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Abstract. Let
n

X(·), n ∈ N, be a sequence of homogeneous semi-Markov
processes (HSMP) on a countable set K, all with the same initial p.d. con-
centrated on a non-empty proper subset J . The subrenewal kernels which

are restrictions of the corresponding renewal kernels
n

Q on K ×K to J × J
are assumed to be suitably convergent to a renewal kernel P (on J × J).
The HSMP on J corresponding to P is assumed to be strongly recurrent.
Let [πj ; j ∈ J ] be the stationary p.d. of the embedded Markov chain. In
terms of the averaged p.d.f. Fϑ(t) :=

∑
j,k∈J πjPj,k(t), t ∈ R+, and its

Laplace–Stieltjes transform F̃ϑ, the above assumptions imply:

The time
n

T J of the first exit of
n

X(·) from J has a limit p.d. (up to some
constant factors) iff 1− F̃ϑ is regularly varying at 0 with a positive degree,
say α ∈ (0, 1]. Then the transform of the limit p.d.f. equals G̃(α)(s) =
(1 + sα)−1, Re s ≥ 0.

This extends the results by V. S. Korolyuk and A. F. Turbin (1976)
obtained for α = 1 under essentially stronger conditions.

1. Introduction. The time T till the first “failure” of a modern ex-
ploitation system, during regular service, can be modeled by the random
sum of random variables

(1) T = ϑ1 + . . . + ϑν ,

where w.p. 1 (with probability 1),

ν ∈ N := {0, 1, . . .} and ϑm ∈ R+ := [0,∞) for m ∈ N1 := {1, 2, . . .}.
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The non-negative r.v. (random variable) ϑm represents the length of the
mth time interval elapsing between consecutive passages in the state space
of the system.

In most cases, a satisfactory approximation is obtained already under
the assumption that

ϑ = (ϑm;m ∈ N1) is i.i.d.

(i.e. ϑ consists of independent identically distributed variables), or equiva-
lently that

(2) τ =
(
τm :=

m∑
l=1

ϑl;m ∈ N
)

is a simple renewal process.

Usually, an additional assumption is made: that the “failures” can ap-
pear all with the same probability at each instant of τ , independently of
each other and independently of τ . More precisely, that

(3) τ and ν are independent,
(4) Pr{ν = m} = (1− ε)mε for m ∈ N.

In cases important for applications, the value of ε is a rather small positive
number. Therefore, for practical calculations, the limit p.d.f. (probability
distribution function) of T (suitably normalized by a constant factor as
ε → 0+) can be used instead of its exact p.d.f. FT .

Obviously, the smaller ε the greater the number of terms in (1). Corre-
spondingly, some violations in (1)–(4) become admissible. For instance, as
for regenerative processes, the first and last few terms in (1) can obey a dif-
ferent p.d. than the other distances between elements of τ , without affecting
the limit p.d. A wide list of such violations due to the nature of real pro-
cesses can be found e.g. in [10]. One can look at these results as extensions
of a result by J. Keilson [4], which asserts the limit p.d. of εT to be expo-
nential whenever the (common) expectation of ϑm is positive and finite. For
a wide review of results related to reliability theory and/or queueing theory,
the reader is referred e.g. to I. B. Gertsbakh [3] and S. Asmussen [1].

In a general setting one can admit the (common) p.d.f. Fϑ of ϑm to
vary with ε. Necessary and sufficient conditions for the existence and char-
acterization of a proper limit p.d.f. of (the normalized) T are given by
A. D. Solovyev [9].

In our problems, the p.d.f. Fϑ remains “almost constant” as ε → 0+, and
the independence of the p.d.f. Fϑ of ε becomes a pattern case. This special
assumption allows us to reformulate the result of [9] in terms of the regular
variability of Fϑ. For the sake of completeness, these facts are presented
as Theorem 1 and Proposition 1 in Section 2. We stress that even under
(1)–(4) with Fϑ independent of ε we have:
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• the finiteness of the expectation of the distances collected in ϑ is not
necessary for the existence of the exponential limit p.d. of T ;

• in some cases the limit p.d. of T is not exponential.

More precisely, the Laplace–Stieltjes transform of the limit p.d.f. has to
equal

(5) G̃(α)(s) := (1 + sα)−1 for s ≥ 0, where α ∈ (0, 1].

Moreover, for every 0 < α ≤ 1 there is Fϑ such that the limit equals G̃(α).
The limits can be seen as an extension of the class of exponential distribu-
tions, admitting the exponent α to be less than 1.

Our main goal is to prove similar statements for a class of semi-Markov
(or Markov renewal) processes with at most countable state space. Then
the r.v. T is the time elapsing till the first exit from a subset J of the state
space and Fϑ is a suitable stationary average of the p.d.f. of the distances
between the instants of renewals within J (cf. Sections 6–7).

Under our assumptions formulated in Section 7, the semi-Markov pro-
cesses approach a regenerative one. Therefore, the main result (Theorem 2 in
Section 7) can probably be derived directly from Theorem 1, or through some
coupling procedure. However, the evaluation of the norming scale factor
and/or the interpretation of ε might become unreadable or tedious. There-
fore we are following the main steps of V. S. Korolyuk and A. F. Turbin [6],
who have given a very natural use of perturbed stochastic matrices for the
solution of the renewal equation related to this problem. The formulas ob-
tained here cover some new examples, which fall outside the scope of [6], even
under the finiteness of the expectations of the distances between renewals.

In order to give a complete outline of semi-Markov processes, we have
developed a suitable matrix calculus in Sections 3–4, and presented a short
review of the basic notions in Sections 5–6 (see also [8]).

Let us close this section with a list of some notation. For any measurable
function f : R+ → X with values in a Banach space X, integrable as follows:

(6) ‖f exp(−a·)‖L(R+,X,m) < ∞, where a ∈ R,

the Laplace transform of f with respect to m is defined by

(7) Lm(f)(s) :=
∫

R+

f(t) exp(−st) dm(t) for Re s ≥ a (at least).

The notation is used independently of whether m means a measure or a
d.f. of locally bounded variation on R+. A suitable extension of the opera-
tions to matrices is introduced in Section 3.

If m denotes the Lebesgue measure, then the subscript is omitted.
For f = 1 we add simply a tilde over the symbol denoting the measure

(or its d.f.). The result is called the Laplace–Stieltjes transform of m. In
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particular, for any p.d.f. F on R+ we have

(8) F̃ (s) =

{∫
R+

exp(−st) dF (t) = LF (1)(s) for Re s ≥ 0,
s
∫

R+
exp(−st)F (t) dt = sL(F )(s) for Re s > 0.

We use the standard properties of the transformation and regularly vary-
ing functions as given e.g. in the books by W. Feller [2] and E. Seneta [7].
Accordingly, without essential losses, in most of our proofs, the indepen-
dent variable of the transforms is restricted to real numbers. In particular,
writing s → 0+ we mean s > 0 and s → 0.

2. The case of simple renewal processes. Conditions (1)–(4) imply
that the transform F̃T of the p.d.f. FT of T can be evaluated as follows:

F̃T (s) =
∞∑

n=0

Pr{ν = m}(F̃ϑ(s))m(9)

=
(

1 +
1− ε

ε
(1− F̃ϑ(s))

)−1

for s > 0,

where Fϑ stands for the (common) p.d.f. of the distances between the re-
newals. Following the main steps of Theorem 2 of [2, Section XIII.6] and
Lemma 2 of [2, Section VIII.8] we come to

Theorem 1. Let
n

T be given by (1)–(4), or by (9), with ε = εn satisfying

(a) εn → 0+ and εn+1/εn → 1 as n →∞,

and suppose that the p.d.f. Fϑ (the same for every n) satisfies

(b) suppFϑ ⊂ R+, 1 > Fϑ(0) (= Pr{ϑm = 0} for m ∈ N1).

(i) The following conditions are equivalent :

• for some constants (cn > 0;n ∈ N) the p.d.f.’s of cn

n

T tend to a
p.d.f. not concentrated on {0} as n →∞;

• Fϑ is in the strict domain of attraction of a strictly stable p.d.f. on
R+ which is not concentrated on {0};

• 1− F̃ϑ is regularly varying at 0 with a positive degree.

(ii) Under any one of the conditions of (i), there are α ∈ (0, 1] and c > 0
such that

• F̃
cn

n

T
(s) → (1 + csα)−1 as n →∞ for Re s ≥ 0;

• (F̃ϑ(cns))ε−1
n → exp(−csα) as n →∞ for Re s ≥ 0;

• the exponent of regularity of 1− F̃ϑ at 0 equals α.

The conditions can be characterized by Tauberian theorems as follows.
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Proposition 1 [2, Chapters VIII and XIII]. For every p.d.f. F on R+

and every α ∈ (0, 1), the following conditions are equivalent :

(i) s−α(1− F̃ (s)) is slowly varying as s → 0+;
(ii) tα−1

∫ t

0
(1− F (u)) du is slowly varying as t →∞;

(iii) tα(1− F (t)) is slowly varying as t →∞.

For α = 1, (i) and (ii) remain equivalent , but (iii) becomes essentially
stronger than (i) and (ii).

P r o o f. By (6)–(8), the function Ũ(s) := s−1(1− F̃ (s)), Re s > 0, is the
transform of

U(t) :=
{ ∫ t

0
(1− F (u)) du, t ∈ R+,

0, t < 0.
In terms of % = 1 − α ≥ 0, the equivalence of (i) and (ii) for α ∈ (0, 1]
is shown in Theorem 1 of [2, Section XIII.5]. The equivalence of (i) and
(iii) for α ∈ (0, 1) is given by Theorem 4 of [2, Section XIII.5], because the
density 1−F of U is monotone in (0,∞). In case of α = 1, it suffices to note
that U(t) =

∫ t

0
u−pZ(u) du =: Zp(t) with p = 1, where Z(t) := t(1 − F (t))

is slowly varying if (iii) is assumed. Then, referring to the Lemma of [2,
Section VIII.9] we infer that U is regularly varying with degree p + 1 = 0,
i.e. (ii) is satisfied.

To finish the proof, we consider F (t) := max{0; 1−exp(−[log t])}, where
[x] stands for the integer part of x. Then F does not satisfy (iii) since the
ratio

(1− F (t))−1(1− F (
√

e · t)) = exp([log t]− [log t + 0.5])
is not convergent as t → ∞ (since it is periodic with respect to log t). On
the other hand, for t ≥ e, the function of (ii) with α = 1 equals U and is
piecewise linear with vertices at (en, (n − 1)(e − 1)) ∈ R2

+, n ∈ N1. Thus,
for c ≥ 1 and t > e2, we have

1 ≤ (U(t))−1U(ct) ≤ ([log t]− 1)−1[log t + log c],

where the right hand side tends to 1 as t →∞.

R e m a r k 1. For every α ∈ (0, 1], the transform of the strongly stable
p.d.f. of exponent α equals exp(−sα) and satisfies conditions (i) of Theo-
rem 1. Also, according to Proposition 1, the Pareto d.f. equal to 1 − tα,
t > 1, satisfies conditions (i) of Theorem 1. Therefore, if substituted for Fϑ,
they cause the transform F̃

cn

n

T
(s) to tend to (1+sα)−1 for some (cn;n ∈ N).

Note that the mean of the Pareto distributions is equal to ∞ for all α not

exceeding 1. However, for α = 1 the limit p.d. of cn

n

T is exponential. For a
characterization of limits with arbitrary dependence of Fϑ on ε the reader
is referred to [9], and for a review, to [3].
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The degree of regularity can be expressed in terms of the moment’s d.f.
of F given by

(10) F (l)(t) :=
t∫

0

ul dF (u), t ∈ R+.

Namely, introducing the lth order moment of F and lth order upper frac-
tional derivative of F̃ at 0 by the equalities

(11) f (l) := F (l)(∞), δ(l)f̃ := lim sup
s→0+

s−l(1− F̃ (s)),

for a p.d.f. regularly varying according to (i) of Proposition 1, we have

α = sup{l : 0 ≤ l < 1, f (l) < ∞} = sup{l : 0 ≤ l < 1, δ(l)f̃ < ∞}.

3. Matrix operations. In what follows, for any pair of at
most countable sets J and K and a Banach space 〈X; | |X〉, we denote by
〈X [J×K]; ‖ ‖X〉 the Banach space of all X-valued (J,K)-matrices x =
[xj,k; (j, k) ∈ J ×K] bounded with respect to the matrix norm

(12) ‖x‖X := sup
j∈J

{ ∑
k∈K

|xj,k|X
}

.

For L ⊂ J and M ⊂ K, the symbol xL,M denotes the (L,M)-submatrix
of x. Thus, the above matrix satisfies the equality x = xJ,K .

Any function given by a list of values, as (yj ; j ∈ J) ∈ XJ , is identified
with a suitable J-row; here y = [yj ; (i, j) ∈ ] × J ], where ] stands for
the dummy one-element set. Accordingly, the transposed matrix z = y′ ∈
XJ×] is a J-column. The restriction of the domain of rows and columns is
indicated by a suitable position of the separating comma, as in the equalities
y = y,L and z = zL,. Note that X [J×]] and the space of uniformly bounded
sequences l∞(J,X) are isometric. Also, X []×J] and the space of summable
sequences l1(J,X) are isometric. If X is the field of real numbers, then the
corresponding spaces are denoted simply by l∞(J) and l1(J), respectively.
We assume that ◦ : X × Y → Z is a bilinear operator bounded as follows:

(13) |x ◦ y|Z ≤ |x|X · |y|Y .

Then, for x ∈ X [J×K] and y ∈ Y [K×L], the matrix product can be defined
as follows:

(14) x ◦ y :=
[ ∑

k∈K

xj,k ◦ yk,l; (j, l) ∈ J × L
]
∈ Z [J×L],

and by inequalities (13), the product is also bounded:

(15) ‖x ◦ y‖Z ≤ ‖x‖X · ‖y‖Y .
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Some statements of this work become more readable if expressed in terms
of the partial matrix product (which is also an element of Z [J×L]), defined
as follows:

(16) x
M◦ y := xJ,M ◦ yM,L for M ⊂ K.

The 0 symbol denotes the zero of any space of elements of matrices, and 1
denotes any neutral factor, left or right, whenever it exists. Correspondingly,
0J,K , IJ,K and 1J,K denote the zero-matrix, the matrix of 1’s, and the unit
matrix restricted to J ×K, respectively. The last convention means that

(17) 1J,K := [δj,k · 1; (j, k) ∈ J ×K],

where δj,k is the Kronecker symbol, and the dot stands for multiplication
by scalars. Matrices with elements proportional to the neutral factor are
equivalently treated as matrices of scalars.

If 〈X, | |X , ◦, 1〉 is an associative Banach algebra, then

〈X [J×J], ‖ ‖X , ◦,1J,J〉
is also such an algebra. The powers of an element x of the latter algebra
are written as

(18) x◦n := x ◦ . . . ◦ x︸ ︷︷ ︸
n factors

for n ∈ N1.

We extend this assuming x◦0 := 1J,J . For invertible x, x◦(−n) := (x◦(−1))n.

Definition 1. A sequence (
n
x;n ∈ N) ⊂ X [J×K] is said to be matrix-

weakly convergent (mw-convergent) to x ∈ X [J×K] if for every a ∈ l1(J)
and b ∈ l∞(K), we have |a · (x− n

x) · b|X → 0 (in X) as n →∞.

Equivalently, for uniformly bounded sequences the condition requires
that for every b as above, every element of the J-column (x − n

x) · b tends
to zero (in X) as n →∞.

The matrices of our concern consist of elements of the following commu-
tative Banach algebras:

(19) D+ := {F : R+ → R : suppF ⊂ R+, F is right-continuous
and |F |var < ∞},

where | |var stands for variation over R+, and

(20) A+ := {ϕ : C+ → C : ϕ is analytic in Int C+ and continuous in C+,

and |ϕ|+ := sup{|ϕ(s)| : s ∈ C+} < ∞}.
The binary operations in these spaces are the convolution ∗ and the

multiplication of functions •, respectively. The neutral elements for them
are the indicators of R+ and C+, respectively. In particular, these binary
operations are applicable for the matrix calculus we have sketched above.



292 J. Domsta and F. Grabski

The (Laplace–Stieltjes) transformation F → F̃ , defined by (8) with
s ∈ C+, is an injective contracting homomorphism of the algebra D+ into
A+. The transform of a D+-valued matrix is defined as the A+-valued ma-
trix consisting of the transforms of the corresponding entries of the original
matrix. The matrix norm of the image does not exceed the matrix norm of
the original and the Multiplication Rule for matrix convolution can be used.
Thus, for F ∈ D[J×K]

+ and G ∈ D[K×L]
+ , we have

(21) ‖F̃‖+ ≤ ‖F‖var, F(∞) := lim
t→∞

F(t) = F̃(0), (F ∗G)∼ = F̃ • G̃.

The transformation does not change the norm of any function from the
following cone, which contains all p.d.f.’s on R+:

(22) D↑+ := {F ∈ D+ : F is nondecreasing}.

For the properties of D↑+-valued matrices, let us start with a list of

some conditions, where
n

F, F are elements of D↑[J×K]
+ , and

n

F̃, F̃ are their
transforms (in A[J×K]

+ ). Moreover, lim stands for the matrix-weak limit as
n →∞, and

∑
n stands for the matrix-weak limit of the partial sums of the

series.

(23) Conditions A.

• lim
n

F(t) = 0J,K for all t ∈ R+;

• (lim
n

F(t)
K· I)j, = 0 for all t ∈ R+ and j ∈ J ;

• limA
J∗

n

F
K∗ B(t) = 0 for all t ∈ R+, A ∈ l1(J,D+) and B ∈

l∞(K,D+).

(24) Conditions B.

• lim
n

F = 0J,K ;

• (lim
n

F(∞)
K· I)j, = 0 for all j ∈ J ;

• limA
J∗

n

F
K∗ B = 0 for all A ∈ l1(J,D+) and B ∈ l∞(K,D+);

• lim Φ
J•

n

F̃
K• Ψ = 0 for all Φ ∈ l1(J,A+) and Ψ ∈ l∞(K,A+).

(25) Conditions C.

•
∑

n

n

F = F;

• (
∑

n

n

F(∞)
K· I)j, = (F(∞)

K· I)j, for all j ∈ J ;

•
∑

n A
J∗

n

F
K∗ B = A

J∗ F
K∗ B for all A ∈ l1(J,D+)

and B ∈ l∞(K,D+);

•
∑

n Φ(s)
J·

n

F̃(s)
K· Ψ(s) = Φ(s)

J· F̃(s)
K· Ψ(s) for all s ∈ C+ and for

all Φ ∈ l1(J,A+) and Ψ ∈ l∞(K,A+).
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Proposition 2. For uniformly bounded sequences
n

F, the statements of
each of the above Conditions are mutually equivalent. Moreover , Condi-
tions C are essentially stronger than Conditions B, and the latter are essen-
tially stronger than Conditions A.

4. The renewal kernels and renewal equations. With the notation
of Section 3, we introduce

Definition 2. An R+-valued (J,K)-matrix q is said to be [sub]sto-
chastic if

(q
K· I)j, = 1 [resp. ≤ 1] for j ∈ J.

Moreover, a D↑+-valued matrix Q is said to be a [sub]renewal kernel (on
J ×K) if Q(∞) is [sub]stochastic.

The set of all stochastic [substochastic] matrices is denoted by p(J,K)
[q(J,K), respectively]. The set of all renewal [subrenewal] kernels is denoted
by P(J,K) [Q(J,K), respectively]. Correspondingly, P [resp.Q] denotes the
family of all [sub-]p.d.f.’s concentrated on R+.

Proposition 3. (i) p(J,K) ⊂ q(J,K) ⊂ R[J×K]
+ and P(J,K) ⊂ Q(J,K)

⊂ D↑[J×K]
+ .
(ii) For every [sub]stochastic matrix q ∈ p(J,K) [resp. q ∈ q(J,K)], we

have
• ‖q‖ = ‖q K· I‖ = 1 [resp. ≤ 1],
• every submatrix of q is substochastic.

(iii) For every [sub]renewal kernel Q ∈ P(J,K) [resp. Q ∈ Q(J,K)], we
have

• Q(t) ∈ q(J,K) for t ∈ R and Q̃(s) ∈ q(J,K) for s ∈ R+,

• ‖Q‖var = ‖Q(∞)‖ = ‖Q(∞)
K· I‖ = ‖Q̃(0)‖ = 1 [resp. ≤ 1],

• every submatrix of Q is a subrenewal kernel.
(iv) The matrix product of two [sub]stochastic matrices is [sub]stochastic.
(v) The matrix convolution of two [sub]renewal kernels is [sub]renewal.

The matrices of transition moment’s d.f.’s and the matrices of transition
moments of degree l ∈ R+ of the renewal kernel Q are given by (cf. (10))

(26) Q(l) := [Q(l)
j,k; (j, k) ∈ J ×K], q(l) := Q(l)(∞) ⊂ R+ = R+ ∪ {∞}.

Then q(0) = Q(∞) ∈ p(J,K) consists of transition probabilities of Q. The
column

(27) G = Q
K· I =

[ ∑
k∈K

Qj,k; j ∈ J
]
∈ P(J, ])
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consists of unconditional p.d.f.’s assigned to Q. The symbols G(l) and
g(l) := G(l)(∞) stand for the corresponding J-columns of unconditional
moment’s d.f.’s and unconditional moments, respectively.

Sometimes, we also need the matrix F of conditional transition p.d.f.’s
related to Q by

(28) Qj,k = qj,kFj,k for (j, k) ∈ J ×K,F ∈ PJ×K .

Till the end of this section, J is fixed and we assume that

(29) Q ∈ Q(J, J), 1 = 1J,J , I = IJ,, 0 = 0J,.

Also, we omit the prefix “mw-” indicating matrix-weak convergence.
In the main part of this work, some probabilities depending on “time”

t, if collected in a column, say

U = [Uj(t); j ∈ J ]′ ∈ DJ×]
+ ,

are shown to form a bounded solution of the renewal equation

(30) U = Q
J∗U + V, where V ∈ D[J×]]

+ .

Proposition 4 (a uniqueness theorem for the renewal equation). The re-
newal equation (30) has at most one bounded solution U ∈ D[J×]]

+ whenever
Q∗n(t) converges to 0J,J for t ∈ R+.

P r o o f. The difference W ∈ D[J×J]
+ of any two bounded solutions of (30)

satisfies W(t) = Q∗m J∗ W(t) for t ∈ R+ and m ∈ N. The equivalence of

Conditions A (cf. Proposition 2) implies that W(t) = limm→∞Q∗mJ∗W(t) =
0J,.

In order to describe the solutions of (30), we use the Neumann series
for inverse matrices. By monotonicity arguments, the case of D↑+-valued
matrices reduces to R+-valued matrices. The essential fact is

Lemma 1. For every q ∈ q(J, J),

s :=
∞∑

m=0

q·m ∈ R[J×J] iff v := (1− q)−1 ∈ R[J×J].

In that case, s = v.

P r o o f. According to Proposition 2 applied to
n

F(t) = q·n, where n ∈
N and t ∈ R+, q·n converges to 0J,J whenever the series is convergent.
Therefore

s · (1− q) = (1− q) · s =
∞∑

m=0

q·m · (1− q) = lim
n→∞

(1− q·n) = 1.
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On the other hand, for bounded v, we have
n−1∑
m=0

q·m = sn−1 = sn−1 · (1− q) · v = (1− q·n) · v.

Therefore, ‖sn−1‖ ≤ 2‖v‖ and the limits of the elements sn;j,k of sn form
a bounded matrix. Again by Proposition 2, the first condition and the
equality s = v follow.

In a similar way, one can prove that

Lemma 2. If the series

(31) U =
∞∑

m=0

Q∗m J∗V

is convergent in D[J×]]
+ , then U is a bounded solution of (30).

Combining Lemmas 1 and 2 with Propositions 2 and 4, we come to the
following

Corollary 1. Let the subrenewal kernel Q ∈ Q(J, J) satisfy

(1−Q(∞))−1 ∈ R[J×J].

Then the sufficient condition of Proposition 4 is satisfied. Moreover , for
every V,U ∈ D[J×]]

+ , formula (31) and equation (30) are equivalent and
imply that

Ũ(a) = (1− Q̃(a))−1 J· Ṽ(a) =
∞∑

m=0

(Q̃(a))m J· Ṽ(a) for a ∈ R+.

For the evaluation or estimation of the series of Corollary 1 we follow
Korolyuk and Turbin [6]. We consider perturbed stochastic matrices, say,

(32) p ∈ p(J, J).

Let us assume that the transition probability matrix p of a Markov chain
on J satisfies

(33) some π ∈ p(], J) satisfies: π
J· I = 1, π

J· p = π and

(34) Λ = (1− p +Π)−1 ∈ R[J×J]
+ , i.e. λ := ‖Λ‖ < ∞,

where Π := I · π ∈ p(J, J). Then the chain is said to be strongly recurrent .
In particular, there is exactly one stationary p.d. of such a chain and it is
equal to π. For these facts and the following lemma, see [6] and [11].

Lemma 3 (a perturbation theorem for stochastic matrices). In terms of
(32)–(34), let h satisfy

(a) h ∈ R[J×J] and χ := π
J· h J· I 6= 0,



296 J. Domsta and F. Grabski

(b) r := λ

(
1 +

‖π J· h‖
|χ|

)(
1 +

‖h J· I‖
|χ|

)
‖h‖ < 1.

Then the inverse matrix of 1− p + h exists in R[J×J] and it is given by

(i) (1− p + h)−1 = χ−1 ·Π+ (1 + T
J· h)−1 J· T,

where

T := A
J· Λ J· B, A := 1− χ−1Π

J· h, B := 1− χ−1 · h J· Π.

Moreover ,

(ii) ‖(1 + T
J· h)−1 J· T‖ ≤ r(1− r)−1‖h‖−1.

5. Semi-Markov processes. Let K be an at most countable state
space and assume that

(35)
p(0) = [p(0)

j ; j ∈ K] ∈ p(K, K),

Q = [Qj,k; (j, k) ∈ K ×K] ∈ P(K, K).

The renewal kernel Q and the p.d. p(0) allow us to construct a homoge-
neous two-dimensional Markov chain

(36) (ϑ, ξ) := ((ϑm, ξm);m ∈ N) ∈ (R+ ×K)N w.p. 1,

satisfying the following equalities for m ∈ N, u ∈ R and k ∈ K:

(37) Pr{ϑm+1 ≤ u, ξm+1 = k | ϑm, ξm} = Qξm,k(u) w.p. 1, and

Pr{ϑ0 = 0, ξ0 = j} = p
(0)
j , j ∈ K.

As a direct consequence of the defining conditions (26)–(28) and (37),
we get

(38) Pr{ξ0 = j0, ξl = jl and ϑl ≤ ul for l = 1, . . . ,m}

= p
(0)
j0

m∏
l=1

Qjl−1,jl
(ul) = p

(0)
j0

m∏
l=1

qjl−1,jl
Fjl−1,jl

(ul).

Then we define w.p. 1

(39) (τ, ξ) := ((τm, ξm);m ∈ N) : Ω → (R+ ×K)N, where

τm =
m∑

l=1

ϑl for m ∈ N, τ∞ = lim
m→∞

τm = sup{τm : m ∈ N},

and

(40) X(·) := (X(t) = ξν(t); 0 ≤ t < τ∞), where ν(t) :=
∞∑

m=1

χ[0,t](τm).
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Definition 3. The sequence (τ, ξ) given by (39) is called a Markov
renewal chain on K with the initial p.d. of ξ equal to p(0), related to the
renewal kernel Q. The r.v.’s τm, ξm and ϑm are called the instant , the state
of the mth renewal and the distance between mth consecutive renewals,
respectively.

The process X(·) = (X(t); t ∈ [0, τ∞)) with random duration τ∞ given
by (39)–(40) is called a homogeneous semi-Markov process (HSMP) on K,
generated by the Markov renewal chain (τ, ξ) related to the renewal kernel Q.

The name of (τ, ξ) is justified by the first part of the following list of
standard properties of HSMP.

Proposition 5. (i) (τ, ξ) is a Markov chain and for m ∈ N, u ∈ R+ and
k ∈ K, the following holds w.p. 1:

• Pr{τm+1 ≤ u, ξm+1 = k | τm, ξm} = Qξm,k(u− τm),
• τ0 = 0 ≤ τ1 ≤ τ2 ≤ . . . ,

• ν(t) = m iff τm ≤ t < τm+1, and τ∞ > t iff ν(t) < ∞,
• the sample paths of X(·) are right-continuous and constant between

the instants of the renewals,
• the points of discontinuity σl, l ∈ N, σ0 := 0, of X(·) form a (finite

or infinite) subsequence of {τ0, τ1, τ2, . . .}.
(ii) If additionally Q(0) = 0K,K (each entry of Q is continuous at 0),

then we also have:

• τ is strictly increasing (and tends to τ∞ ≤ ∞ as n →∞),
• X(τm) = ξm,
• {σ0, σ1, σ2, . . .} = {τ0, τ1, τ2, . . .} whenever qk,k = 0 for k ∈ K.

Corollary 2. (i) ξ = (ξm;m ∈ N) : Ω → KN is a Markov chain with
p(0) as initial p.d. and with the stochastic matrix q as transition probability
matrix ; in particular ,

Pr{ξm+1 = j | ξ0, ξ1, . . . , ξm−1, ξm} = qξm,j .

(ii) The distances ϑ = (ϑm;m ∈ N) are conditionally independent with
respect to the σ-field generated by ξ in the following sense:

Pr{ϑ1 ≤ u1, . . . , ϑm+1 ≤ um+1 | ξ0, ξ1, . . . , ξM−1, ξM}

=
{ ∏m

l=1 Fξl−1,ξl
(ul)Gξm

(um+1) if M = m,∏m+1
l=1 Fξl−1,ξl

(ul) if M > m.

(iii) For m ∈ N, t ∈ R+ and J0, J1, . . . , Jm ⊂ K we also have

Pr{τm ≤ t and ξl ∈ Jl for l = 0, 1, . . . ,m}

= p(0) J0· Q
J1∗ Q

J2∗ . . .
Jm−1∗ Q(t)

Jm· I,
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Pr{τm ≤ t < τm+1 and ξl ∈ Jl for l = 0, 1, . . . ,m}

= p(0) J0· Q
J1∗ Q

J2∗ . . .
Jm−1∗ Q

Jm∗ (I−G)(t).

(iv) If Q(0) = 0K,K , then the equalities of (i)–(iii) remain valid with ξl

replaced by X(τl), l ∈ N.

R e m a r k 2. The central equality of (ii) of Proposition 5 justifies the
name of the embedded Markov chain used for ξm = X(τm), m ∈ N. But
even if τ is not strictly increasing, the above equality with σ substituted
for τ defines a Markov chain, possibly related to another renewal kernel.
This implies non-uniqueness of the renewal kernel corresponding to a given
HSMP.

6. The first exit from a subset. We keep the assumptions and
notation (35)–(40). In order to avoid some unnecessary complexity, we
assume that

(41) Q(0) = 0K,K .

Then the instant of the first exit of the HSMP X(·) from J , J ⊂ K, is
defined by

(42) TJ :=
{

0 if X(0) ∈ K \ J ,
sup{t : t < τ∞, X(u) ∈ J for u ≤ t} if X(0) ∈ J .

According to Proposition 5 and Corollary 2,

(43) TJ = τνJ
,

where

νJ =
{

0 if ξ0 ∈ K \ J ,
sup{n ∈ N : ξl ∈ J for l = 0, 1, . . . , n− 1} if ξ0 ∈ J .

Before we evaluate the sub-p.d.f. of TJ , i.e.

(44) FTJ
:= (FTJ

(t) := Pr{TJ ≤ t}; t ∈ R+) ∈ Q,

let us compare it to

(45) FTJ<τ∞ = (FTJ<τ∞(t) := Pr{TJ ≤ t, TJ < τ∞}; t ∈ R+) ≤ FTJ
.

Proposition 6. The following conditions are equivalent :

(i) νJ < ∞ w.p. 1;
(ii) TJ < τ∞ w.p. 1;
(iii) FTJ<τ∞ = FTJ

;
(iv) FTJ<τ∞(∞) := lim

t→∞
FTJ<τ∞(t) = 1.

P r o o f. The implications (i)⇔(ii)⇔(iii)⇒(iv) are direct consequences
of (41)–(45) and the finiteness of all instants τ0 < τ1 < τ2 < . . . (cf.
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Proposition 5). If (iv) holds, then Pr{νJ=∞} is not greater than Pr{νJ=∞
or TJ > t} = 1− FTJ<τ∞(t) → 0 as t →∞.

By the definition of TJ and Corollary 2, for t ∈ R+, FTJ<τ∞(t) equals

(46) Pr{ξ0 ∈ K \ J}+
∞∑

m=0

Pr{τm+1 ≤ t, ξ0, . . . , ξm ∈ J, ξm+1 ∈ K \ J}

= p(0) K\J
· I + p(0) J· FJ,(t),

where

(47) FJ, :=
∞∑

m=0

((QJ,J)∗m ∗QJ,K\J · IK\J) ∈ Q(J, ).

Moreover, for t ∈ R+ ∪ {∞} we have

(48) FTJ
(t)− FTJ<τ∞(t) = Pr{τ∞ ≤ t, νJ = ∞}

= lim
m→∞

Pr{τm ≤ t, νJ > m} = lim
m→∞

p(0) J· (QJ,J)∗m(t)
J· I.

In particular, taking t = ∞ in the last two equalites, we get

(49) Pr{νJ = ∞} = lim
m→∞

p(0) J· (qJ,J)·m
J· I.

Note that Corollary 2 implies

Proposition 7.

Pr{X(t) ∈ J, τ∞ > t} =
∞∑

m=0

Pr{τm ≤ t < τm+1, ξm ∈ J}(i)

= p(0) K·
∞∑

m=0

Q∗m J∗ (I−G)(t),

(ii) Pr{τ∞ > t} = 1− lim
m→∞

p(0) K· Q∗m(t)
K· I,

(iii) Pr{τ∞ = ∞} = 1− lim
t→∞

lim
m→∞

p(0) K· Q∗m(t)
K· I,

(iv) Pr{τ∞ = ∞, νJ = ∞}

= Pr{νJ = ∞}− lim
t→∞

lim
m→∞

p(0) J· (QJ,J)∗m(t)
J· I.

Corollary 3. The J-column FJ, given by (47) satisfies the renewal
equation

(i) FJ, = QJ,J ∗ FJ, + QJ,K\J ∗ IK\J,.

If additionally 1J,J −qJ,J with qJ,J = QJ,J(∞) is invertible in R[J×J]
+ , then

(ii) F̃J,(s) = (1J,J − Q̃J,J(s))−1 · Q̃J,K\J(s) · IK\J, for s ∈ C+,
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where

(1J,J − Q̃J,J(s))−1 =
∞∑

m=0

(Q̃J,J(s))·m ∈ C[J,J]
+ for s ∈ C+;

(iii) FTJ
= FTJ<τ∞ = p(0) J· FJ, ∈ P whenever X(0) ∈ J w.p. 1.

P r o o f. For (i) and (ii), use Corollary 1 of Section 4. According to it
and (49), νJ < ∞ w.p. 1. Therefore, Proposition 6 is applicable, leading to
the first equality in (iii) for every initial p.d. (of ξ0). For processes starting
in J , (46) gives us the second equality in (iii).

R e m a r k 3. The p.d. of the time to the first exit from a subset J
depends on the renewal kernel through the submatrices QJ,J and QJ,] :=
QJ,K\J ·IK\J, only. In other words, the time TJ to the first exit will have the
same p.d. if K and QJ,K\J are replaced by J ∪ {]} and QJ,], respectively.
Moreover, one can assume without loss that the states of K \ J which are
represented by ] are all absorbing.

7. The limit theorem for the first exit. Our goal is to analyse the

limit p.d. of the first exit times for a sequence
n

X(·), n ∈ N, of HSMProcesses
on a common at most countable state space K. They all have the same
initial p.d. concentrated on a subset, say J , of the state space, not equal to
K. Therefore without loss we assume that (cf. Remark 3 in Section 6)

(50) J 6= ∅, J is at most countable, K = J ∪ {]}.
The common initial p.d. is described by

(51) p(0) := [Pr{
n

X(0) = j; j ∈ K}] ∈ p(],K), where p(0) J· I = 1.

For n ∈ N, let the process
n

X(·) be related to the renewal kernel

(52)
n

Q ∈ P(K, K), where
n

Q(0) = 0K,K ,
n

Q],J(∞) = 0],J .

The d.f. of our interest is then defined by the equalities (cf. Section 6)

(53)
n

F J(t) := Pr{
n

T J ≤ t}, t ∈ R+, where
n

T J = sup{t : t < τ∞,
n

X(u) ∈ J for u ≤ t}.
Theorem 2 below concerns sequences for which the central submatrices

n

QJ,J tend to a renewal kernel

(54) P ∈ P(J, J), where p = P(∞) ∈ p(J, J) corresponds to a strongly
recurrent Markov chain.

Thus, we can introduce the (unique) stationary p.d. π of the matrix p,
the matrices Λ, Π and the number λ according to (33)–(34).
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The assumptions on the perturbation are expressed in terms of the sta-
tionary average p.d.f. of the distances in the limit HSMP

(55) Fϑ := π
J· P J· I ∈ P,

and the differences of transformed renewal kernels and their averages given
by the following equalities:

(56) Hϑ := p− P̃ ∈ A[J×J]
+ , Hϑ := π

J· Hϑ
J· I = 1− F̃ϑ ∈ A+,

(57)
n

∆in := P̃−
n

Q̃J,J ∈ A
[J×J]
+ ,

n

∆in := π
J·

n

∆in
J· I ∈ A+,

(58)
n

∆out :=
n

Q̃J,] ∈ A
[J×]]
+ ,

n

∆out := π
J·

n

∆out
J· I ∈ A+,

(59) εn :=
n

∆out(0) (=
n

∆in(0)).

Theorem 2. Let the HSMProcesses
n

X(·) on K and the limit renewal
kernel P = PJ,J be given by (50)–(52) and (54), (33)–(34), respectively. In

terms of (55)–(59), suppose that the renewal kernels
n

Q of
n

X(·) satisfy the
following conditions:

(a) εn > 0, εn → 0, ε−1
n εn+1 → 1, ε−1

n

n

∆out(εn) → 1 as n →∞;
(b) %2(a) := (Hϑ(a))−2‖Hϑ(a)‖3 → 0 as a → 0+.

Moreover , suppose that the perturbation
n

∆in satisfy

(c.1)
n

∆in(a) > 0 for a ∈ R+,

and that almost uniformly with respect to a ∈ R+,

(c.2) ε−1
n

n

∆in(εna) → 1 as n →∞,

(c.3) σ2
n(a) := (

n

∆in(a))−2‖
n

∆in(a)‖3 → 0 as n →∞.

(i) The following conditions are equivalent :

• for some constants cn → 0+, the p.d.f.
n

F J of cn

n

T J given by (53)
is weakly convergent to a p.d.f. which is not concentrated on {0};

• 1− F̃ϑ is regularly varying at 0, with a positive degree.

(ii) Under the conditions of (i), for some constants c > 0 and α ∈ (0, 1],

the transform of the d.f.
n

F J satisfies
n

F̃ J(cns) → (1 + csα)−1, s ∈ C+, as n →∞.

P r o o f. Let us start with an arbitrary sequence cn → 0+ and take a ≥ 0
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in the following notation and estimates for elements of J × J-matrices:

hn(a) := p−
n

Q̃J,J(cna) = Hϑ(cna) +
n

∆in(cna)

=
n

∆in(0) +
n
qJ,J −

n

Q̃J,J(cna) ≥
n

∆in(0) = hn(0),

where
n
q :=

n

Q(∞) =
n

Q̃(0). From the equalities
n

Q̃J,K(0)
K· I = P̃(0)

J· I = IJ, and Hϑ = 1− F̃ϑ,

we get the following estimates for the elements of the J-columns:

hn(a)
J· I ≥ hn(0)

J· I =
n

∆in(0)
J· I = (P̃(0)−

n

Q̃J,J(0))
J· I =

n

Q̃J,](0)

=
n

∆out(0) ≥
n

Q̃J,](cna) =
n

∆out(cna).

Moreover, the norms of hn and the numbers

χn(a) := π
J· hn(a)

J· I
satisfy

2 ≥ ‖hn(a)‖ ≥ χn(a) = 1− F̃ϑ(cna) +
n

∆in(cna)

≥
n

∆in(0) =
n

∆out(0) = εn ≥
n

∆out(cn · a) > 0.

The appropriate estimates for the numbers

0 ≤ rn(a) := λ

(
χn(a)
‖hn(a)‖

+ 1
)2 ‖hn(a)‖3

χn(a)2

are based on the following consequence of the Jensen inequality:

‖hn(a)‖3

χn(a)2
≤ ‖Hϑ(cna) +

n

∆in(cna)‖3

((1− F̃ϑ(cna)) +
n

∆in(cna))2

≤ 2
[
‖Hϑ(cna)‖3/2 + ‖

n

∆in(cna)‖3/2

Hϑ(cna) +
n

∆in(cna)

]2

≤ 2[%(cna) + σn(cna)]2.

Since cn tends to 0, by (b) and (c.3), rn(a) → 0+ almost uniformly with
respect to a ∈ R+ as n → ∞. Thus, for every a0 ≥ 0 and n sufficiently
large, Lemma 3 is applicable with χ = χn(a), r = rn(a) and h = hn(a),
assuring r < 1, for all 0 ≤ a ≤ a0. Consequently, the matrix

1J,J −
n

Q̃J,J(a) = 1J,J − p + hn(a)

has an inverse in R[J×J]
+ for 0 ≤ a ≤ a0 and n ≥ N0 ∈ N. Here, N0 depends

on a0 only. In particular, for these naturals, 1J,J −
n
qJ,J is also invertible,
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since a = 0 can be taken. According to Corollary 3,
n

T J < τ∞ ≤ ∞ w.p. 1 for n ≥ N0.

Thus, for the p.d.f. of cn

n

T J we have

Fn(t) =
n

F J(t/cn) = Pr{cn

n

T J ≤ t} = Pr{cn

n

T J ≤ t,
n

T J < τ∞}.
Moreover, keeping a fixed, for the transform of Fn we have the formula
(cf. Corollary 3, Lemma 3 and the notation (55)–(59))

F̃n(a) = p(0) J·
n

F̃J,(cna) = p(0) J· (I
J· π · χn(a)−1 + En(a))

J·
n

∆out(cna)

=

n

∆out(cna)
n

∆in(cna) + (1− F̃ϑ(cna))
+ En(a).

By Lemma 3(ii), the remainders

En(a) = (1J,J +Tn(a) ·hn(a))−1Tn(a) and En(a) = p
J· En(a)

J·
n

∆out(cna)

are bounded as follows:

|En(a)| ≤ ‖En(a)‖ · ‖
n

∆out(cna)‖ ≤ rn(a)
1− rn(a)

· ‖
n

∆out(cna)‖
‖hn‖

≤ rn(a)
1− rn(a)

.

Thus, for every sequence cn → 0+, we have |En(a)| → 0 as n →∞.
Condition (c.1) and the obtained formula for F̃n(a) show that

lim sup
n→∞

F̃n(a) ≤ lim sup
n→∞

εn(1− F̃ϑ(cna))−1.

Therefore, if the first condition of (i) is satisfied with (positive) cn → 0+,
then the sequence εn

−1(1 − F̃ϑ(cna)) is bounded. Otherwise the sequence
F̃n(a) would have a cluster point at 0, which is impossible for the transforms
of p.d.f. weakly convergent to a p.d.f. By convexity of F̃ϑ, the ratio cn/εn

also remains bounded. Now the conditions (a) and (c.2) show that the limits
of F̃n(a) and ε−1

n (εn + (1 − F̃ϑ(cna)))−1 coincide for every a ∈ R+, and
equal the Laplace–Stieltjes transform of a p.d.f. on R+. Using Theorem 1
we obtain the second condition of (i).

Conversely, if F̃ϑ is regularly varying at 0 with positive degree of regu-
larity α, then α ∈ (0, 1], since F̃ϑ is concentrated on R+. Then, taking for
cn the only solution of 1 − Fϑ(cn) = εn, we get the boundedness of cn/εn

and

lim
n→∞

1− F̃ϑ(cna)
εn

= lim
n→∞

1− F̃ϑ(cna)

1− F̃ϑ(cn)
= aα for a ∈ R+.

Directly from (a), (c.2) and the formula for F̃n(a) we obtain the first condi-
tion of (i). Moreover, the assertion (ii) follows with c = 1. Since the shape
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of the proper limit p.d.f. is independent of the normalizing factors, (ii) holds
for any other choice of the sequence (cn) satisfying the first part of (i).
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