K. MOSZYŃSKI (Warszawa)

CONCERNING DECOMPOSITION OF A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Introduction. Let us consider a system of linear algebraic equations

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where A is an $N \times N$ real, invertible matrix. In [1] a method of decomposition of (1) was proposed. The purpose of such a decomposition is to enable parallelization of the algorithm, and if possible to make the problem better conditioned.

Let $R=U A-A U$. The general idea of the method mentioned above is based on the following observation: if an $N \times N$ matrix U of rank $r<N$ commutes sufficiently well with A, i.e. R is sufficiently small, then U defines an approximate decomposition of (1).

Let $U=Q F$, where Q is an $N \times r$ matrix and F is an $r \times N$ matrix, both of rank r. In [1] it is proposed to replace (1) by one of following systems, which can be solved by iteration:

$$
\begin{align*}
Q^{T} A Q y_{n+1}+Q^{T} R Q y_{n}+Q^{T} R S z_{n} & =Q^{T} U b \\
S^{T} A S z_{n+1}-S^{T} R Q y_{n}-S^{T} R S z_{n} & =G(I-U) b \tag{2}
\end{align*}
$$

or

$$
\begin{align*}
A Q y_{n+1}+F R Q y_{n}+F R S z_{n} & =F U b \tag{3}\\
G A S z_{n+1}-G R Q y_{n}-G R S z_{n} & =G(I-U) b
\end{align*}
$$

where $I-U=S G$ with an $N \times s$ matrix S and an $s \times N$ matrix G, and, in general, $N-r \leq s \leq N$. Moreover, $x_{n}=Q y_{n}+S z_{n}$ converges to the solution $x=A^{-1} b$ of the system (1).

We may easily transform (2) and (3) to a more convenient form not containing R (see [1]):

1991 Mathematics Subject Classification: 65F10, 65F35.
Key words and phrases: decomposition of a matrix, nearly commuting matrices, parallelization.

$$
\begin{equation*}
Q^{T} A Q v_{n+1}=Q^{T} U r_{n}, \quad S^{T} A S w_{n+1}=S^{T}(I-U) r_{n} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
F A Q v_{n+1}=F U r_{n}, \quad G A S w_{n+1}=G(I-U) r_{n} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
v_{n+1} & =y_{n+1}-F x_{n}, \quad x_{n}=Q y_{n}+S z_{n} \\
w_{n+1} & =z_{n+1}-G x_{n}, \quad r_{n}=b-A x_{n}
\end{aligned}
$$

If U is a projector, i.e. if $U^{2}=U$, each of the systems (4) and (5) contains exactly N equations ($s=N-r$), hence such a choice is preferable.

This paper concerns the following problem:
Given $U=Q F$, where Q and F are $N \times r$ and $r \times N$ matrices respectively, both of rank $r \leq N$, we have to construct an $N \times N$ matrix V, satisfying the following conditions:

1. $\operatorname{rank}(V)=\operatorname{rank}(U)=r$;
2. $V^{2}=V$;
3. $\operatorname{Im}(V)=\operatorname{Im}(U)$;
4. If at least one of the processes (4) and (5) converges and R is sufficiently small, then after replacing U by V, at least one of (4) and (5) will converge as well.

The matrix V

Lemma 1. Let U be an $N \times N$ matrix of rank $r \leq N$. Assume that there are r linearly independent columns $u_{p_{1}}, \ldots, u_{p_{r}}$ of U and r linearly independent columns $w_{p_{1}^{\prime}}, \ldots, w_{p_{r}^{\prime}}$ of U^{T} such that $\left(w_{p_{i}^{\prime}}, u_{p_{i}}\right) \neq 0$ for $i=$ $1, \ldots, r$. Then there exist four matrices $Q, Q^{\prime}, F, F^{\prime}$ of dimensions $N \times r$, $N \times r, r \times N, r \times N$ respectively, such that

$$
\begin{equation*}
U=Q F, \quad U^{T}=Q^{\prime} F^{\prime} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
Q^{T} Q^{\prime}=Q^{T} Q=I_{r} \tag{7}
\end{equation*}
$$

Proof. Observe that in this case a kind of Gram-Schmidt process of biorthogonalization can be applied to the double system of vectors $u_{p_{1}}, \ldots$ $\ldots, u_{p_{r}}, w_{p_{1}^{\prime}}, \ldots, w_{p_{r}^{\prime}}$.

We start with

$$
u_{p_{1}}=\gamma_{1,1} q_{1}, \quad w_{p_{1}^{\prime}}=\gamma_{1,1}^{\prime} q_{1}^{\prime}, \quad \gamma_{1,1} \gamma_{1,1}^{\prime}=\left(w_{p_{1}^{\prime}}, u_{p_{1}}\right) \neq 0
$$

and then we proceed with the formulas

$$
\begin{gathered}
u_{p_{k}}=\sum_{j=1}^{k} \gamma_{k, j} q_{j}, \quad \gamma_{k, j}=\left(q_{j}^{\prime}, u_{p_{k}}\right), \quad j=1, \ldots, k-1, \\
w_{p_{k}^{\prime}}=\sum_{j=1}^{k} \gamma_{k, j}^{\prime} q_{j}^{\prime}, \quad \gamma_{k, j}^{\prime}=\left(q_{j}, w_{p_{k}^{\prime}}\right), \quad j=1, \ldots, k-1, \\
\gamma_{k, k} \gamma_{k, k}^{\prime}=\left(w_{p_{k}^{\prime}}, u_{p_{k}}\right)-\sum_{j=1}^{k-1} \gamma_{k, j} \gamma_{k, j}^{\prime}
\end{gathered}
$$

for $k=1, \ldots, r$. In this way we get

$$
\begin{aligned}
& u_{s}=\sum_{j=1}^{r} \gamma_{s, j} q_{j}, \quad \gamma_{s, j}=\left(u_{s}, q_{j}^{\prime}\right), \\
& w_{s}=\sum_{j=1}^{r} \gamma_{s, j}^{\prime} q_{j}^{\prime}, \quad \gamma_{s, j}^{\prime}=\left(w_{s}, q_{j}\right),
\end{aligned}
$$

for all $s=1, \ldots, N, j=1, \ldots, N$. The last formulas can be written in the form

$$
U=Q F \quad \text { and } \quad U^{T}=Q^{\prime} F^{\prime},
$$

where Q and Q^{\prime} are the $N \times r$ matrices with columns q_{j} and q_{j}^{\prime} respectively, and F and F^{\prime} are the $r \times N$ matrices of the coefficients $\gamma_{i, j}$ and $\gamma_{i, j}^{\prime}$, respectively.

Assume now that the decompositions from Lemma 1: $U=Q F$ and $U^{T}=Q^{\prime} F^{\prime}$ are possible, and are given. Define

$$
V=Q Q^{\prime T} \quad \text { and } \quad R^{\prime}=V A-A V .
$$

Proposition 1. V is a projector.
Proof. $V V=Q Q^{\prime T} Q Q^{\prime T}=Q I_{r} Q^{\prime T}=V$.
Since V is a projector of rank $r, I-V$ is a projector of rank $N-r$. Hence $I-V=S^{\prime} G^{\prime}$, where S^{\prime} and G^{\prime} are $N \times(N-r)$ and $(N-r) \times N$ matrices respectively. This decomposition may be obtained for example by usual Gram-Schmidt orthogonalization, applied to the columns of $I-V$.

Proposition 2. $U=U V=V U$.
Proof. We have $V U=Q Q^{T} Q F=Q I_{r} F=Q F=U$. Moreover, $U V=\left(Q^{\prime} F^{\prime}\right)^{T} Q Q^{\prime T}=F^{\prime T} Q^{\prime T} Q Q^{\prime T}=F^{\prime T} I_{r} Q^{\prime T}=\left(Q^{\prime} F^{\prime}\right)^{T}=U$.

Proposition 3.

$$
R(I-V)=U R^{\prime}, \quad(I-V) R=R^{\prime} U
$$

Proof. By Proposition 2 it follows that $R=U A-A U=U V A-A U V$; since $A U=U A-R$, we have

$$
R=U V A-U A V+R V=U R^{\prime}+R V
$$

and so $U R^{\prime}=R(I-V)$. Similarly, $R=U A-A U=V U A-A V U$, and $U A=A U+R$, hence

$$
R=V A U+V R-A V U=R^{\prime} U+V R
$$

whence $R^{\prime} U=(I-V) R$.
Proposition 4. $Q^{T} R^{\prime} Q=0$.
Proof. Observe that $R^{\prime}=V A-A V=A(I-V)-(I-V) A$. This yields

$$
V R^{\prime} V=V A(I-V) V-V(I-V) A V=0
$$

because V is a projector and $V(I-V)=(I-V) V=0$. On the other hand, $0=V R^{\prime} V=Q Q^{\prime T} R^{\prime} Q Q^{\prime T}$ and $0=Q^{T} V R^{\prime} V Q^{\prime}=Q^{T} Q Q^{\prime T} R^{\prime} Q Q^{\prime T} Q^{\prime}$. Now, $Q^{T} Q$ and $Q^{T} Q^{\prime}$ are the Gram matrices of the bases q_{1}, \ldots, q_{r} and $q_{1}^{\prime}, \ldots, q_{r}^{\prime}$, and hence are invertible. Finally, we deduce that $Q^{\prime T} R^{\prime} Q=0$.

Proposition 5. $G^{\prime} R^{\prime} S^{\prime}=0$.
Proof. Since V is a projector, we have

$$
(I-V) R^{\prime}(I-V)=(I-V)(V A-A V)(I-V)=0
$$

because $(I-V) V=V(I-V)=0$. Therefore

$$
S^{\prime} G^{\prime} R^{\prime} S^{\prime} G^{\prime}=0
$$

and

$$
S^{\prime T} S^{\prime} G^{\prime} R^{\prime} S^{\prime} G^{\prime} G^{\prime T}=0
$$

We conclude that $G^{\prime} R^{\prime} S^{\prime}=0$, the Gram matrices $S^{\prime T} S^{\prime}$ and $G^{\prime} G^{T T}$ being invertible.

Proposition 6.

$$
R^{\prime} Q=(I-V) R F^{T}\left(F F^{T}\right)^{-1}=O(R)
$$

Proof. From Proposition 3, $(I-V) R=R^{\prime} Q F$, and hence

$$
R^{\prime} Q=(I-V) R F^{T}\left(F F^{T}\right)^{-1}
$$

Proposition 7. If $F Q$ is invertible (that is, U is in some sense close to a projector), then

$$
Q^{T} R^{\prime}=(F Q)^{-1}\left(Q^{T} Q\right)^{-1} Q^{T} R(I-V)=O(R)
$$

Proof. By Proposition 3, $R(I-V)=U R^{\prime}$, and by Proposition 2, $U=U V=Q F Q Q^{\prime T}$. Hence $R(I-V)=Q F Q Q^{\prime T} R^{\prime}$, which implies

$$
Q^{T} R(I-V)=Q^{T} Q F Q Q^{T} R^{\prime}
$$

The assertion follows by invertibility of $F Q$ and $Q^{T} Q$.
Theorem 1. Assume that the hypotheses of Lemma 1 are satisfied, the matrix U depends continuously on R, where $R=U A-A U$, and $F Q$ is invertible for R small. Then the process (5), with U replaced by V, converges for R small enough. This process can now be written as follows:

$$
\begin{gather*}
Q^{\prime T} A Q v_{n+1}=Q^{\prime T} r_{n}, \quad G^{\prime} A S^{\prime} w_{n+1}=G^{\prime}(I-V) r_{n}, \\
v_{n+1}=y_{n+1}-Q^{\prime T} x_{n}, \quad x_{n}=Q y_{n}+S^{\prime} z_{n}, \tag{8}\\
w_{n+1}=z_{n+1}-G^{\prime} x_{n}, \quad r_{n}=b-A x_{n} .
\end{gather*}
$$

Proof. Let us return to the equation (3), equivalent to (5). Now, if U is replaced by V, in view of Propositions 1-7, the equation (3) admits the following form:

$$
\begin{gathered}
Q^{\prime T} A Q y_{n+1}+Q^{\prime T} R^{\prime} S^{\prime} z_{n}=Q^{\prime T} b, \\
G^{\prime} A S^{\prime} z_{n+1}-G^{\prime} R^{\prime} Q y_{n}=G^{\prime}(I-V) b .
\end{gathered}
$$

By Propositions $1-7$, the coefficients of all terms containing y_{n} and z_{n} are of order $O(R)$; hence the convergence follows by standard arguments.

Case of A symmetric. Put now $V=Q Q^{T}, R=U A-A U, R^{\prime}=$ $V A-A V$, and $U=Q F$ with $Q^{T} Q=I_{r}$. A decomposition of this kind may be obtained for example by application of the Gram-Schmidt process to the columns of U.

Proposition 8. V is an orthogonal projector.
Proof. $V V=Q Q^{T} Q Q^{T}=Q I_{r} Q^{T}=V$. Moreover, $V^{T}=\left(Q Q^{T}\right)^{T}=$ $Q Q^{T}=V$.

Since $I-V$ is of rank $N-r$, we may decompose (by the Gram-Schmidt process)

$$
I-V=S^{\prime} G^{\prime}, \quad \text { where } \quad S^{T} S^{\prime}=I_{N-r} .
$$

Proposition 9. If $A=A^{T}$, then $R^{T}=-R^{\prime}$.
Proof. We have $R^{T}=(V A-A V)^{T}=A^{T} V^{T}-V^{T} A^{T}=A V-V A$ $=-R^{\prime}$.

Proposition 10. $R^{\prime} Q=(I-V) R F^{T}\left(F F^{T}\right)^{-1}=O(R)$.
Proof. We have $Q^{T} U=Q^{T} Q F=F$, hence $U=Q Q^{T} U=V U$,
$R=U A-A U=V U A-A V U=V(A U+R)-A V U=R^{\prime} U+V R$, and so $(I-V) R=R^{\prime} U=R^{\prime} Q F$. Since $F F^{T}$ is invertible, we get $R^{\prime} Q=$ $(I-V) R F^{T}\left(F F^{T}\right)^{-1}$.

Proposition 11. If $A=A^{T}$, then $Q^{T} R^{\prime}=-\left(F F^{T}\right)^{-1} F R^{T}(I-V)=$ $O(R)$.

Proof. We have

$$
R^{\prime} Q=(I-V) R F^{T}\left(F F^{T}\right)^{-1}
$$

whence by Proposition 9,

$$
-Q^{T} R^{T}=Q^{T} R^{\prime}=-\left(F F^{T}\right)^{-1} F R^{T}(I-V)
$$

Proposition 12. If $A=A^{T}$, then $Q^{T} R^{\prime} Q=0$.
Proof. Observe that $(I-V) Q=Q-Q Q^{T} Q=Q-Q=0$ and $Q^{T} R^{\prime} Q=-\left(F F^{T}\right)^{-1} F R^{T}(I-V) Q=0$.

Proposition 13. $S^{\prime T} R^{\prime} S^{\prime}=0$.
Proof. We have

$$
\begin{aligned}
(I-V) R^{\prime}(I-V) & =(I-V)(V A-A V)(I-V) \\
& =(I-V) V A(I-V)-(I-V) A V(I-V)=0
\end{aligned}
$$

because $V(I-V)=(I-V) V=0$, where V is an orthogonal projector. Since $I-V$ is symmetric, it follows that $I-V=(I-V)^{T}=G^{\prime T} S^{\prime T}$ and $(I-V) R^{\prime}(I-V)=G^{T} S^{\prime T} R^{\prime} S^{\prime} G^{\prime}$. Observe that $G^{\prime} G^{T}$ is invertible, whence $G^{\prime}(I-V) R^{\prime}(I-V) G^{\prime T}=0$, which completes the proof.

Theorem 2. Assume that $A=A^{T}$, and that $U=Q F$, where $Q^{T} Q$ $=I_{r}$, depends continuously on $R=U A-A U$. Then the process (4), with U replaced by $V=Q Q^{T}$, which is now of the following form:

$$
\begin{gather*}
Q^{T} A Q v_{n+1}=Q^{T} r_{n}, \quad S^{\prime T} A S^{\prime} w_{n+1}=S^{T} S^{\prime} G^{\prime} r_{n} \\
v_{n+1}=y_{n+1}-Q^{T} x_{n}, \quad x_{n}=Q y_{n}+S^{\prime} z_{n} \tag{9}\\
w_{n+1}=z_{n+1}-G^{\prime} x_{n}, \quad r_{n}=b-A x_{x}
\end{gather*}
$$

converges for R small enough.
Proof. We recall the equation (2), equivalent to (4), which now takes the form

$$
\begin{aligned}
Q^{T} A Q y_{n+1}+Q^{T} R^{\prime} S^{\prime} z_{n} & =Q^{T}(I-V) b \\
S^{\prime T} A S^{\prime} z_{n+1}-S^{\prime T} R^{\prime} Q y_{n} & =G^{\prime}(I-V) b
\end{aligned}
$$

From Propositions 8-12 it follows that the terms containing y_{n} and z_{n} are of order $O(R)$; hence, for R small the convergence follows by standard arguments.

Example. Assume that an $N \times N$ matrix A and an $M \times M$ matrix C, with $M<N$, are two finite-dimensional approximations of a certain linear operator. For simplicity, assume both matrices A and C to be symmetric and invertible.

Let

$$
p: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N} \quad \text { and } \quad r: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}
$$

be linear extension and restriction operators, respectively (see [2]). Put

$$
U=p C r: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

If p and r are properly chosen (see [2]), then we may expect that $R=$ $U A-A U$ will be small for sufficiently large N and $M, M<N$. We may also expect (at least in certain situations-see the Laplace operator for example), that in general the matrix C will correspond to a lower part of the spectrum of the original operator than the matrix A. This phenomenon may be explained as follows: approximation on a rough grid in general does not allow passing higher frequency oscillations.

We may apply our algorithm (9) to the matrix A and U. Application of the Gram-Schmidt process to the columns of the matrix $p C$ will give $p C=Q \Gamma$ with $Q^{T} Q=I_{M}$. Hence we get

$$
p C r=Q F
$$

with $F=\Gamma r$. We can construct in an arbitrary way an $N \times(N-M)$ matrix \widetilde{Q} in order to get an $N \times N$ orthogonal matrix

$$
[Q \mid \widetilde{Q}]
$$

We have $V=Q Q^{T}$ and

$$
I-V=[Q \mid \widetilde{Q}][Q \mid \widetilde{Q}]^{T}-Q Q^{T}=Q Q^{T}+\widetilde{Q} \widetilde{Q}^{T}-Q Q^{T}=\widetilde{Q} \widetilde{Q}^{T}
$$

In other words, $S^{\prime}=\widetilde{Q}$ and $G^{\prime}=\widetilde{Q}^{T}$.
Now the system (9) can be written in the following form:

$$
\begin{gathered}
Q^{T} A Q v_{n+1}=Q^{T} r_{n}, \quad \widetilde{Q}^{T} A \widetilde{Q} z_{n+1}=\widetilde{Q}^{T} r_{n} \\
v_{n+1}=y_{n+1}-Q^{T} x_{n}, \quad x_{n}=Q y_{n}+\widetilde{Q} z_{n} \\
w_{n+1}=z_{n+1}-\widetilde{Q}^{T} x_{n}, \quad r_{n}=b-A x_{n}
\end{gathered}
$$

References

[1] K. Moszyński, On solving linear algebraic equations with an ill-conditioned matrix, Appl. Math. (Warsaw) 22 (1995), 499-513.
2] R. Temam, Numerical Analysis, Reidel, 1973

KRZYSZTOF MOSZYŃSKI
DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
UNIVERSITY OF WARSAW
BANACHA 2
02-097 WARSZAWA, POLAND
E-mail: KMOSZYNS@MIMUW.EDU.PL

Received on 28.9.1994

