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COMPUTER SIMULATION OF A NONLINEAR
MODEL FOR ELECTRICAL CIRCUITS
WITH o-STABLE NOISE

Abstract. The aim of this paper is to apply the appropriate numer-
ical, statistical and computer techniques to the construction of approxi-
mate solutions to nonlinear 2nd order stochastic differential equations mod-
eling some engineering systems subject to large random external distur-
bances. This provides us with quantitative results on their asymptotic be-
havior.

1. Introduction. The stable distributions have already found ap-
plications in various fields of engineering, such as signal processing (see,
e.g. Shao and Nikias (1993)) or impulsive noise modeling and communi-
cation (Mandelbrot and van Ness (1968) or Stuck and Kleiner (1974)). In
such cases, and generally when noises deviate from the ideal Gaussian mod-
els, the non-gaussian statistical methods are involved. The methodology
of studying models which are described by stochastic differential equations
with a-stable noise is presented in Janicki and Weron (1994a). In this
paper, on the basis of appropriate computer experiments, we want to in-
vestigate the differences between a 2nd order nonlinear Gaussian model of
electrical circuit and its a-stable counterpart, which in fact are not so big
“on average” when a stationary solution acting as a strong attractor ap-
pears in a model. So, this paper should be regarded as a complement to
Weron’s (1995), where a linear stochastic model was chosen as a tutorial
example.
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2. A stochastic differential equation of 2nd order. It is obvious
that the 2nd order ODE of the form

d’x dz
2.1 —Z = il
(2.1) i f(a:, dt)
can be rewritten as an autonomous system of 2 ODE’s of the 1st order
dx dy
2.2 — = —= = .
(2.2) T =Y g =)

Adding the additive a-stable noise to (2.1) we get analogously the system
of stochastic differential equations driven by an a-stable Lévy motion, which
can be expressed in the following integral form:

X(t) = Xo —I—f Y (s—)ds,
(23) Ot t
Y(t) =Yy + [ f(X(s=),Y(s=))ds+c [ dLa(s) fort € [0,00),
0 0

where X(0) = X and Y(0) = Y, are given a-stable or discrete random
variables.

This system (called in the sequel SDE of the 2nd order) includes as a
special case the equation which will serve as model for an electrical circuit
discussed below.

3. Simulation of SDE’s of the 2nd order. Now we describe
briefly a method of approximate computer simulation of a bivariate stochas-
tic process {(X(t),Y (¢t)) : t € [0,T]} with independent increments. The
method is based on the construction of a discrete time process of the form
{(X7,Y7) I o Tt is enough to define the set {t; = it : i = 0,1,...,I},
7 = T/I, describing a fixed mesh on the interval [0, 7], and a sequence of
L.i.d. random variables AL7 ; playing the role of random a-stable measures
of the intervals [t;_1,t;), i.e. a-stable random variables defined by

(3.1) ALY ;= La([ti—1,t:)) ~ Sa(7'/%,0,0);

to choose X[ = Xog ~ Su(0,0,u) or XJ = zo, Y7 = Yo ~ Sa(0,0,p) or
Yy = yo, and to compute

th; :X;—l +Y;77:—717_’

Y7 =YT 4 f(X] YT )T+ AL,

o,

(3.2)

fori=1,...,1.

The theorem on convergence of this method, based on some properties
of measures on the space D ([0, 7], R?) of so-called cadlag trajectories, and
justifying the method can be found in Janicki, Michna and Weron (1994).
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In computer calculations each of the random variables X| and Y, de-
fined by (3.2) is represented by its N independent realizations, i.e. random
samples {X7 (n)}Y_; and {Y7(n)}Y_;. So, let us fix N € N large enough.
The algorithm consists in the following;:

1. Simulate random samples {X§ (n)}2_; and {Y7 (n)}Y_; for X7 and

Ye.
2. For i = 1,...,I simulate a random sample {AL7, ;(n)}}_, for an
a-stable random variable AL7, ; ~ S, (71/*,0,0).
3. For i = 1,...,I, in accordance with (3.2), compute the random
samples

by XO=XL0) Yy
| Y7 (1) =Yy (n) + F(XT1 (), Y7 (n))7 + AL ,(n),

7
n=1,...,N.

4. Construct kernel density estimators fx ; = f)I(JZV = f§<]lv(x) and fy,; =
f{,fv = f{,fv(x) of the densities of X (¢;) and Y (¢;), using for example the
optimal version of the Rosenblatt—Parzen method.

5. Construct two-dimensional kernel density estimators of the joint den-
sities for the vectors (X (t;),Y (t;)), using the corresponding version of the
Rosenblatt—Parzen method or, at least, scatterplots of (X(¢;),Y (¢;)) for
some t;.

Observe that we have produced N finite time series of the form
{X7(n)}_, for n =1,...,N and another N finite time series of the form
{Y7(n)}_, forn =1,...,N. We regard them as “good” approximations
of the trajectories of the coordinate processes {X(t) : t € [0,7]} and
{Y(t): t€][0,T]}.

4. An example of electrical circuit. Here we present an example
of a nonlinear stochastic differential equation of the 2nd order, involving
stochastic integrals with stationary a-stable increments, i.e., an example of
(2.3).

Let us start with the observation that the closed electrical contour with
nonlinear elements presented in the figure below can be described by the
following 2nd order ODE:

d’z dx 1 dx
(4.1) LW(t) =+ RE(t) + Ex(t) + g(m(t), E(t)> = 0.
dx

Here z,1 = 97, R, L, C denote, respectively, electrical charge, electric
force, resistance, induction, and capacity.

We have chosen the function g to be defined as g(z,y) = Const *(234y3),
which should be equal to 0 at (0,0) and approach this value at least as fast as
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Fig. 4.1. Electric circuit corresponding to equation (4.1)

22 + 9?2 in order to give rise to an asymptotically stable stationary solution
to (4.1) at this point. Fixing values of all constants we have chosen the
following example:

A’z 1 dx 1 dx 3
4.2 —— () + = —(t t) + — )2+ | =(t =
4y GO+ R0 a0+ (e0r+ (F0) ) o
and, finally, we get the 2nd order SDE

X(t)=Xo+ [ Y(s—)ds,
0

1

Y(s—) 10

(X3(s—) + Y?’(s—)> ds,

(43) Y(t)=Yo+ [ (— X(s—) — %
0

1 t
+E0dea(s),

for t € [0,T]. The following starting values of the solution were chosen for
computer experiments: X (0) ~ S,(1,0,5), Y(0) =5 a.s.

Of course, Y (t) = i(t), so in what follows we focus our attention on this
coordinate of the solution.

5. Results of computer experiments. Figures 5.1-5.11, obtained
from computer experiments concerning the 2nd order SDE (4.3), visualize
some significant features of the solution {(X(¢),Y (t)) : t > oo}.

Figure 5.1 is intended to show the existence of an asymptotically stable
stationary solution (z(t) =0, y(¢t) = 0) to the deterministic equation (4.2),
which acts as a strong attractor in the phase space. Figures 5.2-5.3 illustrate
the appearance of a stochastic attractor in (4.3). The solution {(X(¢),Y (¢)) :
t > 0} converges at infinity (rather quickly) to a bivariate random vector
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Fig. 5.1. 100 trajectories of the solution to the deterministic electric circuit equation with
the random vector (S2(1,0,5),5) as starting value of the solution, for ¢ € [0, 7]
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Fig. 5.2. 100 trajectories of the solution to the electrical circuit equation driven by a
stable Lévy motion (4.3), for @ = 2.0, with the random vector (S2(1,0,5),5) as starting
value of the solution, for ¢ € [0, 7]

(X(00),Y(00)). The scatterplots visible in Figs. 5.10-5.11 are intended to
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Fig. 5.3. 100 trajectories of the solution to the electrical circuit equation driven by a
stable Lévy motion (4.3), for a = 1.2, with the random vector (S7.2(1,0,5),5) as starting
value of the solution, for ¢ € [0, 7]
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Fig. 5.4. Visualization of the second coordinate {Y (¢) : ¢ € [0,20]} of the solution to the
electrical circuit equation driven by a stable Lévy motion (4.3), for o = 2.0, with the
random vector (S3(1,0,5),5) as starting value of the solution
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Fig. 5.5. Visualization of the second coordinate {Y (¢) : ¢ € [0,20]} of the solution to the
electrical circuit equation driven by a stable Lévy motion (4.3), for o = 1.2, with the
random vector (S7.2(1,0,5),5) as starting value of the solution
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Fig. 5.6. Visualization of the second coordinate {Y'(¢) : ¢ € [0,20]} of the solution to the
electrical circuit equation driven by a stable Lévy motion (4.3), for o = 2.0, with the
random vector (S3(1,0,5),5) as starting value of the solution
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Fig. 5.7. Visualization of the second coordinate {Y (¢) : ¢ € [0,20]} of the solution to the
electrical circuit equation driven by a stable Lévy motion (4.3), for o = 1.2, with the
random vector (S7.2(1,0,5),5) as starting value of the solution
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Fig. 5.8. Densities evolution of the second coordinate {Y (¢) : ¢ € [0,20]} of the solution
to the electrical circuit equation driven by a stable Lévy motion (4.3), for a = 2.0, with
the random vector (S2(1,0,5),5) as starting value of the solution
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Fig. 5.9. Densities evolution of the second coordinate {Y (¢) : ¢ € [0,20]} of the solution
to the electrical circuit equation driven by a stable Lévy motion (4.3), for a = 1.2, with
the random vector (S1.2(1,0,5),5) as starting value of the solution
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Fig. 5.10. Scatterplot of (X (20),Y(20)) of the solution {(X(¢),Y (¢))} to the electrical
circuit equation driven by a stable Lévy motion (4.3), for a = 2.0, with the random vector
(S2(1,0,5),5) as starting value of the solution
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Fig. 5.11. Scatterplot of (X (20),Y(20)) of the solution {(X(¢),Y (¢))} to the electrical
circuit equation driven by a stable Lévy motion (4.3), for a = 1.2, with the random vector
(S1.2(1,0,5),5) as starting value of the solution

give an idea of how their joint densities look like, and how they depend on
the parameter . The figures present 10000 final positions of trajectories of
the solution at ¢ = 20. (For ¢t > 20 the results are very similar.)

Figures 5.4-5.9 represent the coordinate Y (¢) = i(¢) of the solution to
(4.3). Applying the methods of visualization of univariate stochastic pro-
cesses (evolution of quantiles and evolution of densities) described in Weron
(1995) we tried to make it evident that for any value of the parameter «
the process {Y (t)} is asymptotically stationary, in spite of large differences
in behavior of trajectories of the process for different values of o (compare
Figs. 5.6 and 5.5). Starting from ¢ = 20 the process becomes indistinguish-
able from a stationary process, as far as the accuracy of our approximate
method is concerned.
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