= AU +B

∂U

∂t
,

where A and B are 6× 6 matrices:

A =


0 1 0 −L 0 0
L 0 0 0 L 1
0 0 0 0 X −L
1 0 0 0 0 0
0 0 0 −L 0 0
0 0 1 0 0 0

 , X = (1 + ε2g)R,

B =


σ−1 0 0

0 0 σ−1 0
0 0 1

0 0

 ,
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where 0 is the 3×3 zero matrix. We can write A = A1−LA2+R(1+ε2g)A3,
where A1, A2, A3 are constant 6× 6 matrices. From (4.6),

(4.14) û =
∂ŵ

∂r
=
∂θ̂

∂r
= 0 on z = 1.

On z = ε2g, we have, for example, ∂ŵ/∂r = 0, so that

(4.15)
∂ŵ

∂r
=
∂ŵ(r, 0)
∂r

+ ε2g
∂2w(r, 0)
∂z∂r

+ . . .

and so within the order of approximation considered here, ∂ŵ/∂r = 0 on
z = 0. The complete set of boundary conditions can be conveniently labeled
as follows:

γ: the last three components of U are zero on z = 0 and z = 1,

or alternatively:

(4.16) γ : CU = 0 on z = 0, z = 1,

where C =
( 0 0

0 I3

)
, and I3 is the unit 3× 3 matrix.

5. Expansion procedure and derivation of the amplitude equa-
tion. If g(s) = 0 (or ε = 0) then we have the standard linear parallel plane
problem, so that we may expect that the critical disturbance of the plane
problem will have a corresponding perturbed solution in the non-parallel
case. We assume g(s) remains O(1) for r = O(ε−1), and look for a steady
solution of (4.13) in this region of the form

(5.1) U = eiαrV (z, s) + c.c.,

with R = Rc + ε2β, where ε is fixed by the size of the depression in the
lower surface (z = ε2g), and β is an arbitrary parameter which represents
an O(ε2) variation in R about Rc, and the symbol c.c. denotes the complex
conjugate. Now we expand the complex function V in powers of ε:

(5.2) V = εF 1 + ε2F 2 + ε3F 3 + . . . ,

where F i is a function of s and z. On substituting (5.1)–(5.2) into (4.13)
and equating powers of εn, we obtain a set of equations as follows:

L0F 1 = 0, γ,(5.3)
L0F 2 = −iαcA2L1F 1, γ,(5.4)
L0F 3 = (Rcg + β)A3F 1− iαA2L1F 2 −A2L2F 1(5.5)

with

C(F 3 − gF 1) = 0 on z = 0, CF 3 = 0 on z = 1,
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where

(5.6)

L0 =
∂

∂z
− (A1 + α2A2 +RcA3),

L1 =
∂

∂s
+

1
2s
,

L2 =
∂2

∂s2
+

1
s

∂

∂s
− 1
s2
,

A1, A2, A3 are constant 6×6 matrices, C and γ are given in (4.16) and α,Rc
are the critical wave and Rayleigh number respectively.

A general solution of (5.3) can be written as

(5.7) F 1 = A(s)f1(z),

where

L0f1(z) = 0, γ,

and f1(z) is the critical eigenfunction of the standard parallel plane problem
(S. Chandrasekhar [2]). The solution given in (5.7) contains an amplitude
function, A(s), which is determined by the solvability condition obtained at
the higher order O(ε2). Upon using (5.7), equation (5.4) becomes

(5.8) L0F 2 = −iαA2L1A(s)f1, γ,

and has a solution for F 2 if the adjoint condition

iαLiA(s)
1∫

0

f(z)(A2f1) dz = 0

is satisfied; the adjoint condition here is similar to that of Eagles [5], where
f(z) is the adjoint function.

From the boundary conditions on F 2, (5.4), and from the right-hand side
of (5.8), F 2 may be expressed as

(5.9) F 2 = −i
(
dA

ds
+
A

2s

)
f2 +A1(s)f1,

where A1(s) is an unknown function at this stage, and

L0f2 = 2αA2f1, γ.

A solution for F 3 exists if the adjoint condition is satisfied, which results in
the amplitude equation

(5.10) α

(
d2A

ds2
+

1
s

dA

ds
− A

4s2

)
+A{(b− cRc)g + bβ} = 0.
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Here

a = −α
1∫

0

f(z)(A2f2) dz, b =
1∫

0

f(z)(A3f1) dz,

c =
6∑
k=4

fk
df1k
dz

on z = 0,

where fk(z) is the kth component of the adjoint function f(z), and f1k(z) is
the kth component of the eigenfunction f1(z) and A2, A3 are given in (5.6).
Now let A0(s) = As1/2. From (5.10), we see that

(5.11)
d2A0

ds2
+ (δ1 + δ2g)A0 = 0,

where δ1 = bβ/a, δ2 = (b− cRc)/a.
The equation (5.11) is similar to that obtained by Eagles [5] in two-

dimensional case, where the boundary conditions are defined at s = ±∞.
In our case, we have no information about the boundary condition at the
center, s = 0, and we shall investigate this by using a matching procedure.

6. The inner solution and investigating the amplitude equation.
In the neighbourhood of r = 0 the function g(s) tends to zero and we look
for a linearized solution of (2.1)–(2.4) in which R = Rc and the components
of the disturbance are given in terms of Bessel functions. An equivalent
solution has been found in the stress-free case by Brown and Stewartson [1].
One solution is

θ = h(z)J0(αr), u = f(z)J ′0(αr), w = g(z)J0(αr)

and a second solution can be found by writing

(6.1)

u = f(z)J ′0(αr) + rf(z)J ′′0 (αr),
w = g(z)J0(αr) + rg(z)J ′0(αr),

θ = h(z)J0(αr) + rh(z)J ′0(αr),

where f, g, h, f , g, h can be found numerically.
The general solution for θ in the inner zone may now be written as

(6.2) θI = λJ0(αr)h+ µ{J0(αr)h+ J ′0(αr)h}.
Here θI denotes the inner solution and we use θ0 to denote the solution
already found. In order to match (6.2) with the outer solution (5.1), we
need to know the behavior of the amplitude function A0(s) as s→ 0, which
is found to be

(6.3) A0 ∼ a+ bs+ . . . (s→ 0),

where a, b are arbitrary constants and s = εr.
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From (5.1), (5.7), (5.11), in the outer region where g(s) 6= 0, θ0 is given
by

(6.4) θ0 ∼
eiαr

s1/2

{
hA0 − iε

∂A0

∂s
h+ . . .

}
+ c.c.

Now the asymptotic expansion of (6.2) for large r is

(6.5) θi ∼
(

2
παr

)1/2{(
λ− 3µ

8α

)
h cos r̂ + µrh sin r̂

}
,

where r̂ = αr − π/4. Substituting (6.3) into (6.4) we obtain

(6.6) θ0 ∼
eiαr

s1/2
{ah+ εbrh− ibεh}+ c.c.,

and comparing (6.5) with (6.6), we see that a match of the terms in h and
rh is secured if, respectively,

(6.7)

a =
(

ε

2πα

)1/2(
λ− 3µ

8α

)
e−iπ/4,

ε1/2b−
(
πα

2

)−1/2

e−iπ/4 = 0.

Therefore, from matching conditions (6.7) we can list the boundary condi-
tions for the amplitude equation as

(6.8) A0(0) = b1e
−iπ/4, A′

0(0) = b2e
−iπ/4,

where b1 and b2 are real constants. Note that these conditions are quite
different from those which apply to the non-linear problem studied by Brown
and Stewartson [1].

Now suppose that g(s) 6= 0 and define g1(s) = −δ2g(s), so that the
amplitude equation is given by A′′

0 + (δ1 − g1(s))A0 = 0, where g1(s) ≥ 0.
In view of the conditions (6.8), we set

(6.9) A0 = e−iπ/4(A1(s) + iA2(s)),

where A1(s) and A2(s) are assumed to be real functions. Then

(6.10)
A1(0) = b1,

A′
1(0) = 0,

A2(0) = 0,

A′
2(0) = b.

Let Ã = A1 + iA2 and Ã = R(s)eiψ(s). Then R and ψ satisfy the equations

(6.11) R′′ + (δ1 − g1)R− (ψ′)2R = 0, 2ψ′R′ + ψ′′R = 0,
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with boundary conditions

(6.12)
R(0) = b1,

R′(0) = 0,

ψ(0) = 0,

ψ′(0) = b2/b1.

From (6.11), ψ′ = c/R2, where c is an arbitrary constant, and the boundary
conditions at s = 0 imply that c = b1b2. Hence

(6.13) ψ = b1b2
∫
ds/R2.

Now if we impose the condition that R→ 0 (s→∞), then we choose c = 0,
so that

(6.14) R′′ + (δ1 − g1)R = 0, R′(0) = 0, R→ 0 (s→∞).

This system is the same as the linear form considered by Eagles [5], where
the function g1(s) is taken to be g1(s) = (tanh(s/

√
2)2 and for δ1 = 1/2

there is a solution R = b1 sech(s/
√

2) with R → 0 as s → ∞, representing
the distribution of convection cells concentrated near the center.

Discussion. It is well known that the base flow in the parallel plane
problem (g(s) = 0, or ε = 0) is unstable for R > Rc, and that for R > Rc a
pattern of convection cells or rolls is set up. In the non-parallel plane case
we see that the local Rayleigh number is larger near s = 0 than at s = ∞,
so that the convection cells occur in the center more readily than away from
the center and the positive value of g(s) for s > 0 causes an effective increase
in the critical Rayleigh number over that for the plane case, where g(s) = 0.
Finally, it should be pointed out that the boundary conditions at s = 0 for
the linear amplitude equation differ from those which apply to the non-linear
problem investigated by Brown and Stewartson [1].
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