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CONCERNING DECOMPOSITION OF A SYSTEM
OF LINEAR ALGEBRAIC EQUATIONS

Introduction. Let us consider a system of linear algebraic equations
(1) Az =D,

where A is an N x N real, invertible matrix. In [1] a method of decomposition
of (1) was proposed. The purpose of such a decomposition is to enable
parallelization of the algorithm, and if possible to make the problem better
conditioned.

Let R=UA — AU. The general idea of the method mentioned above is
based on the following observation: if an N x N matrix U of rank r < N
commutes sufficiently well with A, i.e. R is sufficiently small, then U defines
an approximate decomposition of (1).

Let U = QF, where @Q is an N X r matrix and F' is an r x N matrix, both
of rank 7. In [1] it is proposed to replace (1) by one of following systems,
which can be solved by iteration:

(2) QTAQynJrl + QTRQyn + QTRSZTL = QTUba

STASz, 1 — STRQy, — STRSz, = G(I — U)b,
or
3) AQyns1 + FRQy, + FRSz, = FUDb,

GASz,11 — GRQy, — GRSz, = G(I — U)b,

where I — U = SG with an N x s matrix S and an s X N matrix G, and,
in general, N —r < s < N. Moreover, x,, = Qy, + Sz, converges to the
solution x = A~ of the system (1).

We may easily transform (2) and (3) to a more convenient form not
containing R (see [1]):
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(4) QTAQu, 1 = QTUr,, STASwn =ST(I—U)ry,
or

(5) FAQup+1 = FUr,, GASw,11 =G —U)ry,
where

Unt1 = Ynt1 — FTpn, T = Qyn + Szn,
Wpt1 = Zn+1 — Gxp, 1, =b— Ax,.

If U is a projector, i.e. if U? = U, each of the systems (4) and (5)
contains exactly N equations (s = N —r), hence such a choice is preferable.
This paper concerns the following problem:

Given U = QF, where Q and F are N xr and rx N matrices respectively,
both of rank r < N, we have to construct an N X N matriz V, satisfying the
following conditions:

1. rank(V) = rank(U) = r;

2. V2=V,

3. Im(V) = Im(U);

4. If at least one of the processes (4) and (5) converges and R is suffi-

ciently small, then after replacing U by V', at least one of (4) and (5) will
converge as well.

The matrix V

LEMMA 1. Let U be an N x N matriz of rank v < N. Assume that

there are r linearly independent columns uy,,...,up,. of U and r linearly
independent columns wy, ..., wp. of UT such that (prg,upi) #0 fori =
1,...,7. Then there exist four matrices Q, Q', F, F' of dimensions N x r,
N xr,rx N, rx N respectively, such that

(6) U=QF, U'=QF

and

(7) Q"Q =QTQ=1,.

Proof. Observe that in this case a kind of Gram—Schmidt process of
biorthogonalization can be applied to the double system of vectors u,,, ...
ey Upy Wyt sy W

We start with

/ / /
Upy = 71,141, Wpt = V1141, V1,171,101 = (wp’lvum) 7’é 0,
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and then we proceed with the formulas

ukzzf}/kﬂq‘77 'Yk,j:(q;,upk), j:]~7---,k—17
wpkzzry;c:]q.;7 fyllcg_]:(q]’wp;)’ jz]‘?"'?k_]-)

Yk, k% k= wp’ s Upy, ) E Vk,ﬂk,]

for k=1,...,r. In this way we get

Us = Z'Ys,j%ﬁ Vs,i = (Us,q;),

T
=3 V0 Ve, = (ws,q5),

foralls=1,...,N, j=1,...,N. The last formulas can be written in the
form

U=QF and UT =Q'F/,

where Q and Q' are the N x r matrices with columns ¢; and qg» respec-
tively, and F' and F’ are the r x N matrices of the coefficients 7, ; and 'y?f, s
respectively. m

Assume now that the decompositions from Lemma 1: U = @QF and
UT = Q'F' are possible, and are given. Define

V=QQR7T and R =VA-AV.
PROPOSITION 1. V' s a projector.

Proof. VV =QQTQQT =QLQT =V. =

Since V is a projector of rank r, I — V is a projector of rank N — r.
Hence I — V = 5’G’, where S" and G’ are N x (N —r) and (N —7r) x N
matrices respectively. This decomposition may be obtained for example by
usual Gram—Schmidt orthogonalization, applied to the columns of I — V.

ProrosiTION 2. U =UV =VU.

Proof. We have VU = QQTQF = QI.F = QF = U. Moreover,
V = (Q/F/)TQQ/T — F/TQ/TQQ/T — F/TITQ/T — (Q/F/)T =U. m
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PROPOSITION 3.
R(I-V)=UR, (I-V)R=R'U.

Proof. By Proposition 2 it follows that R=UA—- AU = UVA—- AUV,
since AU = UA — R, we have

R=UVA—-UAV + RV =UR'+ RV

and so UR' = R(I — V). Similarly, R = UA — AU = VUA — AVU, and
UA = AU + R, hence

R=VAU +VR—-AVU = R'U + VR,
whence RU = (I —V)R.
PROPOSITION 4. Q'TR'Q = 0.

Proof. Observe that R = VA - AV = A(I — V) — (I — V)A. This
yields

VRV =VAI - V)V - V(I - V)AV =0,

because V is a projector and V(I —V) = (I — V)V = 0. On the other hand,
0 = VR/V — QQ/TR/QQ/T and 0 = QTVR/VQ/ — QTQQITR/QQITQI-
Now, QTQ and Q'TQ’ are the Gram matrices of the bases ¢, ..., ¢ and
q},...,q., and hence are invertible. Finally, we deduce that QT R'Q = 0. m

PRrOPOSITION 5. G'R'S" = 0.
Proof. Since V is a projector, we have
(I-V)R(I-V)=(I-V)(VA-AV)I-V)=0,
because (I — V)V =V (I — V) = 0. Therefore
S'G'R'S'G' =0
and
STS'G'R'S'G'G'" = 0.

We conclude that G'R'S’ = 0, the Gram matrices S’7'S’ and G'G'" being
invertible. m

PROPOSITION 6.

R'Q=(I-V)RFT(FFT)™! = O(R).

Proof. From Proposition 3, (I — V)R = R'QF, and hence
RQ=(I—-V)RFT(FFT)™'. u
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PROPOSITION 7. If FQ is invertible (that is, U is in some sense close
to a projector), then

QTR = (FQ) ' (Q"Q)™'Q"R(I - V) = O(R).

Proof. By Proposition 3, R(I — V) = UR’, and by Proposition 2,

U=UV =QFQQ'". Hence R(I — V) = QFQQ'T R’, which implies
Q"R(I-V)=QTQFQQ"R.
The assertion follows by invertibility of FQ and Q7 Q. m

THEOREM 1. Assume that the hypotheses of Lemma 1 are satisfied, the
matriz U depends continuously on R, where R = UA — AU, and FQ is
invertible for R small. Then the process (5), with U replaced by V', converges
for R small enough. This process can now be written as follows:

QTAQu 1 = Q" r,, G'AS'wpy1 =G (I —V)ry,
(8) Un+1 = Yn+1 — Q/Tmna Tp = Qyn + S/Zna
Wnt1 = Zng1 — Gy, rn =b— Ax,.

Proof. Let us return to the equation (3), equivalent to (5). Now, if U
is replaced by V, in view of Propositions 1-7, the equation (3) admits the
following form:

Q,TAQyn—f—l + Q/TR/S/Zn — Q,Tb,
G'AS 21 — G'R'Qy, = G'(I = V)b.
By Propositions 1-7, the coefficients of all terms containing y, and z, are
of order O(R); hence the convergence follows by standard arguments. m

Case of A symmetric. Put now V = QQ7, R = UA - AU, R =
VA—AV,and U = QF with QTQ = I,. A decomposition of this kind may
be obtained for example by application of the Gram—Schmidt process to the
columns of U.

PROPOSITION 8. V is an orthogonal projector.

Proof. VV = QQTQQT = QI,QT = V. Moreover, VI = (QQT)T =
QRT =V. =

Since I — V is of rank N —r, we may decompose (by the Gram—Schmidt
process)

I-V=8G", where STS =1Iy_,.

PROPOSITION 9. If A = AT, then R'T = —R'.

Proof. We have RT = (VA — AV)T = ATVT —VTAT = AV — VA
=—-R.n
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PROPOSITION 10. R'Q = (I — V)RFT(FFT)~! = O(R).

Proof. We have QTU = QTQF = F, hence U = QQTU = VU,
R=UA—-AU =VUA—-AVU =V (AU + R) — AVU = R'U + VR,
and so (I — V)R = R'U = R'QF. Since FFT is invertible, we get R'Q =

(I -V)RFT(FFT)™l u

PROPOSITION 11. If A = AT then QTR = —(FFT)"'FRT(I-V) =
O(R).

Proof. We have

RQ=I-V)RFT(FFT)™ 1,
whence by Proposition 9,
—Q"RT =Q"R' = —(FF")"'FR"(I-V). =
PROPOSITION 12. If A= AT, then QTR'Q =0

Proof. Observe that (I — V)Q = Q — QQRTQ = Q — Q = 0 and
QTR'Q = —(FFT)"'FRT(I-V)Q =0. =
PropPOSITION 13. S'TR'S" = 0.

Proof. We have
(I-VR(I-V)=I-V)(VA-AV)(I-V)
—(I-VWVAI-V)—(I-V)AVI - V) =0
because V(I — V) = (I — V)V = 0, where V is an orthogonal projector.
Since I — V is symmetric, it follows that I —V = (I — V)T = G'TS'"" and
(I-V)R'(I-V)=G'TSTR'S'G’". Observe that G’G'T is invertible, whence
G'(I — V)R'(I — V)G'T = 0, which completes the proof. m

THEOREM 2. Assume that A = AT, and that U = QF, where QTQ
= I, depends continuously on R = UA — AU. Then the process (4), with
U replaced by V = QQT, which is now of the following form:

QTAQuy 1 = QT rn,  STAS'wpi1 = STS'G'ry,
(9) Un4+1 = Yn+1 — QT"En; Tn = Qyn + S/Zna
Wnil = Zny1 — G'xy, rn =b— Axg,
converges for R small enough.

Proof. We recall the equation (2), equivalent to (4), which now takes
the form

QT AQYni1+ QTR'S 2, = QT (I — V)b,
STAS 241 — STR'Qy,, = G'(I = V)b.
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From Propositions 8-12 it follows that the terms containing y,, and z, are
of order O(R); hence, for R small the convergence follows by standard ar-
guments. =

Example. Assume that an N x N matrix A and an M x M matrix C,
with M < N, are two finite-dimensional approzimations of a certain linear
operator. For simplicity, assume both matrices A and C' to be symmetric
and invertible.

Let
p:RM RN and r:RY - RM
be linear extension and restriction operators, respectively (see [2]). Put
U=pCr:RY - RV,

If p and r are properly chosen (see [2]), then we may expect that R =
UA — AU will be small for sufficiently large N and M, M < N. We may
also expect (at least in certain situations—see the Laplace operator for ex-
ample), that in general the matrix C' will correspond to a lower part of the
spectrum of the original operator than the matrix A. This phenomenon may
be explained as follows: approximation on a rough grid in general does not
allow passing higher frequency oscillations.

We may apply our algorithm (9) to the matrix A and U. Application
of the Gram—Schmidt process to the columns of the matrix pC will give
pC = QI with QT Q = I;. Hence we get

pCr = QF

with F' = I'r. We can construct in an arbitrary way an N x (N — M) matrix

Q@ in order to get an N x N orthogonal matrix

[QIQ)-
We have V = QQ” and
-V =[QQIQIQAT - Q" = QQT + QQT - Q" = QQ".

In other words, S’ = Q and G = Q7.
Now the system (9) can be written in the following form:

QT AQunt1 = QTrn,  QTAQzu11 = QTry,

Un+1 = Yn+1 — QTxnv Ty = Qyn + ana

T
Wil = Zn+1 — Q" Tp, 1, =b— Ax,.
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