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CONCERNING DECOMPOSITION OF A SYSTEM
OF LINEAR ALGEBRAIC EQUATIONS

Introduction. Let us consider a system of linear algebraic equations

(1) Ax = b,

where A is an N×N real, invertible matrix. In [1] a method of decomposition
of (1) was proposed. The purpose of such a decomposition is to enable
parallelization of the algorithm, and if possible to make the problem better
conditioned.

Let R = UA−AU . The general idea of the method mentioned above is
based on the following observation: if an N × N matrix U of rank r < N
commutes sufficiently well with A, i.e. R is sufficiently small , then U defines
an approximate decomposition of (1).

Let U = QF , where Q is an N×r matrix and F is an r×N matrix, both
of rank r. In [1] it is proposed to replace (1) by one of following systems,
which can be solved by iteration:

(2)
QT AQyn+1 + QT RQyn + QT RSzn = QT Ub,

ST ASzn+1 − ST RQyn − ST RSzn = G(I − U)b,
or

(3)
AQyn+1 + FRQyn + FRSzn = FUb,

GASzn+1 −GRQyn −GRSzn = G(I − U)b,

where I − U = SG with an N × s matrix S and an s × N matrix G, and,
in general, N − r ≤ s ≤ N . Moreover, xn = Qyn + Szn converges to the
solution x = A−1b of the system (1).

We may easily transform (2) and (3) to a more convenient form not
containing R (see [1]):
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(4) QT AQvn+1 = QT Urn, ST ASwn+1 = ST (I − U)rn,

or

(5) FAQvn+1 = FUrn, GASwn+1 = G(I − U)rn,

where
vn+1 = yn+1 − Fxn, xn = Qyn + Szn,

wn+1 = zn+1 −Gxn, rn = b−Axn.

If U is a projector, i.e. if U2 = U , each of the systems (4) and (5)
contains exactly N equations (s = N − r), hence such a choice is preferable.

This paper concerns the following problem:

Given U = QF , where Q and F are N×r and r×N matrices respectively ,
both of rank r ≤ N , we have to construct an N ×N matrix V , satisfying the
following conditions:

1. rank(V ) = rank(U) = r;
2. V 2 = V ;
3. Im(V ) = Im(U);
4. If at least one of the processes (4) and (5) converges and R is suffi-

ciently small , then after replacing U by V , at least one of (4) and (5) will
converge as well.

The matrix V

Lemma 1. Let U be an N × N matrix of rank r ≤ N . Assume that
there are r linearly independent columns up1 , . . . , upr of U and r linearly
independent columns wp′

1
, . . . , wp′

r
of UT such that (wp′

i
, upi

) 6= 0 for i =
1, . . . , r. Then there exist four matrices Q, Q′, F , F ′ of dimensions N × r,
N × r, r ×N , r ×N respectively , such that

(6) U = QF, UT = Q′F ′

and

(7) QT Q′ = Q′T Q = Ir.

P r o o f. Observe that in this case a kind of Gram–Schmidt process of
biorthogonalization can be applied to the double system of vectors up1 , . . .
. . . , upr , wp′

1
, . . . , wp′

r
.

We start with

up1 = γ1,1q1, wp′
1

= γ′1,1q
′
1, γ1,1γ

′
1,1 = (wp′

1
, up1) 6= 0,
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and then we proceed with the formulas

upk
=

k∑
j=1

γk,jqj , γk,j = (q′j , upk
), j = 1, . . . , k − 1,

wp′
k

=
k∑

j=1

γ′k,jq
′
j , γ′k,j = (qj , wp′

k
), j = 1, . . . , k − 1,

γk,kγ′k,k = (wp′
k
, upk

)−
k−1∑
j=1

γk,jγ
′
k,j

for k = 1, . . . , r. In this way we get

us =
r∑

j=1

γs,jqj , γs,j = (us, q
′
j),

ws =
r∑

j=1

γ′s,jq
′
j , γ′s,j = (ws, qj),

for all s = 1, . . . , N , j = 1, . . . , N . The last formulas can be written in the
form

U = QF and UT = Q′F ′,

where Q and Q′ are the N × r matrices with columns qj and q′j respec-
tively, and F and F ′ are the r×N matrices of the coefficients γi,j and γ′i,j ,
respectively.

Assume now that the decompositions from Lemma 1: U = QF and
UT = Q′F ′ are possible, and are given. Define

V = QQ′T and R′ = V A−AV.

Proposition 1. V is a projector.

P r o o f. V V = QQ′T QQ′T = QIrQ
′T = V .

Since V is a projector of rank r, I − V is a projector of rank N − r.
Hence I − V = S′G′, where S′ and G′ are N × (N − r) and (N − r) × N
matrices respectively. This decomposition may be obtained for example by
usual Gram–Schmidt orthogonalization, applied to the columns of I − V .

Proposition 2. U = UV = V U .

P r o o f. We have V U = QQ′T QF = QIrF = QF = U . Moreover,
UV = (Q′F ′)T QQ′T = F ′T Q′T QQ′T = F ′T IrQ

′T = (Q′F ′)T = U .
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Proposition 3.

R(I − V ) = UR′, (I − V )R = R′U.

P r o o f. By Proposition 2 it follows that R = UA−AU = UV A−AUV ;
since AU = UA−R, we have

R = UV A− UAV + RV = UR′ + RV

and so UR′ = R(I − V ). Similarly, R = UA − AU = V UA − AV U , and
UA = AU + R, hence

R = V AU + V R−AV U = R′U + V R,

whence R′U = (I − V )R.

Proposition 4. Q′T R′Q = 0.

P r o o f. Observe that R′ = V A − AV = A(I − V ) − (I − V )A. This
yields

V R′V = V A(I − V )V − V (I − V )AV = 0,

because V is a projector and V (I−V ) = (I−V )V = 0. On the other hand,
0 = V R′V = QQ′T R′QQ′T and 0 = QT V R′V Q′ = QT QQ′T R′QQ′T Q′.
Now, QT Q and Q′T Q′ are the Gram matrices of the bases q1, . . . , qr and
q′1, . . . , q

′
r, and hence are invertible. Finally, we deduce that Q′T R′Q = 0.

Proposition 5. G′R′S′ = 0.

P r o o f. Since V is a projector, we have

(I − V )R′(I − V ) = (I − V )(V A−AV )(I − V ) = 0,

because (I − V )V = V (I − V ) = 0. Therefore

S′G′R′S′G′ = 0

and

S′T S′G′R′S′G′G′T = 0.

We conclude that G′R′S′ = 0, the Gram matrices S′T S′ and G′G′T being
invertible.

Proposition 6.

R′Q = (I − V )RFT (FFT )−1 = O(R).

P r o o f. From Proposition 3, (I − V )R = R′QF , and hence

R′Q = (I − V )RFT (FFT )−1.
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Proposition 7. If FQ is invertible (that is, U is in some sense close
to a projector), then

Q′T R′ = (FQ)−1(QT Q)−1QT R(I − V ) = O(R).

P r o o f. By Proposition 3, R(I − V ) = UR′, and by Proposition 2,
U = UV = QFQQ′T . Hence R(I − V ) = QFQQ′T R′, which implies

QT R(I − V ) = QT QFQQ′T R′.

The assertion follows by invertibility of FQ and QT Q.

Theorem 1. Assume that the hypotheses of Lemma 1 are satisfied , the
matrix U depends continuously on R, where R = UA − AU , and FQ is
invertible for R small. Then the process (5), with U replaced by V , converges
for R small enough. This process can now be written as follows:

Q′T AQvn+1 = Q′T rn, G′AS′wn+1 = G′(I − V )rn,

(8) vn+1 = yn+1 −Q′T xn, xn = Qyn + S′zn,

wn+1 = zn+1 −G′xn, rn = b−Axn.

P r o o f. Let us return to the equation (3), equivalent to (5). Now, if U
is replaced by V , in view of Propositions 1–7, the equation (3) admits the
following form:

Q′T AQyn+1 + Q′T R′S′zn = Q′T b,

G′AS′zn+1 −G′R′Qyn = G′(I − V )b.

By Propositions 1–7, the coefficients of all terms containing yn and zn are
of order O(R); hence the convergence follows by standard arguments.

Case of A symmetric. Put now V = QQT , R = UA − AU , R′ =
V A−AV , and U = QF with QT Q = Ir. A decomposition of this kind may
be obtained for example by application of the Gram–Schmidt process to the
columns of U .

Proposition 8. V is an orthogonal projector.

P r o o f. V V = QQT QQT = QIrQ
T = V . Moreover, V T = (QQT )T =

QQT = V .

Since I −V is of rank N − r, we may decompose (by the Gram–Schmidt
process)

I − V = S′G′, where S′T S′ = IN−r.

Proposition 9. If A = AT , then R′T = −R′.

P r o o f. We have R′T = (V A − AV )T = AT V T − V T AT = AV − V A
= −R′.
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Proposition 10. R′Q = (I − V )RFT (FFT )−1 = O(R).

P r o o f. We have QT U = QT QF = F , hence U = QQT U = V U ,

R = UA−AU = V UA−AV U = V (AU + R)−AV U = R′U + V R,

and so (I − V )R = R′U = R′QF . Since FFT is invertible, we get R′Q =
(I − V )RFT (FFT )−1.

Proposition 11. If A = AT , then QT R′ = −(FFT )−1FRT (I − V ) =
O(R).

P r o o f. We have

R′Q = (I − V )RFT (FFT )−1,

whence by Proposition 9,

−QT R′T = QT R′ = −(FFT )−1FRT (I − V ).

Proposition 12. If A = AT , then QT R′Q = 0.

P r o o f. Observe that (I − V )Q = Q − QQT Q = Q − Q = 0 and
QT R′Q = −(FFT )−1FRT (I − V )Q = 0.

Proposition 13. S′T R′S′ = 0.

P r o o f. We have
(I − V )R′(I − V ) = (I − V )(V A−AV )(I − V )

= (I − V )V A(I − V )− (I − V )AV (I − V ) = 0

because V (I − V ) = (I − V )V = 0, where V is an orthogonal projector.
Since I − V is symmetric, it follows that I − V = (I − V )T = G′T S′T and
(I−V )R′(I−V ) = G′T S′T R′S′G′. Observe that G′G′T is invertible, whence
G′(I − V )R′(I − V )G′T = 0, which completes the proof.

Theorem 2. Assume that A = AT , and that U = QF , where QT Q
= Ir, depends continuously on R = UA − AU . Then the process (4), with
U replaced by V = QQT , which is now of the following form:

QT AQvn+1 = QT rn, S′T AS′wn+1 = S′T S′G′rn,

(9) vn+1 = yn+1 −QT xn, xn = Qyn + S′zn,

wn+1 = zn+1 −G′xn, rn = b−Axx,

converges for R small enough.

P r o o f. We recall the equation (2), equivalent to (4), which now takes
the form

QT AQyn+1 + QT R′S′zn = QT (I − V )b,

S′T AS′zn+1 − S′T R′Qyn = G′(I − V )b.



Decomposition of a system of linear equations 197

From Propositions 8–12 it follows that the terms containing yn and zn are
of order O(R); hence, for R small the convergence follows by standard ar-
guments.

Example. Assume that an N ×N matrix A and an M ×M matrix C,
with M < N , are two finite-dimensional approximations of a certain linear
operator. For simplicity, assume both matrices A and C to be symmetric
and invertible.

Let

p : RM → RN and r : RN → RM

be linear extension and restriction operators, respectively (see [2]). Put

U = pCr : RN → RN .

If p and r are properly chosen (see [2]), then we may expect that R =
UA − AU will be small for sufficiently large N and M , M < N . We may
also expect (at least in certain situations—see the Laplace operator for ex-
ample), that in general the matrix C will correspond to a lower part of the
spectrum of the original operator than the matrix A. This phenomenon may
be explained as follows: approximation on a rough grid in general does not
allow passing higher frequency oscillations.

We may apply our algorithm (9) to the matrix A and U . Application
of the Gram–Schmidt process to the columns of the matrix pC will give
pC = QΓ with QT Q = IM . Hence we get

pCr = QF

with F = Γr. We can construct in an arbitrary way an N×(N−M) matrix
Q̃ in order to get an N ×N orthogonal matrix

[Q|Q̃].

We have V = QQT and

I − V = [Q|Q̃][Q|Q̃]T −QQT = QQT + Q̃Q̃T −QQT = Q̃Q̃T .

In other words, S′ = Q̃ and G′ = Q̃T .
Now the system (9) can be written in the following form:

QT AQvn+1 = QT rn, Q̃T AQ̃zn+1 = Q̃T rn,

vn+1 = yn+1 −QT xn, xn = Qyn + Q̃zn,

wn+1 = zn+1 − Q̃T xn, rn = b−Axn.
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