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CHARACTERIZATIONS OF DISTRIBUTIONS
BY MOMENTS OF ORDER STATISTICS
WHEN THE SAMPLE SIZE IS RANDOM

Abstract. We give characterizations of the uniform distribution in terms
of moments of order statistics when the sample size is random. Special cases
of a random sample size (logarithmic series, geometrical, binomial, negative
binomial, and Poisson distribution) are also considered.

1. Introduction and preliminaries. Let {X,,,n > 1} be a sequence
of i.i.d. random variables with a common distribution function F'. Denote
by Xi., the kth order statistics of a sample (X1, ..., X,). We write X(,,) =
max(X1y,...,X,) and Xy, = min(X1q,..., X,).

Characterizations of distributions via moments of order statistics when
the sample size is fixed were treated in a great number of papers (cf. [1],
[5], [6], [7] and references there). When the sample size is random, charac-
terizations of that type have been considered in [7]. One of the results of
[7] which we intend to generalize states that for characterizing the uniform
distribution in terms of order statistics in the case when the sample size N
has a logarithmic series distribution the finite set {EX, EX ), EX (2N)} is
sufficient. Recall that in the case when the sample size is fixed the U(0, 1)
distribution is characterized by the elements of the set {EX (o), EX?}.

The aim of this paper is to generalize the above characterizations.
Namely, we show that the uniform distribution on (0,1) can be charac-
terized by FX (QN) and ENLHX (N+1), where N is a discrete random vari-

able with P[N = 1] > 0. We note that in a special case when N has
a logarithmic series distribution, U(0,1) can be characterized by the set
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{EX(N),EN+1X(N+1)} instead of {EX, EX(N),EX(N)} Moreover, we
discuss characterization conditions for the uniform distribution when the
probability function of the sample size N is given by the recurrence formula

(1.1) PIN =n]=(a+b/n)PIN=n—-1], ne{23,...};
a<lya+b>0 (cf. [4], [8)]).

2. Moments of order statistics with a random index. Let {X,,
n > 1} be a sequence of i.i.d. random variables obeying a distribution F'.
Put

Un(t) = EtN, |t/ <1, F7Y(t)=inf{z: F(z) >t}, te(0,1).

LEMMA. Let N be a positive integer-valued random variable independent
of {Xn,n > 1}. If the probability function of N satisfies the recurrence
relation (1.1) and the distribution function F' has a finite mth moment for
m > 1, then

N+

(21) BEX[y =aB——— E

N +
and
N xm
(22) EX[ly =B Xiivp +(@+b)E ﬁ + P[N = 1]EX™.
Proof. Note that

1
EXy =n f ™ tdt  (cf. [2]).
0

Then

NE

EX(y) = E(max(Xy,...,X,))"P[N = n]

n=1

-

n fl (F7X(t))™" 1t dt P[N = n]
0

n=1

=P[N=1EX"+a j (F~1 ()™ i nt" 'P[N =n — 1] dt

+b [ (FTE)m i " 'P[N =n — 1] dt

= PIN =1]EX" +a [ (F7' ()"t (t) dt
0
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1
+ (a+b) f )" (t)dt
0

N N+1 m
= aB 5 X{i ) + (@ +D)E ]\§+1)+P[N:1]EX ,

which gives (2.1). In a similar way we obtain (2.2).

Remark 1. The relations (2.1) and (2.2) can be written in the form
1

(23) EX(Ry=a [ (F7'(#)™ (b dt
0

+(a+b) [ (F7'(t)™pn(t)dt + PN = 1]EX™,

S

(24) EXJiy=a [ (F7'(0)™(1— (1 —t)dt
0

1
+(a+b) [ (F7' )"yl —t)dt + EX"P[N = 1],
0

respectively.

Remark 2. In collective risk theory X corresponds to the maximum
amount of a claim among the random number of claims in a certain period

(ct. [8]).

3. Characterizations of the uniform distribution

THEOREM 1. Let {X,,,n > 1} be a sequence of i.i.d. random variables
with a common distribution function F such that EX? < co. Suppose that
N is a positive integer-valued random variable independent of {X,,n > 1}
and has a probability function with PN = 1] > 0. Then for given A > 0,
F(z) =xz/\x € (0,\), iff

N N
2
Proof. Let F(z) =x/\x € (0,)\). Then
1 1

EX(yy = [ (F )N (t) dt = [ 2y (t) dt
0 0

and
1

N : [
EN+1X(N+1) Of(F‘l(t))th(t) dt:éft21/)N(t) dt
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Taking into account that
N 1
E——= | Y (t)dt
N1 ! Ui (®)

we obtain (3.1).
Now assume that (3.1) holds true, i.e.
1 1 1
[ (FH )2y () dt —2x [ FH ()t (8 dt+ X* [ £24(t) dt = 0.
0 0 0
Then fol(F_l(t) — At)?¢Y(t)dt = 0. Therefore by the assumptions we
conclude that F~1(t) = Mt a.e. on (0,1).
COROLLARY 1 (cf. [6] for A = 1). If P[N = 1] = 1 then F(z) = =z,
€ (0,1), iff
(3.2) EX@ — EX*=1/3.
COROLLARY 2 (cf. [7]). Let {X,,,n > 1} be a sequence of i.i.d. random
variables with a common distribution function F with finite second moment.

Suppose that a random sample size N is independent of {X,,,n > 1} and
has the probability function

afd™

(3.3) P[N:n]:T, n=12,...; 0 (0,1), a=—1/In(1 —0).
Then F(x) =x/\, x € (0,\), iff
N 1 1 In(1-9)
2 2 _
(34) EX(N)_Q)\ETHX(N+1)_A a{2+0+92}—0,

which is equivalent to

1 1 1 In(1—6
(3.5)  EXZy +2) [aEX - EX(N)} - av{ Loy n()} _0

o 2 0 62
Proof. Note that for the distribution (3.3) we get
N 1 1 In(1-0)
. E——=—-a9 - —— .
(36) N +2 O‘{2+9+ 62 }

Hence we have (3.4). Moreover, we see that the distribution (3.3) satisfies
(1.1) with a = 0, b = —6. Then by the Lemma we have

N
0FE——X(ny1) = EX(n) — PN = 1]EX

N+1
or
N

Putting (3.6) and (3.7) into (3.4) we get (3.5).
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Other special cases characterizing the uniform distribution are given in
the following corollaries.

COROLLARY 3. Under the assumptions of Theorem 1, F(x) = x/\, x €

(0, A), ff

N 2p [ p? 3

which is equivalent to

EXny EX(N+1) _ pEX
N+1 q

2 2 3
+/\2[1+£<p—2p++lnp)] =0,

2
EX}y) - 2X

2 2
for N having the probability function
(38) P[N=n]=p¢"', n=12,...;0<p<l, ptq=1;

3 N
(i)  EX{y) — 2AEmX(N+1)

1 l_qn+2 1_qn+1
2 2 n
) - 1— —
—M{l—q” [ n+2 Tt /*(1 = a")] 0

which is equivalent to

EX X n
92Ny pENEY M gy
P N +1 1—qm

1 1_qn+2 1_qn+1
22 —2 — 21—q¢")];p =0
wef Ao T - | o

2
EXZy) — 2\ [ -

for N having the probability function

n — n
39 PV =k = ()it
k=1,....n; p+qg=1, 0<p<1;
N 0—2 2
2 2 .

which is equivalent to

-6
9 e "EX 9 6 —2 2]
for N having the probability function
(3.10) P[N=n]=¢"/[(1-e%nl], n=12,...; >0
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: N
(iv)  EXPy) — 2NE 7 X v

+A2{ : _1p2 — 2p? [; - lnp] /(1 —pQ)]} =0,

which is equivalent to

EX(ny _9E

X 2°EX
2 (N+1) 1%
EX(N)—Q)\[ — ]

N +1 1—p2?

+A2{ : _1p2 — 2p? [Z + lnp] /(1 —pz)]} =0,

or

N
2

r{it w4 oo

which is equivalent to

EX (v X(Nt1) 3pPEX
EX2g —ox| 220 3p -
(N) [ q 3 N+1 1—p3
1 1 1
2 3| 4+ 4+ L 201 _ .3 _
+A{1_3+p[ 2t 2p2]/[CI( p)]} 0,
or
N
2
1 p—p" _p-p
2 _ 21_ r —
+)\{1_pr+2<1_r 2—7“ /[Q( p)] 07

which is equivalent to

EX XNty TmpEX
EX2, —ox|Z2W) g —
(N) [ q " N+1 1—pr
1 p—p" p*—p" .
ol e - B ) =

for N having the probability function
-1
gy P =al= ("I e
n
with r = 2,3 and an integer r > 4, respectively.
Characterization conditions in the spirit of (3.5) (cf. [7]) with the prob-
ability function (1.1) are as follows.

THEOREM 2. Let {X,,n > 1} be a sequence of i.i.d. random variables
obeying a distribution F with finite second moment. Further, let N be de-
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fined by (1.1) and be independent of {X,,n > 1}. Then, for given A > 0,
F(z) =x/X on (0,\) if and only if

X
(312) EXZy, —2\|EX(y) — (a+b)E-M) — PIN =1]EX|/a

N+1
N
NE_——— =
+ N +2 0

whenever a # 0 and a # —b,

N

2 2
(3.13)  EX(y) — 2A\[EX(n)y — PIN = 1]EX]/a + A Em =0
whenever a # 0 and a = —b, and
N

(3.14) EX{(yy—2AEX(n41)+(P[N = JEX —EX(y)) /b + N E—— = 0

N+2

whenever a = 0.

Proof. The Lemma of Section 2 and Theorem 1 lead us after simple
evaluations to (3.12)—(3.14).

The conditions for U(0, \) in terms of first order statistics are as follows.

THEOREM 1". Let a sequence {X,,n > 1} and a random variable N be
as in Theorem 1. Then for X\ > 0, F(z) = x/\, © € (0, \), iff

N N N
EX? v +2) [EXLNH —EXLN] + A2 [1—2]3 +E

N+1 Nil PN T

COROLLARY 1’ (cf. [6]). If PN = 1] =1 then F(z) =z, = € (0,1), iff
EX?+EX,,—-2EX + 1/3 =0, which is equivalent to EXo.o —EX?= 1/3.

COROLLARY 2’ (cf. [7]). Under the assumptions of Theorem 1', F(x) =
/A, x € (0,N), iff

N
(3.15)  EXZ,y +2\ [ENJFIXLNH — EXlzN}

which is equivalent to

1
(3.16) EX%y —2\ [aEX + (1 - 0) EXLN}

for N having the probability function (3.3).
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Proof. Note that for the distribution (3.3) we get
N N 3 1 1\*
1 1-2F E =a|lz-—=—(1—=] In(1-20)].
(3.17) N+l N2 Q[Q 0 ( 9> a( )}

Hence we have (3.15). Moreover, for the distribution (3.3) by the Lemma
we get

N 1
(318) Ele:N+1 - EXl:N = —<1 - 9>EX1N —aFX.

Putting (3.17) and (3.18) into (3.15) we obtain (3.16).

COROLLARY 3'. Let {X,,,n > 1} be a sequence of i.i.d. random variables
obeying a distribution function F with finite second moment. Suppose that

a random sample size N is independent of {X,,n > 1}. Then for given
A>0, F(x) =x/\ z € (0,N), iff

N
(i) EXZy+2) [EXLNH - EXLN]

N+1
11 p®—4p® +3p  2p
o (- ) +

which is equivalent to

1 X,
EX2y — 2\ [(1 - q)EXLN +E ]\;1*11 + SEX]

11 S—4p®+3p 2
_’_)\2|:2plnp<3_2> W_p] 207
q q q q
for N having the probability function (3.8);

3 N
(i) EXZy+2) [EMXLNH — EXLN]

qn 1_qn+1 1 q l_qn+2
A2 2 L) - ———|/0=¢")} =0
" {q"—1+ [ n+1 <p+p2 p*(n+2) /=a") ’

which is equivalent to

EX), X, n
EXI%N—%[ pl'N —nE J\}Tf - 1fanX]

qn 1_qn+1 1 q 1_qn+2
A2 2 )= —|/=q) =0
i {q“—1+ [ n+1 <p+p2 p*(n+2) /= ’

for N having the probability function (3.9);
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N
(iil) EXZy +2) [EX( N+1) — EX1, N}

N +1
+ é ’ 2 — M =0
0 1—e? -
which is equivalent to

1 'EX A\ 2 0(0 + 2)e?
EX12:N - 2/\|:<1 + 9>EX1:N + i—€_0:| + <0> <2 - (11_6)—66') = 07

for N having the probability function (3.10);
. N
(iv)  EXTy+2A [EMXLN—H - EXl:N:|
2lnp 2]

—)\2p2[1+ 2 +6 /(1—p®) =0,

which is equivalent to
Xin+1  20°EX]
N+1 1—p? |

+A2{p2 [1 - 2;2””] + 2p(q2q_ 1)}/u -1 =0,

1
EXZy — 2)\[(1 - q>EX1;N +2E

or

N
EX12:N +2A [E]V-i-lXIZN—H - EXl:N}

el oo oo o

which is equivalent to

1 X. 3p3EX
2 1:N41 p

1 1
o[-z e ga)

or
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which is equivalent to

Xi:Ny1 rp"EX
EXiy—-2\(1-=|EX E
=y [( Q> Sy T
2(p” —p") 2 —p)p
A2 — —p Y /(1—p") =0,
i { =2 (-1 " /=7
for N having the probability function (3.11), with r = 2,3 and an integer
r > 4, respectively.

THEOREM 2'. Let a sequence {X,,n > 1} and a random variable N be
as in Theorem 2. Then for given A > 0, F(z) = x/\, = € (0, ), iff

EX%:N —2/\[<1 - 1>EX1:N-|- <1+ b)EXl N+1 n P[N = 1]EX]

a N +1 a
N N
A1 -2E E =
+ [ N+1+ N+2] 0

whenever a # 0, a # —b,

Xt 2A[p[z\r —1EX | ( 1)EX1 N]

a

a
N
2 — =
+A [1 2EN+1+EN+2] 0
whenever a # 0, a = —b, and
1 PIN =1]EX
xty (14 D)+ PV EN]
N N
M |1-2F E =0
+ [ N+1+ N—|—2]

whenever a = 0.

Now we see that E X
A > 0.

THEOREM 3. Under the assumptions of Theorem 1, for given A > 0,
F(z)=x/X\ xz € (0,N), iff

(N+1) and EN+2X(N+2) characterize U (0, \),

N N
3.19) E——X0y,) — 22 E——X NE—— =0.
( ) N1 N+ N 12 (N+2) + N3
Proof. Let F(z) =z/\, x € (0,\). Then F_l( )=At, t € (0,1) and
N 9 N N

_ 2 3.1/ 912 3./ 2
= A th/}N(t)dt 2\ Jt¢N(t)dt+)\EN+3.
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But
1
3
= [ e (t)
0

Hence we have (3.19).
Assume now that (3.19) is satisfied. Then

[ (F7Ht) = M)ty (t) dt = 0
0

and by the assumptions of Theorem 3 we get F~1(t) = At a.e. on (0, \).
COROLLARY 4 (cf. [6]). If P[N = 1] =1, then F(x) =z, z € (0,1), iff
EX(ZZ) — %EX(g) + % = 0.
COROLLARY 5. If the random sample size N has the distribution (3.3)
then F(z) = z/A, x € (0,\), iff

N N
N1 T 2AE TS X v

4%?“‘” S 1_u

E
B T3
COROLLARY 6. Under the assumptions of Theorem 3, F(z) = x/\, x €
(0, X), iff
N

(i) me(%v L) —2\E NN g X(v+)
+A2[1+z4<1np—3p+2p2 - p; +161>] =0,
for N having the probability function (3.8);
(ii) EN]LXEN )~ 2)\EN]YF2X( N+2)
Vi

2

- nil(l—q”“)}/(l—q”)} =0

for N having the probability function (3.9);
N 9 N

+/\2[<1—2+;2>/(1—e_9)—03] =0
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for N having the probability function (3.10);

N N
Nr1roen 2B S o)

3p? p> 1 1
N1+ — [ p? - — = — 21 )l =0
- [+q3(1—p2)<p 3 p nPt
N

N
2
P ¥omn m2AE g Ao

3p3 2 1 pd T
A1 |2 4 — S V=0
" { +q3<1—p3>Lo g2 TP P =g

(iv) FE

or

or

N N
E —22E———X(n12)

ot 2
N+1X(N+1) N +2
1 3 p—p" pPP=p"\  p*—p
A2 ) =
* {1—p’“+q3(1—p’")[1—r (2—r * 3—r

for N having the probability function (3.10), with r = 2,3 and an integer
r > 4, respectively.

THEOREM 3'. Under the assumptions of Theorem 2', for given A > 0,
F(x)=z/X x € (0,\), iff

N N
Xl N+1 T 2)\<EN+2X1 N+2 — EN+ 1X1 N+1>

+/\2<E N —92F N +E N >:o.

N +1

N +3 N +2 N+1

COROLLARY 4’ (cf. [6]). If PI[N = 1] =1, then F(x) =z, z € (0,1), iff
EX{,—2EX12+3EX13+ £ =0,
which is equivalent to
EX{,— 2EXos+ £ =0.
COROLLARY 5. If the random sample size N has the distribution (3.3),
then F(x) =z /X, x € (0,\), iff

N

N N
EN+ Xz Ni1 T 2)\<EX1 N+2 — E——X1. N+1>

N +2 N +1
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COROLLARY 6. Under the assumptions of Theorem 3', F(x) = x/\,

€ (0,N), iff

N N N
i E——X? 2M E——X1. - F—X;.
W By Xivat < N2 BN T AN “V“)
3p 4p p 3p 3 4 p 11
Mlnp( L - Z 4+ L) 42 (22 —3p-L 4 —
+ [p(q q3+2 + 2p 14 3+6

2
P —ap+3)+ }

for N having the probability function (3.8);

.. N N N
(ii) EN+1X1N+1+2)‘<E]V+2X1N+2 EN+1X1N+1)

31— qgnt3 2 3g 2
)\2 o 17 TL+2 1 7
* [ p? n+3 Jr114—2( ) p3+p2

1—q"t /3 49 1 "
+n+1<3‘2‘ /A=) =0

p p p
for N having the probability function (3.9);
N o N N
(iii) EmX1:N+1 +2A <EN+2X1:N+2 EN7+1X1 N+1>

+)\2[<2 +1>/[9(1 —e )] - <;+;‘2+ ;)] =0

for N having the probability function (3.10);

: N N N
(iv) EN+1X1N+1+2)\< N—i—2X1:N+2_EN+1X1:N+1>
2
+)\2[3];(—q—2lnp—q>
q p
q
+4p2<p+lnp>/q2—p]/(1—p2)—0
or
N N N
EFE——X? 20| E——X. - F—X;.
N1 LN+ T < N 9 LN+ N1 1.N+1>
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or
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N N
E——X? 20| E——X. - F—X;.
N1 LN+1 T < N Lo LN+ N1 1.N+1>
_|_/\2 p_pT i_i_{_} +u i_g
1-r\¢ ¢ ¢ 2-r \¢ ¢
3(p* —p")
— 21 /(1=p") =0
q3(3—7“) /( p)

for N having the probability function (3.11) with r = 2,3 and an integer
r > 4, respectively.
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