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EXTREMES OF INTERARRIVAL TIMES
OF A POISSON PROCESS UNDER CONDITIONING

1. Introduction. Consider a homogeneous Poisson process {N(t) :
t > 0} with parameter A = E(N(1)), A > 0. Let 0 = Sy < S1 < ... denote
the successive times of events of the process and for j > 1,Y; =5; — S,
be the interarrival times.

It is known that under N(¢) = n,t > 0, the random variables 0 <
S1 < ...< 85, <t are distributed as the order statistics of a sample of n
observations taken from the uniform distribution on [0,¢]. This represents
the most natural relationship between the Poisson process, random points
on a line, and the uniform distribution, random points on an interval. For
example, see Pyke [6].

Let 0 = X0 < Xqn <... <X, n <t= X, t1, be the order statistics
corresponding to a sample from the uniform distribution on [0,¢], ¢ > 0. If
for 1 <j<n+1, weletY; = X;, — X;_1, be the spacings, then it is
known that (for example, see [1]) as n — oo,

logn +
A =l — —2)).
Pl e, v < (P75 )t} — wi- ot

Thus, in the case when Y; are the interarrival times of a homogeneous Pois-
son process, the above implies that as n — oo,

P{ max Y < <W>t N(t) = n} . exp(— exp(—z)).

1<j<n+1 n

This can also be found in [5].

The purpose of this paper is to investigate the limiting distribution of the
extremes of the interarrival times, Y}, of a Poisson process under a variety of
conditioning. In Section 2, we discuss the main results and in Section 3 we
consider the limiting distribution of the kth extremes. Finally, in Section 4
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we consider the asymptotic distribution for the number of interarrival times
satisfying certain inequalities.

2. Main result. The main results are the following theorems.

THEOREM 1. Let Y; be the interarrival times of a homogeneous Poisson
process. If m = m(n), n = 1,2,..., is a sequence of positive integers such
that m — oo and m/n — 0 as n — oo, then for any real number x,

>t ‘ N(t) = n} = exp(— exp(—z)).

In what follows, we let G(x) = exp(—exp(—z)), Z, = maxi<j<mY;
and T,(z) = (logm + z)/n, where m = m(n) is a sequence of positive
integers such that m — oo and m/n — 0 as n — oc.

The result in Theorem 1 can also be extended to the cases where we
condition on N(t) > n rather than N(t) = n and let ¢ = t(n) instead of
being fixed. That is, we will also prove that the following theorem holds.

logm + x

n—o00 1<j<m n

lim P{ max YJS(

THEOREM 2. Let Y; be the interarrival times of a homogeneous Poisson

process. If m = m(n), n = 1,2,..., is a sequence of positive integers such
that m — oo and m/n — 0 as n — oo, then for any real number x,
(i) lim P{Z,, <T,(x)t| N(t) > n} = G(x),
(ii) lim P{Z,, <T,(x)t(n)| N(t(n)) =n} = G(z),
n—oo

where t(n) > 0 for all n, and
(i) lim P{Zy, < T(2)t(n) | N(t(n)) = n} = G(a),

where t(n) > 0 and t(n) = o(n) as n — oo.

Remark. It is easy to see that under N(¢) = n, the random variables
Z;n) = (n/t)Y; are identically distributed with distribution F,(z) = 1 —
(1 — x2/n)™. Moreover, we see that under N(t) = n, ZJ(.n)7 1 <j <m,are
exchangeable but not independent. However, observe that F,(z) — 1 —e*

asn — oo and so Z ](n) are asymptotically exponentially distributed. On the
other hand, if X; are independent and identically distributed exponential
distributions, then

—z\ "
e
< — _
P{lgl]agxn X, <logn+ x} (1 - > — G(x)
as n — 00. Hence Theorems 1 and 2 can be viewed as extensions of the
above result.

In the proofs of Theorems 1 and 2 we will use the following result.
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LEMMA 1. If m =m(n),n =1,2,..., is a sequence of positive integers
such that m — oo and m/n — 0 as n — oo, then for any real number x,
and fired k =1,2,3,...,

lim mF(1 — kT, (z))" = e~ %2,

Proof. It suffices to show that
klogm +nlog(l — kT, (x)) — —kxz as n — oo.
To see this, we first observe that for x > 0,
1 x?
log(l—2)=-2— -+
S 21— (@)
Thus, it follows that for large n,

for 0 < ((z) < x.

1 k2 9
20— G )

where 0 < (,,(z) < kT,,(z). Hence, we see that

log(1 — kT, (x)) = —kT,(x) —

k2
klogm + nlog(1 — kT, (x)) = —kx — —nTg x).
(= ki) 21— Gy
Since lim,, o0 ¢ (7) = 0 and lim,, oo nT2(z) = lim,, o (logm + x)?/n = 0,
we see that the above implies the desired result.

The following lemma is an easy consequence of the fact that under
N(t) = n, Y1,...,Y, are distributed as the spacings of the order statis-
tic of a sample of n observations from the uniform distribution on [0, ¢].

LEMMA 2. Under N(t) = n, the interarrival times Yi,...,Y, are ex-
changeable random variables and for x > 0,

I{; n
PYi1>z, Yo>u,....Yy >z | N(t)=n} = <1—f>
+
fork=1,...,n, where ay = max{a,0}.
The proofs of Theorems 1 and 2 are based on the following theorem due

to Ridler-Rowe [7] and D. J. Kendall [4]. The proof can also be found in
Galambos [2], p. 309.

THEOREM 3. Consider a sequence of probability spaces and let Agn), ceey

Aﬁl”’ be exchangeable events on the n-th space. Assume m = m(n) < n
is a sequence of integers such that m(n) — oo with n and that, for some
0<a< oo,

m(n) Pa(A™) = a,

m2(n)Pn(A§n) N Agn)) —a® asn— oo.
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If N,, = Ny(r?) denotes the number of A;n), 1 < j5 < m, that occur and if
m/n — 0 as n — oo, then

S a

-
st

a

lim P, {N,, =s}= s=0,1,2,...

Proof of Theorem 1. For j=1,...,n define the events Agn) by
A = v, > T (2)t).

Under the condition that N(t) = n, we see that the events Ag-n), 1<j<mn,
are exchangeable. Furthermore,

P (A™) = P{Y; > T, (2)t | N(t) = n}
and
P (A 0 A = P{Y, > T (2)t, Yo > To(z)t | N(t) = n}.
Thus, by Lemma 2, it follows that
mPy(A) = m(1 = T, ()"
and
m2P, (A N AN = m?(1 — 2T, (2))".
Therefore, from Lemma 1 we conclude that
nlinéo mPn(Agn)) =e 7
and
lim mQPH(Agn) N Aén)) =e

n—oo

If we now let N, = N,(nn) = the number of Agn), 1 < j < m, that occur,
then Theorem 3 implies that

HILH;O P,{N,, =0} = exp(—exp(—z)) = G(z)
On the other hand, since
P, {N,, =0} = P{Z,, <T,(x)t | N(t) = n}
we see that the theorem holds.
Proof of Theorem 2. (i) If we let
Gi(x,t) = P{Z,, <T,(x)t | N(t) = k}
for k=n,n+1,..., then we observe that

1 - e ()
- k=n
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Next, we claim that as n — oo,
P{N(t) > n} ~ P{N(t) = n}

and

(A"

> Gl e A L g e A
k=n ’

n!

Then the above will imply that as n — oo,
P{Z < Tu(a)t | N(t) = n} ~ G, ).

Since Gy, (z,t) — G(z) as n — oo by Theorem 1, we see that it suffices to
prove the above claim. First, we note that

o A)F (A"

P{N(t) > n} = Ze € ol (1+A4n(2)),
k=n
where
o (At)F—n
An(2) —kzzn;rl n+1)(n+2)...(n+ (k—n))’

However, for large n,

o0

MO\ M
0<A,(t) < -
came 3 ()i

Thus, lim,,_, A, (t) = 0 and so we see that our first claim holds. Also,

i Gk(fv,t)e”‘tM = Gz, t)e ™™ (A)" <1 + Bn(x,t)>’
k=n

k! n! Gn(x,t)

where
(At)k—n
n+1)(n+2)...(n+ (k—n))’

B, (z,t) = Z Gr(z,t)
k=n-+1

But, since 0 < B, (z,t) < A,(t) we conclude that lim, .. B,(z,t) = 0.
This clearly implies our second claim.

(ii) We omit the proof since it is similar to the proof of Theorem 1.

(iii) The proof is similar to that of (i). Following the proof of (i) we see
that ¢(n) = o(n) implies that lim,,_,~, A, (t) = 0. Thus, applying (ii) we see
that the result holds.

Next, we prove the following.

COROLLARY 1. Let m = m(n),n = 1,2,..., be a sequence of positive
integers such that m — oo and m/n — 0 as n — oo. If {a,} is a sequence
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of positive numbers such that a,logm — 0o as n — oo, then

"

Proof. Let

n

Im — 1| > an

—_— N(t):n}—>0 as n — oo.
tlogm

Gn(z) = P{Zy < To(2)t| N(t) =n).

Then, by Theorem 1, G, (x) — G(z) as n — oo and since G is continuous
we see that this convergence is uniform in x. Thus,

P{’an—l N(#) :n}
tlogm

=1—-Gy(anlogm) + Gy (—aylogm)
<2sup|Gy(z) — G(z)| + 1 — G(aplogm) + G(—a, logm) — 0

> ay

as 1 — OQ.

Next, we study the asymptotic properties under N(t) = n of W,, =
ming <<y, Y; and Z,,, where m = m(n) such that m — oo and m/n — 0 as

n — oo. For a > 0, we see that
. a\"  _
Nit)=np=lm (1——) =e ¢
n—oo n

and from Theorem 1, we know that for any x,

nh_)néo P{Z,, <T,(x)t| N(t) =n} = G(z).

lim P{Wm s 2

n— 00 mn

We now prove that W,,, and Z,,, are asymptotically independent.

THEOREM 4. Let m = m(n) be a sequence of positive integers such that
m — oo and m/n — 0 as n — oo. Then Wy, and Z,, are asymptotically
independent. That is, for a,b > 0, we have

lim P{Wm > Mg < T, (— log b)t ‘ N(t) = n} — o (a+b).

a
n— oo mn

Proof. For j=1,...,n,let
(n) _ ‘ at A

Under N(t) =n, Ag-") are clearly exchangeable events. Furthermore, since

P(Ag") | N(t)=n)=1-— (1 ’n;ln>n+(1 — T, (—logb))"

it follows that
lim mP(A™ | N(t)=n) =a+b.
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Next, we observe that

PAM NAY | N@#) =n) = B, +2C, + D,,

where
at .
Bn:P{YjS;jzl,Q‘N(t):n}
mn
:1—2(1—“) +<1—2a> :
mn mn
Cn:P{Yl < a—t;Yg > T,,(—logb)t ‘ N(t):n}
mn
a n
— (1 Ty(—logh))" — (1 —Tn(—logh) — -2 |
(=T togh)" = (1T~ ogt) — )
and

D, = P{Y; > T,(—logb)t; j =1,2| N(t) =n} = (1—-2T,(—logh))".

Then we see that as n — oo, m?B,, — a%, m?>C,, — ab and m?D,, — b>.
The result now follows by Theorem 3.

Remark. It can be shown that Theorem 4 holds by conditioning on
N(t) > n rather than N(t) = n.

3. Asymptotic distribution of the kth extremes. If we let Y7 ,, <
Yo m < ... <Y, m denote the order statistics of Y7,...,Y,,, then, for a given
fixed value of k, Y}, , and Y,,,_r41,m are called the kth lower and the kth
upper extremes, respectively. Observe that Y; ,,, = Wy, and Y, ,, = Z,,.

For j =1,...,n, let A;n) and Ny(,;l) be as defined in the proof of Theo-
rem 1. Then the proof of Theorem 1 implies that for s =0,1,2,...,

€—$S

nh_}rréo P{N,,=s|N(t)=n}= G(x).

s!

However, we see that
k—1
P{Ymk1m < Tn(@)t | N(t) =n} =D P{Nn =s| N(t) = n}.
s=0

Thus, from the above, the following theorem holds.

THEOREM 5. Let m = m(n),n = 1,2,..., be a sequence of positive
integers such that m — oo and m/n — 0 as n — oo. Then for any fived
k>1, and —oco < x < 0o, we have

—ISs

e

n—00 S! '

k—1
lim P{Y_pr1.m < Tol@)t | N(t) =n} =) _ G(x)
s=0
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Remark. Note that if we let £ = 1 in the above theorem, then we get
Theorem 1.

For the kth lower extreme, we can prove that the following theorem
holds.

THEOREM 6. Let m = m(n) be a sequence of positive integers such that
m — oo and m/n — 0 as n — oo. Then for any fired k > 1 and a > 0, we
have

k—1 s
—_q@
nan;oP{Ykm> ’ N(t —n}: g_oe o
Proof. For j=1,...,n, let

Al = {Y <o

mn

N(t) = n}
Then it is easy to show that

lim mPn(Agn)) = lim mP(Agn) | N(t)=n)=a

n—oo n—oo
and
lim m2P, (A N AM) = lim m?P(A™ N A | N(t) = n) = >

Since Ag-n) are exchangeable events, we conclude from Theorem 3 that
lim P{N,, =s| N(t) =n} :efaa—' for s =0,1,2,...

1n— 00 S!

The theorem now follows from

k—1
P{Ykm > — ‘ N(t —n} => P(Nm=s|N(t)=n).
s=0
We can also extend the results obtained in Theorems 3 and 4 by condi-

tioning on N (t) > n rather than N(t) = n to get the following theorem.

THEOREM 7. Let m = m(n) be a sequence of positive integers such that
m — oo and m/n — 0 as n — oo. Then, for k > 1, —0o < x < 00 and
a > 0,

k—1 s
lim P{Ykm> ‘N >n}:§ oL
n—oo s S!

and

lim P{Yy,_pi1m < Tn(2)t | N(t) >n} = ZG

n—oo

The theorem can be proved from Theorems 3, 4 and the following lemma.
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LEMMA 3. If0<p <1, and A = A(n), n = 1,2,..., is a sequence
of events such that lim, o, P(A | N(t) = n) = p, then lim,_,, P(A |
N(t) > n) =p.

Proof. We first observe that

1 = oYL

PN = ] 2 PA TN @ = e

=n

P(A| N(t) >n)

From the proof of Theorem 2 we know that
P{N(t) >n} ~ P{N(t) =n} asn— oo.
Moreover, it follows that as n — oo,

0 k
ST PA|N() = k)e ™ (Akf!) ~ P(A| N(t) = n)P(N(t) = n).
k=n

The lemma now follows from the above.

4. The number of interarrival times satisfying certain inequali-
ties. In this section, we consider the problem of investigating the asymptotic
distribution of the number of interarrival times Y; lying in a given interval.
Throughout this section, m = m(n) denotes a sequence of positive integers
such that m — oo and m/n — 0 as n — oo. Also, for 0 < a < b < 1, let
Ny (a,b) denote the number of Yj, 1 < j < m, that satisfy at < Y; < bt,
under the condition N(¢) = n. We now give the asymptotic distribution of
the number of “large” Y;.

THEOREM 8. For a < b, N,,(T),(a), T, (b)) has an asymptotic Poisson
distribution with parameter f(a,b) = e~* —e~b. That is, for k =0,1,2,...,

lim P{N,, (T, (a). To(b) = k | N(t) = n} = e~/an {"(0:0)

n—00 k!
Proof. For j =1,...,n define the events A§") by
A =T, (a)t < Y; < T, (b)1}.

Under N(t) = n, it is clear that Ag-"), 1 < j < n, are exchangeable events.
Furthermore,

PAM | N(t) =n) = (1 = T(a)™ — (1 = T, (b)"
and
PAM™ N A | N@) =n)
= (12T, (a))"™ — 2(1

Then it is easy to show that

2logm +a+0b
n

>n + (1 - 2T,(b)"
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lim mPn(Agn)) = f(a,b) and  lim mQPn(A(ln) ﬂAén)) = f*(a,b).

n—oo

The theorem now follows from Theorem 3.

A similar argument gives the asymptotic distribution of the number of
“small” Y.
THEOREM 9. For 0 < a < b, Nm(i L) has an asymptotic Poisson

L, . . mn’ mn
distribution with parameter b — a. That is,

Jim P{Nm (“ b) —k ’ N(t) = n} I

n—oco mn’ mn k!
fork=0,1,2,...

We now extend the results of Theorems 8 and 9 to the case where we
condition on N (¢) > n rather than on N(¢) = n. Using Lemma 3 and the
above theorems one can see that the following theorem holds.

THEOREM 10. (i) If a < b, then
b fk(aab)
lim P{N,(T,(a), Tn(b)) =k | N(t) > n} = e /@ )T
fork=0,1,2,...
(ii) Fora <b and k=0,1,2,...,

lim P{Nm<“ b> =k ‘ N(t) > n} _ o)

) -
n—0o mn’ mn k!
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